Aula 5

Exemplo 2

Uma solução de sacarose deve ser resfriada a uma temperatura de, pelo menos 10° C, em um trocador de calor a placas usando água gelada. As temperaturas de alimentação são T_{qe} = 35° C (solução de sacarose) e T_{fe} = $1,0^{\circ}$ C (água). Ambas as vazões são m = 1,30kg.s $^{-1}$. O trocador que será utilizado tem 35 placas térmicas (36 canais de escoamento) com arranjo de passes 2x9/2x9 e entradas em lados opostos do pacote de placas, na posição inferior, de modo que o escoamento é em contracorrente na maioria das placas. As principais dimensões características da placa são:

Altura da placa: $L_p = 74,0$ cm

Largura: $w_g = 23,6$ cm

Espessura da placa: e_p = 0,7mm Espessura do canal: e_c = 2,7mm

f=45° f'_{AP}= 1,17 k_m= 17 W.K⁻¹.m⁻¹

Propriedades termofísicas médias

Solução de sacarose: $r = 1286 \text{ kg.m}^{-3}$ $C_p = 2803 \text{ J.kg}^{-1}.\text{K}^{-1}$ m = 51,5 mPa.s $k = 0,407 \text{ W.K}^{-1}.\text{m}^{-1}$ Água: $r = 1000 \text{ kg.m}^{-3}$ $C_p = 4206 \text{ J.kg}^{-1}.\text{K}^{-1}$ m = 1,33 mPa.s $k = 0.584 \text{ W.K}^{-1}.\text{m}^{-1}$

Determine:

- A. Os coeficientes globais de troca térmica limpo e sujo do trocador (R_{incrustação}=3x10⁵ K.m².W⁻¹ dois fluidos);
- B. A temperatura de saída da solução de sacarose e a carga térmica nas condições de trocador limpo e sujo. Como apenas uma das placas opera em paralelo, considerar $F_{MLDT} = 1$.