Lista 3 - Equilíbrio de compostos pouco solúveis e íons complexos

1- Em uma solução saturada de $BaCrO_4$ a $[Ba^{2+}] = 9,2 \times 10^{-6}$. Calcule o produto da solubilidade do $BaCrO_4$.

Resp.: 8,46 x 10⁻¹¹

2- Em uma solução saturada de fluoreto de magnésio, Mg F_2 , em água, $[Mg^{2+}] = 2.7 \ x 10^{-3} \ M$. Qual o K_{ps} do MgF_2 ?

Resp.: 7,87 x 10⁻⁸

3- A solubilidade do cianeto de prata, AgCN, em água é 1,3 x 10^{-7} M. Qual o K_{ps} do Ag CN?

Resp.: 1,69 x 10⁻¹⁴

4- A solubilidade do iodato de chumbo, $Pb(IO_3)_2$, em água é 3,1 x 10^{-5} M. Qual o K_{ps} deste composto?

Resp.: 1,19 x 10⁻¹³

5- Qual é a concentração de íons prata em uma solução saturada de Ag_2CrO_4 ? K_{ps} = 1,2 x 10^{-12}

Resp.: 1,34 x 10⁻⁴ M

6- Qual é a concentração mínima de íons sulfato necessária para iniciar a precipitação de sulfato de cálcio, de uma solução de CaCl₂ 0,50 M? K_{ps} = 2,4 x 10⁻⁵.

Resp.: 4,8 x 10⁻⁵ M

7- É possível precipitar CaSO4 de uma solução 1,0 x 10^{-4} M de Na₂SO₄ pela adição de CaCl₂ 0,020 M? Explique.

Resp.: não

8- Foram misturadas soluções aquosas de KCl, Na₂SO₄ e AgNO₃, ocorrendo a formação de um precipitado branco no fundo de um béquer.

A análise da solução sobrenadante revelou as seguintes concentrações:

$$[Ag^+] = 1.0 \times 10^{-3}M;$$

$$[SO_4^{-2}] = 1.0 \times 10^{-1} M e$$

$$[Cl^{-}] = 1.6 \times 10^{-7} M.$$

De que é constituído o sólido formado? Justifique com cálculos.

Composto	Produto de solubilidade	cor
AgCl	1,6 x 10 ⁻¹⁰	Branca
$\mathrm{Ag_2SO_4}$	1,4 x 10 ⁻⁵	Branca

$$AgCl \rightarrow Ag^{+} + Cl^{-}$$

 $[Ag^{+}].[Cl^{-}] = (1.0 \times 10^{-3}) \cdot (1.6 \times 10^{-7})$
 $[Ag^{+}].[Cl^{-}] = 1.6 \times 10^{-10} = Kps (AgCl)$

$$Ag_2SO_4 \rightarrow 2 Ag^+ + SO_4^{2-}$$

 $[Ag^+]^2 . [SO_4^{2-}] = (2.0 \times 10^{-3})^2 . (1.0 \times 10^{-1})$
 $[Ag^+]^2 . [SO_4^{2-}] = 4.0 \times 10^{-7} < Kps (Ag_2SO_4)$

Para o sulfato de prata (Ag_2SO_4), o Kps não é alcançado ($1,4x10^{-5}$), indicando que a presença de íons Ag^+ e Cl^- é a máxima possível na solução. Então o **precipitado formado é de cloreto de prata (AgCl)**.

9- Suponha que 0,10 moles de $AgNO_3$ e 1,0 mol de NH_3 sejam dissolvidos em água suficiente para preparar 1,0 L de solução. Calcule a $[Ag^+]$ na solução. $[Ag(NH_3)_2]^+$ $K_{diss} = 5,9 \times 10^{-8}$.

Resp.: 7,3 x 10⁻⁹ M.

- 10- Qual deveria ser a concentração de amônia em uma solução para abaixar a [Ag $^+$] de uma solução de AgNO $_3$ 0,10 M para 5 x10 $^{-10}$ M? Admita que não há variação de volume com a adição de NH $_3$. [Ag(NH $_3$) $_2$] $^+$ K $_{diss}$ = 5,9 x 10 $^{-8}$. Resp.: 3,4 M.
- 11- Como a energia reticular e a energia de hidratação determinam o calor de solução de uma substância em água?
- 12- Qual dos íons dos seguintes pares deve ter a energia de hidratação mais favorável (ΔH_{hid} mais negativo)?
 - (a) Na⁺ ou Li⁺
 - (b) Ca^{2+} ou Ga^{3+}
 - (c) S^{2-} ou Se^{2-}
 - (d) S^{2-} ou Cl^{-}

Resp.: a) Li⁺ b) Ga³⁺ c) S²⁻ d) S²⁻

13- A energia reticular do AgCl é 904 kJ/mol, os valores de energia de hidratação do Ag⁺ e Cl⁻ são - 469 kJ/mol e – 377 kJ/mol, respectivamente. Determine o calor de solução (ΔH_{sol}) do AgCl. A solubilidade do AgCl deve aumentar ou diminuir com o aumento de temperatura?

Resp.: $\Delta H_{sol} = +58 \text{ kJ/mol}$. O aumento de T favorece a solubilidade de AgCl.