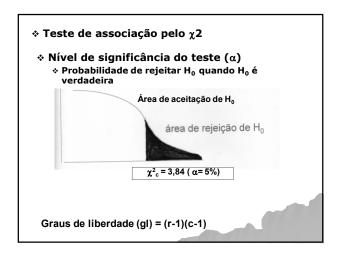

Análise descritiva de duas variáveis qualitativas

- > Tenta evidenciar como duas variáveis se combinam
- > Tabelas de contingência:
 - Dupla entrada
 - ♦ As linhas tabela mostram os resultados de uma variável e as colunas, os resultados da outra
 - Freqüência absoluta
 - Freqüência relativa (horizontal)

ESTIMATIVA DO RISCO

Risco= probabilidade de um evento indesejável Risco relativo(RR) = razão entre duas probabilidades

1. Estudo das proporções $\frac{a}{a+b} > \frac{c}{c+d}$ Associação positiva $\frac{a}{a+b} < \frac{c}{c+d}$ Associação negativa $\frac{a}{a+b} = \frac{c}{c+d}$ Independência A B B1(S) B2(N) T A1(S) a b a+b A2(N) c d c+d T a+c b+d n



2. Medidas de associação

- * Teste de associação pelo χ2
 - Verifica se há independência
 - Compara freqüências observadas com freqüências esperadas

$$\chi 2 = \sum_{i=1}^{rc} \frac{(O_i - E_i)^2}{E_i}$$
 ou
$$\chi^2 = \frac{(a \times d - b \times c)^2 \times n}{(a+b) \times (c+d) \times (a+c) \times (b+d)}$$

χ2

B /	B1 (S)	B2 (N)	Т
A1(S)	а	b	a + b
A2(N)	С	d	c + d
Т	a + c	b + d	n

Tabela correspondente esperada

AB	B1 (S)	B2 (N)	Т
A1(S)	(a+b) (a+c)/n	(a+b) (b+d)/n	a + b
A2(N)	(c+d) (a+c)/n	(c+d) (b+d)/n	c + d
Т	a + c	b + d	n

∻Teste de associação pelo χ2

- * Como proceder:
 - 1°) Fixar o erro (α)
 - 2º) Fazer a tabela esperada no caso de independência
 - 3°) Calcular o $\chi 2_{obs}$
 - 4°) Comparar o $\chi 2_{obs}$ com o $\chi 2_{crit}$

$$H_0: \frac{a}{a+b} = \frac{c}{c+d}$$

$$H_1: \frac{a}{a+b} \neq \frac{c}{c+d}$$

- * Restrições ao uso do χ² (Cochran):
- ❖ Se n < 20, somente usar o método de Fisher
- ⇒ Se 20 ≤ n < 40, χ² só poderá ser usado se as freqüências na tabela esperada (no caso de independência) forem ≥ 5. Caso contrário, usar o método de Fisher
- * Se n ≥ 40, preferir o χ^2 corrigido (cor. Yates)

$$\chi 2 = \sum_{i=1}^{rc} (|O_i - E_i| - 0.5)^2$$

$$\chi^{2} = \frac{(|a \times d - b \times c| - n/2)^{2} \times n}{(a+b) \times (c+d) \times (a+c) \times (b+d)}$$

Risco relativo (RR)

 É a chance que um membro de um grupo, ao receber alguma exposição, tem de desenvolver a doença relativamente à chance que um membro de outro grupo não exposto terá de desenvolvê-la

$$\frac{RR = P(doença/expostos)}{P(doença/não exposto)} = \frac{a/(a+b)}{c/(c+d)}$$

	Doente	Não doente	Т
Exposto	а	b	a+b
Não exposto	С	d	c+d
Т	a+c	b+d	n

 $RR = \frac{a(c+d)}{c(a+b)}$

Estudo de coorte

RISCO RELATIVO

- significa o múltiplo risco do resultado de um grupo comparado a outro (Zhang, JAMA 1998)
- é a razão de risco em estudos de coorte e ensaios clínicos
- Nos casos controle se usa o OR e é interpretado como RR
- Quando a incidência de um resultado na população de estudo é baixo (inferior a 10%) o OR é próximo ao RR
- Quanto maior a freqüência do evento, mais o OR superestimará o RR quando for maior que 1 e subestimará quando for menor que 1

Razão de chances (OR)

- Estima a grandeza do efeito por meio das observações de uma única amostra
- mostra a informação para duas variáveis dicotômicas de medidas não emparelhadas

Razão de chances (OR)

- ◆ Se a probabilidade de ocorrer é p, a chance em favor do evento é p/(1-p) (a/a+b)
- É definida como a chance de doença entre indivíduos expostos dividida pela chance de doença entre indivíduos não expostos ou

OR= P(doença/expostos) / [1-P(doença/exposto)
P(doença/não exposto) / [1-P(doença/não exposto)]

 $OR = \frac{P(exposição/doente) / \left[1 - P(exposição/doente) - P(exposição/doentes) / \left[1 - P(exposição/doentes)\right]}$

Como essas duas expressões são matematicamente equivalentes, a OR pode ser estimada para ambos os estudos de coorte e de caso controle,

Razão de chances (OR)

OR= P(doença/expostos) / [1-P(doença/exposto)]
P(doença/não exposto) / [1-P(doença/não exposto)]

1-P(doença/exposto) = 1 - (a/a+b) = b/a+b

1-P(doença/não exposto) = 1 - (c/c+d) = d/c+d

 $OR = \underline{[(a/a+b) / (b/a+b)]} = \underline{a/b} = \underline{ad}$ $\underline{[(c/c+d) / (d/c+d)} \quad \underline{c/d} \quad \underline{bc}$

Razão de chances (OR)

$$OR = \underbrace{[a/(a+b)]/[b/(a+b)]}_{[c/(c+d)]/[d/(c+d)]} = \underbrace{\frac{a/b}{c/d}} = \underbrace{\frac{ad}{bc}}$$

RR e OR são duas medidas diferentes que tentam explicar o mesmo fenômeno

Em doenças raras o RR se aproxima do OR

$$OR = \frac{ad}{bc} \cong RR = \frac{a(c+d)}{c(c+d)}$$

Valores de a e b são relativamente pequenos em relação a: "c e d"