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Charles R. Nelson 
Andrew F. Siegel 
University of Washington 

Parsimonious Modeling of Yield 
Curves* 

I. Introduction 

The need for a parsimonious model of the yield 
curve was recognized by Milton Friedman (1977, 
p. 22) when he stated, "Students of statistical 
demand functions might find it more productive 
to examine how the whole term structure of 
yields can be described more compactly by a few 
parameters." The purpose of this paper is to in- 
troduce a simple, parsimonious model that is 
flexible enough to represent the range of shapes 
generally associated with yield curves: mono- 
tonic, humped, and S shaped. The ability of the 
model to fit U.S. Treasury bill yields and to pre- 
dict the price of a long-term Treasury bond sug- 
gests to us that the model succeeds in the objec- 
tive set by Friedman. Potential applications of 
parsimonious yield curve models include de- 

This paper introduces a 
parametrically par- 
simonious model for 
yield curves that has 
the ability to represent 
the shapes generally 
associated with yield 
curves: monotonic, 
humped, and S shaped. 
We find that the model 
explains 96% of the 
variation in bill yields 
across maturities dur- 
ing the period 1981-83. 
The movement of the 
parameters through 
time reflects and 
confirms a change in 
Federal Reserve mone- 
tary policy in late 1982. 
The ability of the fitted 
curves to predict the 
price of the long-term 
Treasury bond with a 
correlation of .96 sug- 
gests that the model 
captures important at- 
tributes of the yield/ 
maturity relation. 

The authors wish to thank the Center for the Study of 
Banking and Financial Markets at the University of Washing- 
ton for supporting this research. Nelson also received sup- 
port from the National Science Foundation under a grant to 
the National Bureau of Economic Research, which is ac- 
knowledged with thanks. Research assistance was provided 
by Frederick Joutz and Ann Kremer. We are grateful to 
Vance Roley for obtaining the data set used in this study. 
Thanks are due to Edward Bomhoff, J. Huston McCulloch, 
Patrick Minford, Vance Roley, Gary Shea, Robert Shiller, 
Richard Stehle, Mark Watson, and an anonymous referee for 
helpful criticism and suggestions without implication of re- 
sponsibility for the result. 
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mand functions (Friedman had in mind money demand), testing of 
theories of the term structure of interest rates, and graphic display for 
informative purposes. 

The fitting of yield curves to yield/maturity data goes back at least to 
the pioneering efforts of David Durand (1942), whose method of fitting 
was to draw a monotonic envelope under the scatter of points in a way 
that seemed to him subjectively reasonable. Yield may be transformed 
to present value, and J. Huston McCulloch (1971, 1975) has proposed 
approximating the present value function by a piecewise polynomial 
spline fitted to price data. Gary Shea (1982, 1985) has shown that the 
resulting yield function tends to bend sharply toward the end of the 
maturity range observed in the sample. This would seem to be a most 
unlikely property of a true yield curve relation and also suggests that 
these models would not be useful for prediction outside the sample 
maturity range. Other researchers have fitted a variety of parametric 
models to yield curves, including Cohen, Kramer, and Waugh (1966), 
Fisher (1966), Echols and Elliott (1976), Dobson (1978), Heller and 
Khan (1979), and Chambers, Carleton, and Waldman (1984). Some of 
these are based on polynomial regression, and all include at least a 
linear term that would force extrapolated very long term rates to be 
unboundedly large (either positive or negative) despite their abilities to 
fit closely within the range of the data. Vasicek and Fong (1982) have 
recommended exponential splines as an alternative to polynomial 
splines. In a comparison of the two spline methodologies, Shea (1984) 
finds that exponential splines are subject to the same shortcomings that 
polynomial splines are, essentially because polynomial splines are used 
after a change of variables. 

Students of the term to maturity structure of interest rates have 
invariably described yield curves that are essentially monotonic, 
humped, or, occasionally, S shaped. This consistency is strikingly evi- 
dent in the long historical record of subjectively drawn curves pre- 
sented by Wood (1983). A similar consistency is shown by the yield 
curves plotted in Malkiel (1966, pp. 13, 14) and in the Treasury Bulle- 
tin. This is true even of yield curves based on polynomial methods. For 
example, those plotted by Chambers et al. (1984) reveal the explosive 
tendencies of polynomials only toward the end of the fitted maturity 
range. 

A class of functions that readily generates the typical yield curve 
shapes is that associated with solutions to differential or difference 
equations. The expectations theory of the term structure of interest 
rates provides heuristic motivation for investigating this class since, if 
spot rates are generated by a differential equation, then forward rates, 
being forecasts, will be the solution to the equations. For example, if 
the instantaneous forward rate at maturity m, denoted r(m), is given by 
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Parsimonious Modeling 475 

the solution to a second-order differential equation with real and un- 
equal roots, we would have 

r(m) = Po + 1i exp(- m/TI) + 102 * exp(- m/T2), 

where v and T2 are time constants associated with the equation, and o0, 
P1i, and 2 are determined by initial conditions. This equation generates 
a family of forward rate curves that take on monotonic, humped, or S 
shapes depending on the values of ,1 and 2 and that also have asymp- 
tote 30o. The yield to maturity on a bill, denoted R(m), is the average of 
the forward rates 

R(m) = 1/m r(x)dx, 

and the yield curve implied by the model displays the same range of 
shapes. 

Experimentation with fitting this model to bill yields suggested that it 
is overparameterized. As the values of T1 and T2 were varied, it was 
possible to find values of the 13's that gave nearly the same fit. Standard 
software for estimating nonlinear models failed to converge, giving 
another indication of overparameterization. A more parsimonious 
model that can generate the same range of shapes is given by the 
solution equation for the case of equal roots: 

r(m) = 0o + 1I exp(- m/T) + P2[(m/T) * exp(- m/T)]. (1) 

This model may also be derived as an approximation to the solution in 
the unequal roots case by expanding in a power series in the difference 
between the roots. Model (1) may also be viewed as a constant plus a 
Laguerre function, which suggests a method for generalization to 
higher-order models. Laguerre functions consist of a polynomial times 
an exponential decay term and are a mathematical class of approximat- 
ing functions; details may be found, for example, in Courant and Hil- 
bert (1953, 1:93-97). 

To obtain yield as a function of maturity for the equal roots, model 
(1) integrates r(-) in (1) from zero to m and divides by m. The resulting 
function is 

R(m) = Po + (PI + 02) [i -exp( -mIT)]I(mIT) 

- 2 * exp(- m/T), 

which is also linear in coefficients, given T. The limiting value of R(m) 
as m gets large is 30o and as m gets small is (1o + ,1), which are 
necessarily the same as for the forward rate function since R(m) is just 
an averaging of r(*). The range of shapes available for R(m) depends on 
a single parameter since forT = 1, 300 = 1, and (1o + , 1) = O we have 
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FIG. 1.-Yield curve shapes 

R(m) = 1 -(1 -a) [I - exp(- m)]/m - a exp(- ). 

Allowing parameter a to take on values from minus six to 12 in equal 
increments generates the shapes displayed in figure 1, which include 
humps, S shapes, and monotonic curves. On the basis of the range of 
shapes available to us in the second order model, our operating hy- 
pothesis is that we will be able to capture the underlying relation be- 
tween yield and term to maturity without resorting to more complex 
models involving more parameters. 

Another way to see the shape flexibility of the second-order model is 
to interpret the coefficients of the model (1) as measuring the strengths 
of the short-, medium-, and long-term components of the forward rate 
curve (and hence of the yield curve). The contribution of the long-term 
component is 1Bo, that of the short-term component is ,1, and 132 indi- 
cates the contribution of the medium-term component. From figure 2 
we see why these assignments are appropriate. The long-term compo- 
nent is a constant that does not decay to zero in the limit. The medium- 
term curve is the only function within this model that starts out at zero 
(and is therefore not short term) and decays to zero (and is therefore 
not long term). The short-term curve has the fastest decay of all func- 
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FIG. 2.-Components of the forward rate curve 

tions within the model that decay monotonically to zero. It is easy to 
see how, with appropriate choices of weights for these components, we 
can generate a variety of yield curves based on forward rate curves 
with monotonic and humped shapes. 

II. Empirical Yield Curves for U.S. Treasury Bills 

The objective of our empirical work is to assess the adequacy of the 
second-order model for describing the relation between yield and term 
to maturity for U.S. Treasury bills. By choosing bills for our pilot 
study, we hoped to avoid some of the complications associated with 
coupon bonds, such as differential rates of taxation for coupon income 
and capital gains. The data come from Federal Reserve Bank of New 
York quote sheets sampled on every fourth Thursday (excepting holi- 
days) from January 22, 1981, through October 27, 1983, making 37 
samples in all. The quote sheets give the bid and asked discount and 
bond equivalent yield for the bills in each maturity date outstanding as 
of the close of trading on the date of the quote sheet. The number of 
days to maturity is calculated from the delivery date, which is the 
following Monday for a Thursday transaction, until the maturity date. 
Typically, there are 32 maturities traded, which on these Thursdays 
works out to terms of from 3 days to 178 days in increments of 7 days, 
of 199 days, and, then, in 28-day increments to 339 days. On three 
dates there was also a 1-year bill traded. The bid and asked discounts 
are calculated on the quote sheets as if there were a 360-day year and 
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FIG. 3.-Data and fitted curve, January 22, 1981, T 50 

are on a simple interest basis. Bill prices themselves are not displayed 
but are readily calculated from the discount yields. We have converted 
the asked discount to the corresponding price (that paid by an investor) 
and then calculated the continuously compounded rate of return from 
delivery date to maturity date annualized to a 365.25-day year. These 
yields are the data we fit to the yield curve model. Observations on the 
first two maturities, 3 and 10 days, are omitted because the yields are 
consistently higher, presumably because of relatively large transaction 
costs over a short term to maturity. This leaves 30 yield/maturity pairs 
observed on each of 34 market dates and 31 pairs on three dates. The 
data collected for the first date in our sample (January 22, 1981) are 
plotted in figure 3. 

For purposes of fitting yield curves we have parameterized the 
model (2) in the form 

R(m) = a + b * [I - exp(- ml/)]I(ml/) + c * exp(- mIT). (3) 

For any provisional value of v we may readily calculate sample values 
of the two regressors. The best-fitting values of the coefficients a, b, 
and c are then computed using linear least squares. Repeating this 
procedure over a grid of values for v produces the overall best-fitting 
values of T, a, b, and c. Recall that 7 is a time constant that determines 
the rate at which the regressor variables decay to zero. Plots of the data 
set reveal that the yield/maturity relation becomes quite flat in the 
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FIG. 4.-Data and fitted curves, February 19, 1981, T = 20 and 100 

range of 200-300 days (as in fig. 3), suggesting that best-fitting values of 
v would be in the range of 50-100. We consequently search over a grid 
from 10 to 200 in increments of 10 and also of 250, 300, and 365. 

Small values of X correspond rapid decay in the regressors and there- 
fore will be able to fit curvature at low maturities well while being 
unable to fit excessive curvature over longer maturity ranges. Corre- 
spondingly, large values of v produce slow decay in the regressors that 
can fit curvature over longer maturity ranges, but they will be unable to 
follow extreme curvature at short maturities. This trade-off is illus- 
trated in figure 4, which shows the yields observed on February 19, 
1981 (our second data set), and fitted curves for v = 20 and 100. The 
best overall fit for this data set is given by T = 40 (not plotted). 

It is also quite clear from figure 4 that no set of values of the parame- 
ters would fit the data perfectly, nor is it our objective to find a model 
that would do so. A more highly parameterized model that could follow 
all the wiggles in the data is less likely to predict well, in our view, than 
a more parsimonious model that assumes more smoothness in the 
underlying relation than one observes in the data. There are a number 
of reasons why we would not expect the data to conform to the true 
underlying relation between yield and maturity even if we knew what it 
was. For example, there is not continuous trading in all bills, so pub- 
lished quotes may reflect transactions that occurred at different points 
in time during the trading day even though the quotes are supposed to 
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reflect conditions at the close of the market. Bills of specific maturities 
may sell at a discount or premium because of transaction cost differ- 
ences. We hope that, by studying departures of the data from the fitted 
model, we will be able to identify systematic as well as idiosyncratic 
features of the data that the model is failing to capture. 

The basic results for the second-order model fitted to each of the 37 
data sets are presented in table 1. The stub column gives the data set 
number, column 1 the best-fitting value of T, column 2 the standard 
deviation of residuals in basis points (hundreths of a percent), and 
column 3 the value of R2. Median values of these statistics over the 37 
samples are given in the last row of the table. The first point worth 
noting is that the model accounts for a very large fraction of the varia- 
tion in bill yields; median R2 is .959. The median standard deviation of 
residuals is 7.25 basis points, or .0725 percentage points, or a .000725 
in yield. Standard deviations range from about 2 basis points to about 
20. Best-fitting values of v have a median of 50. They occurred at the 
lower boundary of the search range (v = 10) in two cases and at the 
upper boundary (7 = 365) in three cases. The fitted yield curve for 
the first data set is displayed in figure 3, showing an example of a 
humped shape. 

It is clear from the pattern of deviations from the curve that residuals 
are not random but rather seem to exhibit some dependence along the 
maturity axis. We therefore refrain from making statements about the 
statistical significance of coefficient estimates on the basis of conven- 
tional standard errors. We will also be interested to see if such patterns 
are systematic across samples. 

Although the best-fitting values of v vary considerably, as column 1 
of table 1 shows, rather little precision of fit is lost if we impose the 
median value of 50 for 7 for all data sets. The resulting standard devia- 
tions appear in column 4 of table 1 and have a median value of 7.82 
basis points, or only .57 basis points higher than when each data set 
was allowed to choose its own 7. For a few data sets this constraint 
makes a noticeable difference, as in the case of data set 8 for August 6, 
1981, in which a small value of 7 is able to account for a sharp drop in 
yields at maturities below 50 days. However, in the cases in which 7 

was 365, the constraint costs little in terms of precision. The overall 
results suggest that little may be gained in practice by fitting 7 to each 
data set individually. 

The lowest value of R2 recorded was 49.7 for data set 7 (July 9, 1981), 
while the highest was 99.6 for set 24 (October 28, 1982). The character- 
istics of the two data sets that led to this result are evident in figures 5 
and 6, respectively. Data set 7 in figure 5 appears to be two data sets at 
different levels, which a smooth curve will have little ability to account 
for. This apparent discontinuity is unique in our sample and may reflect 
lack of late trading in the long sector of the market that day or, per- 
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TABLE 1 Measures of Model Fit 

First 
Second-Order Model Term Only 

Set SD at SD, SD at 
No. T Best T R?2 T = 50 Best T 

1 50 16.09 92.4 16.09 46.71 
2 40 13.00 88.9 13.67 36.42 
3 30 11.22 72.3 12.45 13.46 
4 60 6.01 86.7 6.12 9.00 
5 40 12.92 87.8 14.52 30.97 
6 40 13.47 93.3 13.52 13.32 
7 80 15.61 49.7 15.90 17.11 
8 10* 10.43 81.7 22.42 23.00 
9 20 19.85 88.8 20.34 19.56 
10 50 18.33 95.2 18.33 18.10 
11 30 4.88 98.8 6.11 6.95 
12 300 12.28 93.8 12.43 12.16 
13 50 7.76 99.4 7.76 7.67 
14 30 11.08 98.0 11.32 11.22 
15 60 10.51 95.7 10.75 15.20 
16 10* 6.28 97.3 7.30 7.55 
17 110 5.11 98.3 5.71 5.74 
18 20 7.51 86.4 10.12 11.10 
19 170 4.12 98.8 4.46 4.05 
20 20 5.79 98.8 9.26 9.98 
21 20 20.04 96.7 25.17 25.55 
22 365* 15.08 98.3 15.84 15.41 
23 40 10.01 99.1 11.65 14.78 
24 30 2.91 99.6 5.13 6.17 
25 20 7.25 97.4 7.45 7.34 
26 100 5.18 93.9 5.33 5.09 
27 300 3.71 97.3 4.03 3.65 
28 50 5.38 95.5 5.38 5.28 
29 110 6.72 85.6 6.90 6.59 
30 70 1.95 98.0 2.10 2.21 
31 365* 3.74 91.6 4.02 3.68 
32 20 4.89 96.1 5.80 4.83 
33 40 3.16 99.1 3.22 3.19 
34 120 7.24 96.1 7.82 7.11 
35 90 15.34 86.3 15.51 15.07 
36 365* 5.53 95.9 6.17 5.43 
37 180 3.01 99.0 4.25 2.97 

Median 50 7.25 95.9 7.82 9.00 

NOTE.-Standard deviations are in basis points. 
* Best fit realized at boundary of range of search. 

haps, clerical error (we refer to this as the "coffee break" data set). In 
contrast, data set 24 in figure 6 presents a very smooth, S-shaped 
pattern that is very precisely tracked by the model, leaving residuals 
with a standard deviation of only about 3 basis points. 

The ability of the second-order model to generate hump shapes was 
one of its attractive attributes conceptually, but the question remains 
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whether this flexibility is important empirically. A simpler alternative 
model would be a simple exponential function for forward rates ob- 
tained by setting P2 equal to zero in equation (1). Only monotonic yield 
curves can be generated by this restricted model. The final column of 
table 1 shows the standard deviations of residuals resulting from im- 
posing this constraint (but now allowing v to take its best-fitting value). 
The median over the 37 data sets is 9.00 basis points compared with the 
7.25 reported for the unconstrained model. In some cases the standard 
deviation rises sharply. For example, it is no surprise that a monotonic 
curve does not fit the first data set well: the standard deviation rises 
from 16.09 to 46.71 basis points. In some cases the standard deviation 
is reduced slightly because the constrained model fits about as well and 
uses one less parameter. 

Note that the loss of precision associated with the monotonic model 
is generally much greater for the first 23 data sets than for the later 14. 
The breaking point comes at October 1982. The ability of the second- 
order model to fit humped shapes was evidently much more important 
before this date than after. One way to see the evolution of the second- 
order model over time is to plot the three parameters of the forward 
rate function, as in figure 7. Recall from Section I that these can be 
associated with the short-term, medium-term, and long-term compo- 
nents of the model. The October 1982 breaking point is indicated by the 
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FIG. 7.-Time-series plots of forward rate components 
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vertical line. The variation in all the components is seen to have dimin- 
ished after that date. The magnitudes of the short- and medium-term 
components are also much smaller after October 1982, and, without the 
medium-term component, the model becomes monotonic. Evidently, 
the shape of the yield curve abruptly became simpler and more stable. 
Note also from table 1 that the dispersion of the data around the fitted 
yield curves dropped sharply. We surmise that all these phenomena are 
the result of a change in Federal Reserve monetary policy in October 
1982, at which time the Federal Reserve is said to have switched from 
stabilizing the monetary aggregates to stabilizing interest rates. Under 
the earlier regime, the market could reasonably have expected fairly 
sharp moves in interest rates in coming weeks as monetary aggregates 
were observed to deviate from target. Risk premiums associated with 
interest rate uncertainty may also have been larger and more variable. 
Under the new regime, the market would reasonably expect little 
change in interest rates. Simpler dynamics are associated with a sim- 
pler, lower-order yield curve. With prices moving less rapidly, dealer's 
quotes may also have become more accurate measures of the structure 
of yields at a point in time; hence, there was less dispersion in residuals 
from the fitted model. The evidence presented here clearly confirms 
that a major change in monetary policy did occur in October 1982. 

III. Analysis of Residuals: Maturity and Issue Effects 

Plots of fitted yield curves aginst the data have suggested some depen- 
dence of residuals along the maturity axis. We would like to try to 
determine whether this is due to a systematic but nonsmooth influence 
of maturity on yield, which would show up in the pattern of residuals 
from our model. If such an effect persists through time, then we should 
be able to detect it in the average of the 37 residuals corresponding to a 
specific maturity. Figure 8 is a plot of the averaged residuals which fall 
in the range + 7 basis points compared with a rough standard error of 
1.2 basis points. The pattern seen here is not only average; it is typical. 
The first maturity is 17 days, and the large positive average residual 
reflects higher transaction costs per unit time. The fitted curves tend to 
be pulled up by this data point, leaving the next below the curve. The 
most unstable feature of the plot is a rising slope to just under 90 days, 
then a sharp drop, then a rise to just under 180 days, another sharp 
drop, and finally a rise to the longest maturity. These peaks correspond 
to the maturities of the bills auctioned by the Treasury. Roll (1970) has 
documented a similar pattern for average bid-asked spreads, which he 
attributed to lower dealer inventory costs for the highly active newly 
issued maturities. What is relevant to purchasers of bills is choice of 
asked yields across maturities. By fitting a smooth yield curve, we 
have made this pattern highly visible and have quantified it. 
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Issue effects are distinguished from maturity effects in that they 
pertain to the bills that mature on a particular date rather than to bills 
with a particular term to maturity. We found some evidence of issue 
effects since large residuals for a particular issue show some tendency 
to persist from one quote sheet to the next. Evidence for issue effects is 
less compelling than that for maturity effects but seems to warrant 
further investigation. 

IV. Prediction out of Sample: Pricing a Long-Term Bond 

One of our criteria for a satisfactory yield curve model is that it be able 
to predict yields beyond the maturity range of the sample used to fit it. 
An unreasonably exacting test would be to ask it to predict the yield or 
price of a long-term government bond, but this is what we have tried to 
do. The particular bond chosen is the 123/4% coupon U.S. Treasury 
bond maturing in 2010 (callable in 2005) since this was the longest bond 
appearing on all our quote sheets. 

We may estimate the price of a bond as the present value of the 
series of cash flows (coupon payments and principal repayment) dis- 
counted according to the yield curve value at the term of each pay- 
ment. A bond can be thought of as a bundle of bills consisting of the 
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coupons with maturities spaced at 6-month intervals and the face value 
payment at the maturity date of the bond. Each component bill pays an 
amount equal to the semiannual coupon, except the last, which also 
pays the face value of the bond. Values from a yield curve can be used 
to discount each component bill in the stream. The resulting total value 
can be compared with the quoted price of the bond, adjusting first for 
accrued interest from the last coupon date, which the buyer must pay 
to the seller. 

The predicted bond price will depend primarily on the portion of the 
yield curve that lies beyond the range of the sample bill data because at 
most only the first two semiannual coupon payments can be due within 
the 1-year maturity limit of U.S. Treasury bills. For our yield curve 
model with values of around 50, the fitted curve flattens out consider- 
ably for maturities beyond a year. The first exponential term in the 
model goes from unity at zero maturity to .1369 at 365-days maturity, 
and the second term goes from unity to .0007 in the same interval. The 
pricing of the bond is therefore determined largely by the asymptotic 
level of the curve given by the intercept in the model, P3o. Equivalently, 
the value of the intercept must be close to the yield to maturity on the 
bond if the model is to price the bond accurately. When we allowed v to 
take its best-fitting value, two predictions went drastically awry: the 
twelfth ($138.063 against an actual price of $100.34) and the twenty- 
second ($404.58 against an actual price of $103.59). These were both 
models that had large values of v (see table 1). In both cases the bill 
yield data were fitted as the rising portion of a long hump with eventual 
decay to a much lower level, which was .079 for the twelfth model and 
-.025 for the twenty-second. The resulting discount rates are there- 
fore too low and the predicted bond price correspondingly too high. 
Constraining T to a value of 50 in both cases costs little in standard 
deviation of fit (see table 1) but improves the predictions of the prices 
of the two bonds dramatically, to $105.77 and $102.52, respectively. 
Evidently, the value ofT is best chosen by fitting across data sets rather 
than by selecting the value for each individual data set. 

The relation between actual and predicted bond price is depicted as a 
time-series plot in figure 9 and as a scatter plot in figure 10. It is obvious 
that the correlation between actual and predicted price is high- 
numerically it is .963-but it is also clear that the predictions over- 
shoot the actuals. The magnitude of overshooting is much larger than 
could be accounted for by favorable tax treatment for the bond when it 
is selling at a discount from face value. This suggests that our fitted 
curves may flatten out too rapidly. When yields generally were high 
and the yield curve downward sloping, the models overestimated long- 
term discount rates and therefore underestimated the price of the bond. 
The reverse was true when yields were relatively low and the yield 
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FIG. 9.-Time-series plot of actual and predicted (darker line) bond price 

curve was upward sloping. Correcting the price predictions for these 
systematic biases by simple linear regressions, we obtain a standard 
deviation for the adjusted bond price prediction of only $2.63. 

What correspondence is there between the ability of a model to fit 
the bill yield data well and its accuracy in extrapolating beyond the 
sample to predict the yield on a bond? The short answer is none neces- 
sarily. A function may have the flexibility to fit data over a specific 
interval but may have very poor properties when extrapolated outside 
that interval. A cubic polynomial has the same number of parameters 
as does our model and indeed fits the bill yield data slightly better. The 
median standard deviation of residuals is only 7.1 basis points over the 
37 data sets. However, we know that a cubic polynomial in maturity 
will head off to either plus infinity or minus infinity as maturity in- 
creases, the sign depending on the sign of the cubic term. It is clear, 
then, that, if we use a cubic polynomial yield curve to price out a bond, 
it will assign either very great present value or very little present value 
to distantly future payments. For our data set, the result is predicted 
bond prices that bunch in the intervals $17-$40 and $384-$408. The 
correlation between actual and predicted bond price is -0.020, so the 
polynomial model has no predictive value, although it fits the sample 
data very well. 
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FIG. 10.-Scatter plot of actual and predicted bond price 

V. Conclusions 

Our objective in this paper has been to propose a class of models, 
motivated by but not dependent on the expectations theory of the term 
structure, that offers a parsimonious representation of the shapes tradi- 
tionally associated with yield curves. Pilot testing on U.S. Treasury bill 
data suggests that a very simple model with only a single-shape param- 
eter is able to characterize the shape of the bill term structure. The 
model imposes sufficient smoothness to reveal a maturity-specific pat- 
tern that can be related to lower transaction costs for bills at the 
maturities issued by the Treasury. If the model reflects the basic shape 
of the term structure and not just a local approximation, then we 
should be able to predict yields or prices at maturities beyond the range 
of the sample. Confirming this, we find a high correlation between the 
present value of a long-term bond implied by the fitted curves and the 
actual reported price of the bond. 
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