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ABSTRACT 

Hutchinson, M.F., 1989. A new procedure for gridding elevation and stream line data with 
automatic removal of spurious pits. J. Hydrol., 106: 211-232. 

A morphological approach to the interpolation of regular grid digital elevation models (DEMs) 
from surface specific elevation data points and selected stream lines is described. The approach has 
given rise to a computationally efficient interpolation procedure which couples the minimization 
of a terrain specific roughness penalty with an automatic drainage enforcement algorithm. The 
drainage enforcement algorithm removes spurious sinks or pits yielding DEMs which may be used 
to advantage in hydrological process studies. The drainage enforcement algor~d,,,, ka= :!Jo been 
found to significantly increase the accuracy of DEMs interpolated from sparse, but well chosen, 
surface specific elevation data. Moreover, it facilitates the detection of errors in elevation data 
that would not be detected by more conventional statistical means ~ ud forms a sound physical basis 
for cartographic generalization. 

INTRODUCTION 

Regular grid or raster digital elevation models (DEMs) have become the 
basis for recent approaches to process raodelling of the earth's surface. Of 
prime interest is the use of DEMs in hydrological modelling, as embodied in the 
Syst~me Hydrologique Europ~en (Abbot et al., 1986a, b; Bathurst, 1986) and the 
Deterministic Site Model of the Braunschweig Research Group (Bork and 
Rohdenburg, 1986; Rohdenburg et al., 1986). At suitable levels of generalization 
DEMs also have a major role to play in geographic information systems (Evans, 
1980; Berry, 1985; Wiltshire et al., 1986), particularly in the modelling of erosion 
(Knisel, 1980), in the classification of landforms and soils (Speight, 1974; 
Heerdegen and Beran, 1982; Pennock et al., 1987), in the integration of 
biophysical data with remotely sensed satellite data (Shelton and Estes, !981; 
Jupp et al., 1986) and in the modelling of mesoscale and macroscale climatic 
phenomena (Tesche and Bergstrom, 1978; Hutchinson and Bischof, 1983; 
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Weiringa, 1986). They have even been useful at quite coarse levels of 
generalization in detecting geological structures of significance for mineral 
exploration (Harrington et al., 1982). 

Raster DEMs can be calculated directly from stereophoto maps when these 
are available (Kelly et al., 1977), or more recently from satellite imagery 
(Konecny et al., 1987), but there remains a significant role for the interpolation 
of DEMs fl'om scattered point elevation data, perhaps accompanied by stream 
line data, particularly when the point data include surface specific points such 
as peaks, pits, saddles and selected points on stream lines and ridge lines. These 
data can be obtained by ground survey at minimal cost for the small catchment 
areas often used in hydrologic studies and can also be digitized at moderate 
cost for larger areas from existing topographic maps. At national or even 
continental scales, existing data banks which hold trigonometric points 
consisting of the principal peaks, as well as scattered ground control points 
and digitized stream line data, may be sufficient, especially if the interpolation 
technique is of high quality, to generate broad scale DEMs of sufficient 
accuracy to be useful in natural resource assessment and global climatic 
modelling (Trezise and Hutchinson, 1986; Hutchinson and Dowling, 1989). 

This paper describes a morphological approach to the interpolation of 
digital terrain data which attempts to take into acount the special nature of 
terrain surfaces, and the surface specific points that can be used to sample 
terrain, as well as potential hydrological applications of the interpolated 
elevntinn grid It has given rise to a procedure, first outlined by Hutchinson 
(1986), which can efficiently calculate raster DEMs witn sensible drainage 
characteristics from large numbers of irregularly spaced elevation data points 
and stream line data. The principal innovation of the procedure is a drainage 
enforcement algorithm which automatically removes spurious sinks or pits 
from the fitted grid, in recognition of the observation that sinks are rare in 
nature tMark, 1984; Band, 1986; Goodchild and Mark, 1987). The approach 
extends more conventional statistical approaches implicit in existing 
assessments of optimum sampling strategies for digital terrain modelling 
(Ayeni, 1982) and provides an alternative to an existing physically sound 
approach to digital terrain modelling using phenomenon-based data structures 
(Mark, 1979). 

The drainage enforcement algorithm is coupled with an iterative finite 
difference interpolation technique which is based on minimizing a terrain 
specific, rotation invariant roughness penalty. This technique has its origins in 
the minimum curvature interpolation method of Briggs (1974) but is more 
computationally efficient. The roughness penalty has been tailored to yield 
good results in conjunction with the drainage enforcement algorithm while 
maintaining artifact-free behaviour of the fitted surface away from data points. 
The finite difference nature of the technique facilitates the monitoring of the 
surface characteristics of the fitted grid and permits the imposition of simple- 
ordered chain constraints. These constraints are the means by which the 
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procedure enforces drainage and incorporates the ordered descent and 
breakline conditions implicit in stream line data. 

The drainage enforcement algorithm eliminates one of the principal 
weaknesses of elevation grids produced by general purpose interpolation 
techniques which has limited their usefulness in hydrologic applications, par- 
ticularly those which rely on the automatic calculation of channels, ridges and 
basin catchment areas (Peucker and Douglas, 1975; Mark, 1984; Band, 1986; 
Palacios-V~lez and Cuevas-Renaud, 1986). If spurious sinks are not removed 
from the DEM then programs which delineate basins and simulate drainage 
networks must take special action in order to produce acceptable results 
(Marks et al., 1984; Yuan and Vanderpool, 1986). However, eliminating sinks 
from an existing DEM is difficult. Manual methods can be time consuming and 
subject to individual operator error. On the other hand, existing automatic 
methods for digital filtering or smoothing of DEMs can remove most, but not 
all, spurious sinks only at the expense of simultaneously oversmoothing well 
defined surface features (Mark, 1984). Heerdegen and Beran (1982) have 
similarly noted the tendency of one interpolation technique to produce grids 
with nonsensical surface properties if one attempts to choose the grid spacing 
fine enough to capture known complexities in the data. The technique 
presented here in fact provides the "judicious filtering" called for by Band 
(1986). 

Moreover, the imposed drainage condition has been found in practice to be 
a powerf!,~] condition which can significantly increase the accuracy, especially 
in terms of their ~trainage propertms, of digital elevation models interpolated 
from sparse, but ~::el] chosen, surface-specific data sets. The size of such data 
sets can be at least an order of magnitude smaller than the number of points 
normally requireG to describe elevation using digital contours. This can 
minimize the expeT, se of obtaining hydrologically sound digital elevation 
models in terms of the capture, correction and storage of primary elevation 
data. 

An important feature of the method is its sensitivity to data errors. The 
drainage enforcement algorithm acts conservatively when attempting to 
remove sinks by not imposing drainage conditions which would contradict the 
elevation data by more than a user supplied elevation tolerance. Consequently, 
errors in both elevation and position of input elevation data can often be 
indicated by sinks in the final fitted grid and thence easily corrected. This is 
useful when processing large data sets which almost inevitably contain errors. 
The procedure routinely detects errors in this fashion which are small enough 
to remain undetected as outliers by conventional statistical methods. 

The interpolation procedure and its accompanying drainage enforcement 
algorithm are described in detail below. A much analysed data set of Davis 
(1973) is used to illustrate several points and to provide a useful comparison 
with other interpolation methods. The paper concludes with an application to 
a larger data set. 

It should be noted that the procedure has been designed principally to 
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interpolate scattered surface-specific point elevation data and stream line data. 
It can be applied to contour elevation data with acceptable results, but it is 
possible to capitalize on the special nature of contour data to improve the 
quality of interpolation. The extension of the present technique to the inter- 
polation of contour elevation data will be the subject of a separate study. 

THE INTERPOLATION ALGORITHM 

The relative merits of various general purpose interpolation methods have 
been discussed by a number of authors including Ripley (1981), Sibson (1981), 
Hutchinson (1984), Laslett et al. (1987) and others. Most existing approaches to 
the interpolation of irregularly distributed data can be broadly classified as 
having either global or local character. 

The two most popular global methods are the thin plate splines of Duchon 
(1976) as taken up by Wahba and Wendelberger (1980) and others and the 
method of Kriging advocated by Matheron (1965). These techniques offer 
elegant solutions to the general interpolation problem. The interpolated 
surface normally depends cn the data in a rotation invariant manner and can 
be made to have reasonable continuity properties. Their chief disadvantage is 
a computational cost proportional to n 3 where n is the number of data points, 
making them prohibitively expensive for very large data sets. 

Local methods are usually based on partitioning the region containing the 
data points into small elements and fitting simple functions on each element so 
that the functions are continuously differentiable across the boundaries of 
adjoining elements. This significantly reduces the computational burden at the 
expense of somewhat arbitrary restrictions on the form of the fitted functions. 
Such techniques are also sensitive to the positions of data points, particularly 
when the data points are very irregularly spaced, and spurious edge effects can 
be generated. Recently developed local methods of Sibson (1981) and Watson 
and Philip (1985), which employ Dirichlet tessellations of the plane, appear to 
overcome at least some of these difficulties. 

The iterative finite difference interpolation method adopted here has been 
designed to have the efficiency of a local method without sacrificing the 
continuity and rotation invariance of high quality global methods. Most impor- 
tantly, because the fitted grid values are available at every stage during the 
iteration, it is relatively straightforward to monitor the drainage characteris- 
tics of the fitted grid and to impose appropriate ordered chain constraints to 
enforce drainage. This is not easily achieved for either the global or local 
methods described above. The interpolation problem is solved by minimizing a 
discretized rotation invariant roughness penalty which is defined in terms of 
first and second order partial derivatives of the fitted function. Similar 
approaches have been adopted by Briggs (1974), Swain (1976) and Testud and 
Chong (1983). An application of an early version of this technique to the 
interpolation of bathymetric data occurs in Torgersen et al. (1983). 

The iteration technique employs a simple nested grid strategy which 
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calculates grids at successively finer resolutions, starting from an initial 
coarse grid, and successively halving the grid spacing until the final user 
specified grid resolution is obtained. For each grid resolution, the data points 
ale simply allocated to the nearest grid point and values at grid points not 
occupied by data points are calculated by Gauss-Seidel iteration with over- 
relaxation (Young, 1971; Golub and Van Loan, 1983) subject to the specified 
roughness penalty and ordered chain constraints. The iteration matrix used in 
the Gauss-Seidel iteration depends on the roughness penalty and is easily seen 
to be positive definite and symmetric for the roughness penalties considered 
below, thereby guaranteeing convergence. Starting values for the first coarse 
grid resolution are calculated from the average height of all data points while 
starting values for each successive finer grid are linearly interpolated from the 
preceding coarser grid. An empirically determined overrelaxation parameter of 
1.6 has been found to give useful acceleration of convergence for the roughness 
penalties considered and iteration terminates for each grid resolution when the 
user specified maximum number of iterations (normally 25) has been reached. 
The computational cost of the technique is then optimal in the sense that it is 
essentially proportional to the number of interpolated grid points. 

A TERRAIN SPECIFIC ROUGHNESS PENALTY 

The roughness penalty which defines the interpolating function, f, is based 
on two nonnegative, rotation invariant functionals. These are defined in terms 
of first and second order partial derivatives of f by: 

J , q )  = j'(f  + g)dxdy 

and: 

J2 (D f(]~x + 2~y + gy) dx dy 

where the range of integration is the region occupied by the fitted grid. 
Minimizing Jl (f) in its discretized form over all suitably continuous inter- 
polating functions f gives rise to discretized minimum potential interpolation 
while minimizing J2 (f) gives rise to the minimum curvature interpolation of 
thin plate splines in the discrete form first devised by Briggs (1974). Testud and 
Chong (1983) have discussed these roughness penalties in the context of data 
smoothing. 

Minimizing J2 (D is a good general purpose strategy which can give visually 
pleasing results as seen in Fig. 1 where it has been applied to the elevation data 
in table 6.4 of Davis (1973, p. 316). In terms of freedom from spurious surface 
features, the result displayed in Fig. I is clearly superior to the results of four 
different interpolation methods applied to the same data by Lodwick (1982) and 
compares favourably on the same grounds with the results of the preferred 
version of Kriging in fig. 4.17 of Ripley (1981, p. 64) and the local interpolation 
method in fig. 5 of Watson and Philip (1985, p. 322). However, minimum 
curvature interpolation of terrain is not ideal. Its tendency to maintain trends 
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Fig. 1. Discretized minimum curvature interpolation of the point elevation data of Davis (1973, 
table 6.4). Elevations in feet. 

away from data points can generate spurious overshoot and undershoot in 
regions containing closely spaced data points with large variations in 
elevation. Though not in evidence here, this phenomenon is well documented, 
particularly in the context of univariate minimum curvature interpolation (De 
Boor, 1978; Fritsch and Carlson, 1980). Moreover, a closer look at Fig. 1 reveals 
more subtle shortcomings. The real pattern of stream lines and ridges, as 
illustrated in Fig. 8 and in fig. 6.10 of Davis (1973, p. 323), is not accurately 
represented in Fig. 1 despite the lack of any spurious sinks. 

Consideration of the statistical nature of natural terrain by Mandelbrot 
(1982), using the theory of fractals (see also Goodchild and Mark, 1987), has led 
Frederiksen et al. (1985) to suggest that a more appropriate roughness penalty 
should lie somewhere between J~ (f) and J2 (f). This would allow the fitted 
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surface to follow more closely the sharp changes in terrain often associated 
with ridges and streams. 

The result of minimizing Jl (t9 is shown in Fig. 2. This discretized minimum 
potential surface is less sensitive to local trends in the data, displaying 
characteristically flatter appearance away from the data points, of which most 
are represented as sharp local maxima and minima. It should be noted that 
minimizing J~( f )  is only well defined in its discretized form, since it can be 
shown that the corresponding continuous interpolation problem does not have 
a unique solution amongst continuous functions. Moreover, the discretized 
solution is sensitive to the grid spacing, with local maxima and minima 
becoming increasingly sharp as the grid spacing decreases. While this is un- 
desirable in general, the important feature here is that the local minima occur 
at data points on stream lines and the local maxima occur at data points on 
ridges and peaks. 

An empirically determined compromise between the minimum curvature 
and minimum potential roughness penalties is illustrated in Fig. 3 which has 
been obtained by minimizing the discretized form of: 

J (]) = 0.5 h-2 J~ (f) + J~ (f) 

over all suitably continuous interpolating functions f where h is the grid 
spacing. The effect of this roughness penalty is to modify the usual finite 
difference recurrence formula for minimizing J2(f) away from data points (see 
Briggs, 1974; Testud and Chong, 1983) in a way which is independent of the grid 
spacing h. It has been confirmed empirically that the resulting interpolated 
surface is also insensitive to the grid spacing. This surface maintains trends 
away from data points in a similar fashion to minimum curvature interpolation 
but still identifies most of the points on stream lines as sinks. It also identifies 
breaks in slope corresponding to data points on ridges more sharply. If the 
sinks, which have been identified in Fig. 3 by circles, were to be linked in a 
sensible fashion to form stream lines, as indicated by the dashed lines in Fig. 
3, then the drainage pattern of this landscape would have been effectively 
recovered from a very small data set. Moreover the surface specific nature of 
the data points would have been automatically recovered without the need for 
explicitly identifying their nature in the data. This is precisely what is 
achieved by the drainage enforcement algorithm described below. 

THE DRAINAGE ENFORCEMENT ALGORITHM 

The drainage enforcement algorithm attempts to remove all sink points in 
the fitted grid which have not been identified as such in input sink data. The 
essence of the algorithm is to recognize that each spurious sink is surrounded 
by a drainage divide containing at least one saddle point. If the sink is 
associated with an elevation data point then the lowest such saddle, provided 
it is not also associated with an elevation data point, identifies the region of the 
grid which is modified in order to remove the spurious sink. If on the other hand 
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Fig. 2. Discretized minimum potential interpolation of the point elevation data of Davis (1973, table 
6.4). Sinks are denoted by circles. 

the lowest saddle point is associated with an elevation data point but the sink 
is not, then the sink and its immediate neighbours are raised above the height 
of the data point saddle. If neither the sink nor the lowest saddle are associated 
with elevation data points then grid points in the neighbourhood of both the 
sink and the lowest saddle are modified to ensure drainage. Finally, if both sink 
point and saddle point are associated with elevation data points, then a choice 
is made, depending on a user-supplied tolerance, between enforcing drainage 
and maintaining fidelity to the data. This last situation arises when calculating 
generalized (coarse resolution) DEMs. 

The action of this drainage enforcement algorithm is conceptually similar to 
the action taken by the basin delineation and drainage network simulation 
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Fig. 3. Interpolation of the point elevation data of Davis (1973, table 6.4) by minimizing the 
roughness penalty J(f). Sinks are denoted by circles. True stream lines are indicated by dashed 
lines. 

programs o? Marks et al. (1984) and Yuan and Vanderpool (1986) to overcome 
the problem of spurious sinks. It is also related to the methods of cartographic 
generalization suggested initially by Warntz (1975) and taken up by Pfaltz 
(1976) and Wolf (1984). In fact the approach suggested here of maintaining 
connected drainage patterns provides a more secure physical basis for carto- 
graphic generalization than the partially lexicographic approach adopted by 
these authv Cs. 

The drainage enforcement algorithm proceeds concurrently with the 
iterative interpolation algorithm described in the preceding section. For each 
grid resolution, after the first very coarse resolution, the grid is periodica'ly 
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inspected (normally a~ter every five Gauss-Seidel iterations) for sinks and their 
accompanying saddle points. These are found by comparing the height of each 
grid point with the height f each of its eight immediate neighbours (cf. 
Peucker and Douglas, 1975). A sink point is characterized by having an 
elevation no higher than the elevation of each of its eight immediate 
neighbours while a grid point is a saddle point if it has at least two neighbours 
strictly higher than itself interleaved by neighbours no higher than itself when 
moving in a clockwise or an anticlockwise direction through the eight 
immediate neighbours surrounding the grid point. Saddles are associated with 
sink points by searching in each of the two, three or four possible steepest 
downhill directions away from each saddle point until a sink or an edge of the 
grid is found This is illustrated in Fig. 4 where the saddle points associated 
with the sink point S 1 are the points A, B, C, D and E. 

Ordered chain conditions effecting drainage clearance are then applied to 
the grid by inserting ordered chains which lead from each spurious sink point, 
via the lowest associated saddle point, to a data point or existing ordered chain 
on the other side of the saddle, provided this does not lead to an elevation 
conflict exceeding a user supplied tolerance. The action of the ordered chains 
is to impose linear descent, to within a small tolerance, between successive 
elevation data points down the entire length of the chain. 

Thus, in the example of Fig. 4, the lowest saddle associated with the sink S 1 
is the point D. Since this saddle point is not associated with an elevation data 
point, and it leads to the sink point S 2 which is strictly lower than S 1, an 
ordered chain is inserted from S 1 to S 2 via D as shown in Fig. 5. Each ordered 
chain in Fig. 5 is made up of two flow lines leading from the ~we~t saddle 
associated with each sink point in Fig. 4. The procedure for detecting sinks and 
saddles and inserting ordered chain conditions is reasonably efficient, 
requiring less computer time than the basic interpolation algorithm, especially 
since it is only enacted once every five Gauss-Seidel iterations. 

The action of the drainage enforcement algorithm is modified in practice by 
the systematic application of three user-supplied elevation tolerances. These 
tolerances allow the strength of drainage enforcement to be adjusted in 
relation to the accuracy and devsity of the input elevation data as well as the 
level of generalization required. Their detailed action has undergone consider- 
able development and testing with data sets of varying densities and accuracies 
at a variety of scales. The aim has been to achieve the strongest possible 
drainage enforcement without making serious errors in the placement of 
drainage lines. The action of the tolerances is most critical when the input data 
are limited in terms of accuracy or density, especially when calculating 
generalized DEMs for large areas (Hutchinson and Dowling, 1989). Their 
action naturally becomes less critical as the accuracy and density of the input 
data improve. When the tolerances have been set appropriately, the sink 
points not cleared by the program are normally those associated with genuine 
sinks, with s~gnificant elevation errors in input data, or, with areas where the 
input data are not of sufficient density to reliably resolve the drainage charac- 
teristics of the fitted grid. 
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Fig. 4. Example showing how the sacdle points A, B, C, D, E are associated with the sink point S 1 
via flow lines which are indicated by dashed lines. Additional sink points are denoted by S 2, S 3, 
$4. Data points are indicated by their height in metres. 

The first user-zupplied tolerance is essentially a measure of the elevation 
accuracy of the data. Elevation differences between data points not exceeding 
this tolerance are judged to be insignificant with respect to dz~:,inage. Thus data 
points which block drainage by no more than this tolerance ~,'e removed. When 
data points are not sufficiently dense to accurately reso!.~,e drainage, this 
tolerance may be increased to yield a generalized but sensible drainage pattern 
at the expense of fidelity of the fitted surface to the elevation data. The first 
tolerance is also used when searching for possible clearances for sinks, to 
slightly favour those saddle points which are not associated with elevation 
data points over saddle points which are associated with elevation data points. 
This is based on the understanding that the height of the grid at a data point 
saddle is more reliable than the height at a nondata point saddle. 

The second and third elevation ~-olerances play a more technical role in 
limiting various searching operations by the procedure in order to increase 
efficiency and to prevent nonsensical drainage clearances, particularly when 
data are sparse. The second tolerance is a measure of local relief which is most 
natural ly set to the contour interval when gridding contour data. It limits the 
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Fig. 5. The result of draina~-e enforcement applied to the example of Fig. 4. Piecewise linear lines 
indicate inferred drainage lines. 

height above each data point sink of data point saddles which may be 
considered as possible exits from the sink. This can remove from consideration 
certain data point saddles, even though they may be the lowest saddle 
associated with a particular sink, in order to allow drainage clearance via a 
higher non-data point saddle. If the second tolerance is set to a large value.then 
the procedure acts conservatively when attempting to remove sinks because 
more data point saddles will be considered. The third elevation tolerance is 
simply used as a final check to prevent drainage clearances which would entail 
very large chan~,~ to the grid. It is only active when the elevation data are very 
sparse or contain large errors in elevation. 

Two additional features of the drainage enforcement algorithm merit 
comment. The first is that spurious sinks are sorted by elevation and cleared 
in order of increasing elevation. This facilitates the searching operations 
required to associate saddle points with sinks and improves the placement of 
ordered chains which clear higher sinks, particularly in their lower reaches 
where they normally join existing ordered chains. This is illustrated in Fig. 5 
where the sink point S 3 has not been immediately cleared to the lower sink 
point S 4, since this point was first cleared to S I. A subsequent enactment of 
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the drainage enforcement algorithm cleared S 3 to the ordered chain leading 
from $4 to S 1. The second feature is that ordered chains clearing sinks are 
always extended beyond any lower data points encountered until they meet an 
existing ordered chain, a sink or an edge of the grid. This ensures that a 
connected drainage pattern is obtained. 

The result of applying the drainage enforcement algorithm in conjunction 
with the roughness penalty J ( f )  to the data of Davis is shown in Fig. 6. The 
inferred drainage pattern and associated contours are remarkably similar to 
the actual drainage pattern and the contours shown in Fig. 8 and in fig. 6.10 of 
Davis (1973, p. 323). The remaining sinks at the top and bottom of Fig. 6 
illustrate the essentially non-local nature of the drainage enforcement 
algorithm. They would be removed if additional data beyond the extremes of 
the figure were available. 

THE INCORPORATION OF STREAM LINE DATA 

Drainage enforcement can also be obtained by incorporating stream line 
data. This can be useful when more accurate placement of streams is required 
than can be calculated automatically by the procedure. It can also be used to 
remove sinks which would not otherwise be removed by the automatic drainage 
enforcement algorithm. This is in fact the recommended way to correct 
remaining drainage anomalies in elevation grids calculated by the procedure. 
All elevation data points which conflict with strict descent down each stream 
line are removed, with all conflicts which exceed the third user specified 
elevation tolerance being flagged for possible correction of errors. The incor- 
poration of actual stream line data also provides a more reliable way of 
ensuring sensibly generalized elevation models. 

The method of incorporating stream lines and their associated side 
conditions into a grid is illustrated in Fig. 7. First, the data stream line, which 
flows from the bottom to the top of the figure as indicated by the dashed line, 
is approximated by straight line segments, indicated by heavy lines. These have 
been generalized so that successive segments change in direction by at most 
45 °. Thus, the segments CX and XY, which were an initial representation of a 
portion of the stream, have been replaced by the single segment CY. This 
minimizes the number of straight line segments required to represent each 
stream line and removes unnecessarily sharp bends from its representation on 
the grid. Side conditions arc then ~dded, as indicated by the light line segments. 
These normally lie at 45 ° to the prevailing direction of ihe stream line except 
at bends, the point Y in this example, where the side condition represented by 
the segment XY is obtained as the uphill extension from the lower stream line 
segment YF. Note that each grid point can have a number of adjoining upper 
stream segments but at most one adjoining lower stream segment. 

The action of these straight line segments on the interpolation conditions 
which arise from minimizing the prescribed roughness penalty is then as 
follows. For points such as B, with one lower adjoining segment and at least 
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Fig. 6, Interpolation of the point elevation data of Davis (1973, table 6.4) as in Fig. 3 and employing 
the drainage enforcement algorithm, Sinks are denoted by circles. Piecewise linear lines indicate 
inferred drainage lines. 

one upper adjoining segment, the height at B is co:.strained so that  descent is 
(approximately) uniform from the lowest of A 1, A2 and A 3 down to C. For 
points such as E, with one lower adjoining segment and no upper adjoining 
segment, the height is similarly constrained between D (the uphill extension of 
EF) and F. These actions maintain linear descent between elevation data  
points down each stream line and ensure that  each stream line acts as a 
breakline for the interpolation conditions. This in . tu rn  ensures that  each 
stream line lies at he bottom of its accompanying valley. Side conditions are 
not set for data poiz :ts beside streams whose elevations are more than the third 
elevation tolerance below the height of the stream. These conflicts are also 
flagged for possible correction of errors. 
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Fig. 7. Example showing how a stream line is incorporated into a grid with associated side 
conditions. 

The stream lines in fig. 6.6 of Davis (1973, p. 312) were digitized and adde~ 
to the point elevation data to yield Fig. 8. The straight line segments describing 
the stream lines and their associated side conditions are also shown. A modest 
improvement to the modelled drainage pattern has been obtained in this case. 
Stream line data are best used in practice to define the major drainage lines 
associated with high order streams, leaving the drainage enforcement 
algorithm to define the lower order stream lines to a level of detail that is 
controlled mainly by the amount of available data and the specified resolution 
of the DEM. This eliminates the need for digitizing the large number of lines 
associated with low order streams which may not exist in mapped form. 

A LARGER EXAMPLE 

An application to a larger data set from an area in central Queensland, 
Australia at 23°S and 143°E is now described. Figure 9 shows the result of 
fitting a minimum curvature surface to this rather sparse data set. In contrast 
to Fig. 1, in this case there are many remaining sinks which obscure the 
underlying drainage pattern. The drainage enforcement algorithm, in combina- 
tion with the terrain specific roughness penalty J(f), resolves all of the 
apparent drainage anomalies as illustrated in Fig. 10 and the resulting 
drainage pattern, though generalized because of the sparseness of the data, is 
in good agreement with the actual drainage pattern shown in Fig. 11. The grid 
was fitted to data extending beyond the limits of the figure so that no edge 
anomalies are apparent. 
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Fig. 8. Interpolation of the point elevation data of Davis (1973, table 6.4) as in Fig. 6 and incorporat- 
ing stream line data with associated side conditions. 

DISCUSSION 

An effective procedure for calculating digital elevation models with sensible 
draiuage properties from comparatively small sets of surface specific point 
elevation data and stream lines has been described. Digital elevation models 
calculated by this procedure may be used to advantage in hydrological process 
~tudies. The procedure embodies a morphological approach to digital elevation 
modelling, since the interpolation algorithm and the accompanying drainage 
enforcement algorithm are defined directly in terms of morphological 
properties of the fitted surface. The success of the technique has also been 
assessed primarily in terms of morphological properties of the fitted surface. 
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Fig. 9. Minimum curvature interpolation of scattered point elevation data in central Queensland, 
Australia, 23°S, 143°E. Sinks are denoted by circles. Elevations in metres. 

The drainage enforcement algorithm plays an essential role in the interpola- 
tion process. Minimization of a variety of general roughness penalties as a 
basis for interpolation has been seen to be inadequate without the imposition 
of localized constraints as calculated by the drainage enforcement algorithm or 
obtained from stream line data. Moreover, the drainage enforcement algorithm 
provides a sound basis for cartographic generalization and displays significant 
advantages over conventional statistical techniques for extracting informa- 
tion from and detecting errors in spatially distributed elevation data. 
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Fig. 10. Interpolation of the point elevation data used in Fig. 9 by minimizing the roughness penalty 
J(f) and employing the drainage enforcement algorithm. Piecewise linear lines indicate inferred 
drainage lines. 

The relative weighting of the minimum potential and minimum curvature 
roughness penalties has been empirically determined to produce good results 
in combination with the drainage enforcement algorithm when applied to 
surface specific point elevation data. It is feasible that different weightings 
would be better suited to different types of terrain and/or different data point 
sampling strategies, however good results have been obtained with this 
relative weighting for both arid and humid areas in Australia. The choice of 
roughness penalty naturally becomes less critical as data density increases. 
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Fig. 11. The drainage pattern for the area of Fig. 9 as digitized from a 1:250 000 topographic map. 

The procedure can in principle be applied to data at any scale, the only limits 
being the availability of sufficient data and practical limitations on the size of 
the interpolated grid. The procedure has been incorporated by the Australian 
Divisio~ of National Mapping into its production of a national digital topo- 
graphic database at a nominal scale of 1:1 million (Trezise and Hutchinson, 
1986). IL is also being used routinely by researchers in the hydrologic modelling 
of small catchments (Moore et al., 1988). 

The interpolation procedure is computationally optimal in the sense that 
computer time is essentially proportional to the number c c interpolated grid 



230 

points .  However ,  i t  is a n t i c i p a t e d  t h a t  a su i t ab le  mul t ig r id  t e chn ique  ( F u l t o n  
et  al., 1986) will y ie ld  a s igni f icant  r educ t ion  in the  c o m p u t e r  t ime requi red .  
Work  is a lso in progress  to ex tend  the  p rocedure  to the  op t ima l  i n t e r p o l a t i o n  
of c o n t o u r  data .  
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