
A Realistic Empirical Evaluation of the Costs
and Benefits of UML in Software Maintenance

Wojciech James Dzidek, Student Member, IEEE, Erik Arisholm, Member, IEEE, and

Lionel C. Briand, Senior Member, IEEE

Abstract—The Unified Modeling Language (UML) is the de facto standard for object-oriented software analysis and design modeling.

However, few empirical studies exist which investigate the costs and evaluate the benefits of using UML in realistic contexts. Such

studies are needed so that the software industry can make informed decisions regarding the extent to which they should adopt UML in

their development practices. This is the first controlled experiment that investigates the costs of maintaining and the benefits of using

UML documentation during the maintenance and evolution of a real nontrivial system, using professional developers as subjects,

working with a state-of-the-art UML tool during an extended period of time. The subjects in the control group had no UML

documentation. In this experiment, the subjects in the UML group had, on average, a practically and statistically significant 54 percent

increase in the functional correctness of changes ðp ¼ 0:03Þ and an insignificant 7 percent overall improvement in design quality

ðp ¼ 0:22Þ, though a much larger improvement was observed on the first change task (56 percent), at the expense of an insignificant

14 percent increase in development time caused by the overhead of updating the UML documentation ðp ¼ 0:35Þ.

Index Terms—Empirical software engineering, UML, modeling, object-oriented programming, software maintainability,

quasiexperiment.

Ç

1 INTRODUCTION

THE Unified Modeling Language (UML) allows for the
visual representation of a system’s specification at

various levels of design and is used to construct and
document the artifacts of an object-oriented software
system. This, in turn, aids in the communicating and
understanding of various system properties. Advocates of
UML often cite the following advantages: ability to handle
the growing complexity of software development by work-
ing at higher levels of abstraction, traceability from
requirements to low-level design, and more efficient
communication. In fact, engineering designs are tradition-
ally conveyed via two complementary notations, textual
and visual, through domain-specific standardized nota-
tions. Since software designs must be expressed and
communicated to many stakeholders, a visual language
that is complementary to the code should be able to provide
advantages as it does in other disciplines. Furthermore, the
need to efficiently communicate design intent during
development, maintenance, and evolution is an area in
which improvements can have significant benefits.

Despite a growing popularity, there is little reported
evaluation of the use of UML-based development [1], and
many still perceive the development and maintenance of
analysis and design models in UML to be ineffective [2].
Such practices are therefore viewed as difficult to apply in
development projects where resources and time are tight. It

is then important, if not crucial, to investigate whether the use
of UML can make a practically significant difference that
would justify the costs. This is particularly true in the context
of software maintenance, which consumes most of software
development resources as discussed in [3] and [4]: “Main-
tenance typically consumes 40 percent to 80 percent of
software costs. Therefore, it is probably the most important
life cycle phase of software” and “60 percent of software’s
dollar is spent on maintenance, and 60 percent of that
maintenance is enhancement. Enhancing old software is,
therefore, a big deal.” Furthermore, the maintenance tasks are
not usually performed by the original developers; thus, a lot
of effort must be spent on understanding its functionality,
architecture, and a myriad of design details of the large and
complex existing system in order to change it correctly.

Having established the need for an empirical study
where developers use UML during the maintenance phase
leads us to the next issue: the manner in which UML should
be used (i.e., the amount of detail that should be present in
the diagrams and the necessary tool support). At one
extreme, some argue for using UML at a very informal
level, where diagrams are sketched on a white board in
order to help communicate ideas and alternatives with
colleagues; their emphasis is on selective communication
rather than complete specification. These diagrams are
either soon discarded or quickly become inaccurate (since
they do not get modified along with the code). At the other
extreme, proponents of the Model-Driven Architecture
(MDA) believe that, thanks to MDA, future programmers
will mostly deal with models instead of focusing on code
(UML becomes the programming language) [5]. Since all
changes occur via the models, these are always up to date,
though the opposition claims that this is highly inefficient.
This approach depends on tools that we do not yet possess.

This paper attempts to evaluate the costs and benefits of
using UML at a given degree of formality, which represents

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008 407

. The authors are with the Simula Research Laboratory, Department of
Software Engineering, PO Box 134, N-1325 Lysaker, Norway, and the
Department of Informatics, University of Oslo, PO Box 1080, Blindern, N-
0316 Oslo, Norway. E-mail: {jamesdz, erika, briand}@simula.no.

Manuscript received 5 June 2007; revised 8 Jan. 2008; accepted 7 Feb. 2008;
published online 25 Feb. 2008.
Recommended for acceptance by H. Muller.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2007-06-0180.
Digital Object Identifier no. 10.1109/TSE.2008.15.

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

a realistic compromise between the two extreme positions
presented above. This is done through a controlled
experiment performed at the Simula Research Laboratory,
Oslo. The primary strength of this experiment is the level of
realism: It involved 20 professional developers (intermedi-
ate to senior-level consultants) individually performing the
same five maintenance tasks to the same real nontrivial
system, where 10 of the developers worked with a UML-
supported development environment and UML documen-
tation, whereas the other 10 developers used the same tools
but had no UML documentation to be read or updated. The
developers took 1-2 weeks to implement the change tasks.
An additional objective was to identify reasons for varying
results and therefore identify plausible and necessary
conditions for UML to be effective. Our decision to answer
the above research question with a controlled experiment
stems from the many confounding factors that could blur
the results in an industrial context. Furthermore, this
experiment builds on expertise acquired in the first two
experiments of this type [6], with this one being the first
experiment to ask these questions in such a realistic setting.
A detailed structured comparison of this and the previous
work is presented in Section 5.2.

The remainder of this paper is structured as follows:
Section 2 reports on the planning of the controlled
experiment and the results are presented in Section 3.
Section 4 analyzes the threats to validity. Related work is
discussed in context in Section 5. Improvements to the UML
tool used in the experiment are suggested in Section 6 and
conclusions are drawn in Section 7.

2 EXPERIMENT PLANNING

This section reports on how the experiment was designed
and conducted.

2.1 Experiment Definition

We wanted to analyze the effects of UML for the purpose of
evaluating the costs and benefits of modeling artifacts with
respect to effort, functional program correctness, and the
design quality of the solution. An important aspect was to
decide what the baseline should be, against which the use of
UML would be compared. There are, of course, an infinite
number of possibilities here, given the wide variation in
software development practices. However, in our experi-
ence, the most common situation can be defined as follows:
1) The source code is the main artifact used to understand a
system, 2) the source code is commented to define the
meaning of the most complex methods and variables, and
3) there exists a high-level textual description of the system
objectives and functionality. This situation is therefore what
we will use as a basis of comparison in order to determine
whether the abstract representations captured by UML help
developers perform their change tasks.

The experiment attempted to answer the following
research questions:

1. Does the provision of UML documentation reduce
the effort required in correctly implementing the
change tasks?

2. Does the provision of UML documentation increase
the functional correctness of the delivered solution?
Since a fault found after the release of the software is
significantly more expensive to fix than one found

during development [7], [8], special attention must
be paid to whether UML increases the probability of
the change being functionally correct.

3. Does the provision of UML documentation improve
the design quality of the delivered solution? Alter-
natively, does the use of UML decrease the decay of
a system’s design caused by maintenance tasks?

4. What are the shortcomings of the used state-of-the-
art UML tool and how can it be improved?

2.2 Context Selection

The context selection is representative of situations where
professional Java programmers perform realistic mainte-
nance tasks for the duration of 1-2 weeks on a real nontrivial
system. Furthermore, the system is initially unknown to the
programmer and we are thus in the common situation where
maintainers are not the initial developers of the system.

More specifically, 20 professional developers were re-
cruited from Norwegian consulting companies and were
paid the negotiated hourly wages. The advantage of using
experienced professional developers is to avoid one of the
main criticisms of most controlled experiments in software
engineering: As opposed to student experiments, our results
are representative of developers with industrial skills.
Furthermore, unlike industrial case studies, which typically
also use professional developers, this experiment controls for
many extraneous factors that can impact our ability to analyze
the effect of UML on software maintenance.

Since the 10 subjects working with the UML had various
degrees of experience and knowledge of UML, they were all
given a one-day refresher course that dealt with UML
elements with which familiarity was necessary for the
experiment. This time was also used to introduce the
subjects to the selected UML-supported IDE: Borland
Together for Eclipse (BTE) [9]. BTE was selected as the
modeling tool due to 1) the advanced synchronization
feature between the model and the code and 2) the tight
integration with the Eclipse IDE.

2.3 Hypothesis Formulation

Our experiment has one independent variable (the use of
UML documentation in a UML-supported IDE) and two
treatments (UML, no-UML). It has six dependent variables,
on which treatments are compared:

. T : Time to perform the change excluding diagram
modifications.

. T 0: Time to perform the change including diagram
modifications.

. Functional correctness in terms of the following:

1. C: Number of submissions of a solution with a
fault.

2. C0: Number of submissions of a solution with a
fault, where the fault broke the existing func-
tionality, a subset of C.

3. C00: Number of submissions of a solution with a
fault, where the fault stemmed from not taking
into account all existing behavior C00, a subset of
C. An example of a fault of type C00 would be a
scenario where the developer must update two
packages to correctly handle some new function-
ality, but, due to the lack of understanding of the
system, only updates one of those packages.

408 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

. Q: Design quality in terms of following proper OO
design principles [10]. This was calculated by first
breaking each task into subtasks and rating each as
either acceptable or unacceptable according to the
predefined criteria elaborated upon in Section 2.7. Q
counts the number of acceptable subtask solutions.

Following the example and logic in [6], when comparing
the time spent on tasks across the UML and no-UML groups,
one should, of course, account for the overhead involved in
modifying UML diagrams. Bearing this in mind, T 0 is a priori
a better measure than T when assessing the economic impact
of using UML. However, we believe that it is still relevant to
assess T as such results will provide evidence regarding
whether UML, as a minimum requirement, facilitates the
understanding and change of code. Furthermore, the time
spent on modifying the models probably depends strongly on
the modeling tool used and the subject’s training in that
particular tool. This is highly context-dependent and we
therefore wanted to distinguish the time that developers
spent understanding and modifying the code (with the help
of UML diagrams) from the time spent on modifying the
UML diagrams. The two measures of time are expected to
provide interesting complementary insights.

Two subsets of faults with respect to functional correctness
C are examined independently: C0 and C00. C0 only measures
the number of faults that led to the existing functionality
being broken (as opposed to the functionality that was added
as part of the task), while C00 only measures the number of
faults that stemmed from the developer not adapting the
existing functionality to work with the newly added
functionality. While both C0 and C00 show a lack of under-
standing of the system being modified, faults of type C0 may
be prevented with the assistance of a complete regression
test suite.

The hypotheses for testing the effect of UML documenta-
tion on our dependent variables are given in Table 1. The
alternative hypotheses Ha state that using UML documents
improves five out of the six dependent variables: less time to
complete the tasks when excluding diagram modifications T ,
improved correctness in terms of C, improved correctness
in terms of C0, improved correctness in terms of C00, and
improved design quality Q. Thus, Table 1 defines five of the
hypotheses as one-tailed because we expected that using

UML documentation would help people understand the
system design better and hence provide better solutions
faster. However, it is difficult to have clear expectations
regarding the effect of using UML documentation on time
when including the time spent on diagram modifications T 0

because the time taken to modify the diagrams might be
greater than the expected time gains. Thus, the hypothesis
on time including diagram modifications (T 0 in Table 1) is
two-tailed.

The hypotheses will be tested on the results of each task
that the subjects perform (at the task level) and on the
aggregated results of all the five tasks (across all of the tasks at
the subject level). In the case of design quality, the hypothesis
will also be tested on each subtask (as defined in Section 2.7) of
every task. Splitting tasks into subtasks allows for a
comparison of the quality of solutions across developers
while, at the same time, allowing for a large degree of freedom
in the way that they implement their solutions.

2.4 Selection of Subjects

Subjects were recruited via a request for consultants being
sent to Norwegian consulting companies. The request
specified a flexible range of time, for which the consultants
would be needed, along with the required education and
expertise. Companies replied with résumés of potential
candidates and these were then screened to verify that they
indeed complied with the requirements. The subjects were
required to at least have a bachelor’s degree in informatics
(or its equivalent), some familiarity with UML (use case,
class, sequence, and state diagrams), and some project
experience with the following technologies: Struts [11],
JavaServer Pages (JSP) [12], Java 2 [13], HTML [14], the
Eclipse IDE [15], and MySQL [16].

Note that the recruitment of all subjects could not be
completed before the start of the experiment. This was due
to several practical reasons:

1. The market for these skilled professionals is very
tight.

2. We could not give the consulting companies definite
start and end dates as to when the consultant would
be working.

3. The consulting companies could not give us an exact
start date for consultants.

DZIDEK ET AL.: A REALISTIC EMPIRICAL EVALUATION OF THE COSTS AND BENEFITS OF UML IN SOFTWARE MAINTENANCE 409

TABLE 1
Tested Hypotheses

4. The consulting companies often could not guarantee
that the consultant would be available.

Consequently, we assigned the first 10 subjects to the no-

UML treatment and the next 10 subjects to the UML

treatment. This assignment was also beneficial from a

logistical point of view since, at a given point in time, all

subjects followed the same experimental procedures.

Though this assignment is clearly not “random,” there is

no reason to believe that the time at which the subjects were

available was, in any way, related to their skills. It was,

rather, determined by extraneous factors (e.g., contract

terminations) and we therefore had no reason to expect any

bias in the assignment process. This was confirmed by the

analysis in Table 2, which provides background data on the

subjects that participated in the experiment and clearly

shows that the two groups are indeed comparable in terms

of age, education, and experience. Furthermore, simple

statistical tests on the data in the table confirmed that none

of the differences between the groups is significant.

2.5 Experiment Design

The experiment was conducted on the BESTweb system
[17]. The BESTweb system is a company-internal Web-
based system developed in Java, using the Struts frame-
work [11], written and documented by the first author of
this paper. BESTweb supports research on software cost
and effort estimation through the identification of relevant
journal papers and conference proceedings [18]. The system
is a database front-end client that gives access to informa-
tion about all journal papers on software cost and effort
estimation that have been coded according to the classifica-
tion categories research topic, estimation approach, research
approach, study context, and data set. Thus, each paper in the
system is associated with codes based on this classification
scheme; these codes are called the BEST-codes. Table 3
provides the basic metrics for the BESTweb system.

The experiment was conducted in two phases for reasons
explained in Section 2.4. The subjects in the first phase
worked without the UML environment/artifacts. The
subjects in the second phase worked with the UML.

The UML documents provide information at a level of
detail that one would expect at the end of the design phase

410 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

TABLE 2
Descriptive Statistics: Subjects’ Background

[10], including a use case diagram, sequence diagrams for
each use case, and class diagrams. These correspond to the
most commonly used diagrams in practice and we wanted
our results to be as realistic as possible. For the same reason,
all conditions in sequence diagrams were simply described in
English. The subjects who received UML documentation had
to keep it up-to-date. Tables 4 and 5 provide some basic
metrics on BESTweb’s sequence and class diagrams, respec-
tively. Note that the largest diagrams in both tables are in
bold, as we will refer to these in the discussion of the results.

Also, the no-UML documentation was provided to all of
the subjects. This documentation included the user’s manual,
a high-level description of each package in the system and
how it relates to the other packages, the third-party libraries,
the database schema, and the system deployment instruc-
tions. The architecture description document was aimed at
reflecting the type of document that exists in the industry for
proprietary systems. (At the debriefing session, all but one of
the subjects agreed that this documentation was at least as
good as the industry standard and seven out of the 20 subjects
thought it was better.) The developers also had access to the

Javadoc documentation with which all the code was
thoroughly documented.

In order to maximize the realism of the experiment, the
subjects were not informed of other participants. Further-
more, they were told that, since this work was being
performed for a software research laboratory, we wanted to
take advantage of the situation to collect data in order to learn
how professional software developers work. The subjects
were informed in advance that they would be working on a
system that was also involved in a study. We deemed that
these steps are necessary so that the developers would take
the work seriously and not treat it as an exercise. Last, the
consultants signed a nondisclosure agreement in order to
make sure that they would not disclose information about
their work to a potential future subject.

The subjects were also told that, for us to collect valid
data, a few rules had to be followed. First, they needed to
use the preconfigured development environment (e.g., the
Eclipse IDE). Next, they had to work independently: They
could not get help from colleagues or the experimenters.
Technical questions to the latter had to be asked via e-mail.
The reason for this was twofold: 1) so that the subjects
would not engage in a technical conversation with the
experimenters and 2) so that answers were carefully

DZIDEK ET AL.: A REALISTIC EMPIRICAL EVALUATION OF THE COSTS AND BENEFITS OF UML IN SOFTWARE MAINTENANCE 411

TABLE 3
BESTweb System Metrics

TABLE 4
Sequence Diagrams: Metrics

TABLE 5
Class Diagrams: Metrics

considered by the experimenters (to not give an unfair
advantage to the subject). Furthermore, only one task would
be given out at a time and the total number of tasks would
not be disclosed: This ensured that the developers avoided

budgeting their time. Finally, the introductory and debrief-
ing sessions were to be audiorecorded.

The subjects went through the following procedure, as
illustrated in Fig. 1:

1. The subject is given an introductory session explain-
ing the manner in which he would be working.

2. The subject answers an initial questionnaire captur-
ing the subject’s background and experience (see
Table 2).

3. If the subject is in the UML group, the subject
receives a UML refresher/tool training session.

4. The subject receives the first task.
5. The subject submits an estimate of the amount of

time that he/she thinks the task will take him/her.
6. The subject implements the task.
7. Upon completion, the task is sent in for acceptance

testing. The system is then tested by an experimenter
based on a system acceptance test plan.

a. If the test fails, the subject is told about the
problem and is asked to fix it to submit the
solution again.

b. If the test passes, the subject receives the next
task and repeats the process from Step 4.

8. Upon the completion of all five tasks, debriefing
takes place.

Since the experiment was conducted in a manner that

was very labor intensive for the experimenters, a maximum
of three subjects participated in the experiment at a time.
Essentially, the first author of this paper acted as an

advanced “customer” that received the intermediate results
described above from the subjects, tested and accepted
solutions, and, in general, ensured that they did not deviate
from the prescribed process.

In the case of the tasks where the developer modified the
existing functionality, the test plan was derived from the
use case diagram and the sequence diagrams [19]. It
ensured that, for every task, all relevant functionality was
tested by covering all messages in every relevant sequence
diagram. Exceptional scenarios and conditional flows were
also accounted for (this sometimes resulted in the same
path being covered several times). If the task required the
addition of new functionality to the system (i.e., the
addition of a new use case), checklist-based testing was
applied [20]. The checklist was derived from the functional
specifications and was checked: the main flow, exceptional
scenarios, and existing functionality.

2.6 The Tasks

In total, the subjects performed five maintenance tasks in a
fixed order. It was estimated that it would take the subjects
3-6 days to complete all of the tasks (assuming 7.5 hours/
day, not including nondevelopment activities). The tasks
consist of adding necessary features of practical value and
affect every part of the system: At least one class in every
package has to be modified. A summary of the necessary
modifications is given in Table 6.

2.6.1 Task 1

The first task requires the addition of functionality to save a
user’s search query to persistent memory. Also, the user’s
last search query must be read and reexecuted automati-
cally upon their relogon to the system.

The task requires that the developer understands how
the system starts up, interacts with the database, and

412 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

Fig. 1. The experimental process (the documents represent deliverables).

executes a query. In terms of coding, the task is small in size
as one of its purposes is to introduce the subject to the
system. However, initially, the task may seem complex
because developers must gain a basic understanding of
several parts of the system before the task can be solved.

2.6.2 Task 2

The second task requires the extension of the system to
handle an additional piece of data from an input file (in
XML format) used to update the publications in the
BESTweb system. The system already partially handles
the data: If it encounters the presence of the data in the file,
it warns the user that the data is not supported. The
developer is asked to add support for this data by extending
the domain model, the GUI, and the search functionality.

The task requires that the developers gain an under-
standing of the system’s domain model, GUI, and search
functionality. The task can also be solved without a complete
understanding of the implications of their changes by
searching for every occurrence of a similar piece of data and
then copying/pasting and modifying the code accordingly.
For example, if the domain model has a publication and the
system already handles the title property of the publication but
not the author property, the developer could search for every
occurrence of title in the system, then copy and paste the code
that handles title and replace title with author.

2.6.3 Task 3

The third task requires the developer to add completely
new functionality to the system (as opposed to making
modifications to existing functionality). Recall that the
BESTweb system was designed to aid in working with cost
and effort estimation papers [18]. Each of these papers is
classified according to a categorization scheme (using the
BEST-codes). This task asks the developer to add function-
ality to the system that extends the manner in which cost
and effort estimation metadata associated with each
publication is dealt with, specifically the ability to add
categorization categories and corresponding codes. Without
such functionality, the user would have to manually add
the code in the database and restart the system. The restart
would be necessary so that the new code would be
associated with the corresponding publications.

The task is complex as it requires the developer to
understand most parts of the system. Furthermore, the

developer has to create a GUI by using JSP and Struts
(something that a large number of developers ended up
struggling with).

2.6.4 Task 4

Task 4 asks the developers to add caching logic to the
system so that if statistics for all of the publications in the
system are requested, the cached results are used (so as to
decrease the computational load on the system).

The task requires the developers to understand the
statistical data and how it is generated by the system. The
developers also have to ensure that when, for example, a
new code is added to the system (via the functionality that
they added in Task 3), these cached results are updated.

The task forces the developer to deal with the Best Codes
Manager (BCM) class. The BCM class is noteworthy, as
developers frequently found it nontrivial to understand for
the following reasons:

. It contains a cached copy of all the BEST-codes found
in the database and this requires that the developers
understand how the caching strategy works.

. It retrieves objects from a qualified association that
points to another qualified association.

. It contains thread-safe logic.

2.6.5 Task 5

The last task is, in fact, a continuation of Task 3; thus, the
comments for that task apply to Task 5 as well. Whereas in
Task 3, the developers are asked to add functionality where
the user could add new types of publications codes to the
system, in this task, the developers are asked to add
functionality where the users could delete existing publica-
tion codes from the system.

2.7 Instrumentation and Measurement

The instrumentation and measurement process was speci-
fied before the experiment began and outlined exactly how
the interaction with the subjects would be performed; it also
outlined how the data would be collected when interacting
with the subjects.

The data sources are (see Fig. 1) listed as follows:

. for every subject, an initial questionnaire capturing
the subject’s background and experience (see Table 2),

DZIDEK ET AL.: A REALISTIC EMPIRICAL EVALUATION OF THE COSTS AND BENEFITS OF UML IN SOFTWARE MAINTENANCE 413

TABLE 6
Minimal Modifications Necessary for Implementing Each Task

. for every submission, a copy of their entire source
code,

. for every submission by a UML subject, the
estimated percentage of time spent on reading and
updating the UML,

. for every submission, acceptance test reports (gen-
erated by the experimenters), and

. for every subject, an audiorecorded semistructured
debriefing interview (conducted after the developer
has finished all of the tasks; see Section 2.8.2).

An important point in this experiment was the fact that a
subject’s solution (submission) was not accepted until it
passed all the functional tests. Such a setup ensures that
1) in their ultimate form, all tasks conform to the predefined
specifications and 2) every subject completes every task.
Full conformance to the specifications is important to be
able to compare final solutions in terms of effort, for
example. With some subjects being slower than others, it
was important not to fix the time allocated for tasks to
ensure 2) and to be able to observe differences in effort. The
disadvantages of this decision are related to cost and
logistics. Cost is higher, as the slower subjects will need to
be paid more to complete the tasks. The logistics are more
difficult, as it cannot be anticipated how long the subjects
will take to complete the tasks.

The number of resubmissions and the reasons for their
need were recorded. The resubmission problems were
categorized as either omissions or faults, where a submission
that did not fully implement the specified functionality was
defined as an omission.

The solutions for each task were also assessed for their
design quality in terms of following proper OO design
principles [10]. This was done by first breaking each task into
subtasks and then specifying all acceptable solutions for that
subtask. Each subtask corresponds to a subset of an entire
task’s functionality; the level of granularity was set to one that
is high enough to make it possible to compare the
corresponding solutions (code) across all of the subjects. For
example, in the case of a task that requires access to the
database, the code that accesses the database could be placed
almost anywhere, even though the proper place for it is in the
package that specifically deals with the database interaction.
Even though code that is placed in, say, the presentation layer,
would pass the functional correctness tests, this would be an
unacceptable solution (leading to code decay). Thus, each
possible solution for each subtask was rated as either
acceptable or unacceptable according to the predefined criteria.
Specifically, a solution to a subtask with one of the following
problems would be deemed as unacceptable:

. duplication (copying and pasting) of existing code
instead of direct use of that logic (e.g., copying and
pasting a sort method),

. addition of new design elements that current design
elements could have handled (e.g., creating a new
partial user class even though an existing user class
is present),

. incorrect placement of logic in a class,

. distribution of logic throughout the application
when adding it to just one place would have had
the same effect, and

. use of the try/catch mechanism as a normal part of
the application’s logic.

2.8 Analysis Procedure

The analysis procedure included both quantitative and
qualitative components. The quantitative data was the main
source for testing the hypotheses, whereas the qualitative
data was analyzed in an attempt to gain a deeper under-
standing of the work processes of the subjects, which, in turn,
could potentially offer additional complementary evidence
and, to some extent, explain the quantitative results.

2.8.1 Quantitative Analysis

Univariate analyses of the dependent variables were
performed to test the hypotheses both individually for each
task and across all tasks. For all dependent variables T , T 0,
C, C0, C00, and Q, two-sample t-tests were performed [21]. In
addition, to reduce potential threats to the validity of
statistical conclusions resulting from violations of the t test
assumptions, nonparametric Wilcoxon rank sum tests were
also performed [21]. Additionally, with respect to design
quality Q, Fisher’s Exact Test [21] was used to test the
difference in proportion of subjects, with solutions being
scored as acceptable for each subtask (of each task).

The level of significance for the hypotheses tests was set
to � ¼ 0:05. However, the reader should bear in mind that
we perform multiple tests and, in order to allow for a
stricter and more conservative interpretation of the results
(e.g., using a Bonferroni procedure or one of its variants
[22]), we provide p-values.

Furthermore, it is often useful to know not only whether
an experiment has a statistically significant effect but also
the size of any observed effects. Thus, for the dependent
variables on time and correctness, the effect size was
calculated using Cohen’s d, which is defined as the
difference between two means divided by the pooled
standard deviation for those means [23]. In our case, we
calculated the difference in means between the UML and
the no-UML groups so that a positive value of d
corresponded to the UML treatment being beneficial. To
interpret the results, Cohen suggested that d ¼ 0:2 is
indicative of a small effect size, d ¼ 0:5 a medium effect size,
and d ¼ 0:8 a large effect size.

Given the small number of subjects, we also fitted
multivariate Analysis of Covariance (ANCOVA) models
for the time and correctness data across all tasks and
subjects. The average grade in computer science courses
(see Table 2) of each subject was included as a covariate to
adjust for individual differences between the subjects and
UML and Task (and their interaction) were the indepen-
dent variables. The use of the covariate, combined with
the fact that we had a total of 100 data points for each
dependent variable (20 subjects and five tasks), resulted in
increased statistical power compared to the less sophisti-
cated univariate analyses. However, since the observations
of individual tasks for a given subject are correlated, the
ANCOVA assumptions of independent observations
would be violated. We thus resorted to a statistical
technique known as Generalized Estimating Equations
(GEEs) [24] to estimate the parameters (i.e., the effect of
Grade, UML, and Task) of the models. GEE is an extension of
Generalized Linear Models, developed specifically to
accommodate data that is correlated within clusters (here
being the individuals). The results of the GEEs were entirely
consistent with the univariate results and are hence not
included in this paper due to space constraints. Still, it

414 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

implies that the univariate results presented in this paper
probably do not suffer from Type II errors as a result of the
lack of power since the multivariate analyses of covariance
with 100 data points showed consistent results.

2.8.2 Qualitative Analysis

A semistructured debriefing (interview) session was held
with each developer immediately upon completion of the
tasks. An interview guide with relatively open questions
was prepared and all sessions were audiorecorded. The
subjects were asked about their style of working (e.g., how
they gained an understanding of the system) and the
problems that they faced (e.g., what they suspect led to the
introduction of every fault). The interviews lasted between
50 and 98 minutes for the no-UML subjects (70 minutes on
average) and between 91 and 169 minutes for the UML
subjects (123 minutes on average). The interviews varied in
length due to several reasons. Each error had to be
discussed and the total number of errors differed across
developers. Furthermore, some subjects were more talka-
tive than others. The interviews with the subjects in the
UML group took longer since, additionally, the usage of
UML was thoroughly discussed. The length of this
additional discussion varied, depending on the extent to
which the developer took advantage of the UML and the
developer’s prior experience with UML. Developers who
did not take complete advantage of the UML diagrams
could not comment as much as those who did.

The amount of information extracted from the subjects also
varied due to other reasons. The developers spent 1-2 weeks
on the experiment. The longer it took them to complete all of
the tasks, the harder it was for them to remember details of
what happened in earlier phases of the experiment. Unfortu-
nately, the developer could not be interviewed after comple-
tion of each task as that would influence her (e.g., discussions
examining why the developer chose a certain solution and not
an alternative might have given the developer a deeper
insight into the system). Furthermore, some people can
provide insight into their thought process better than others
and others have a very hard time forming an opinion [25].

Content analysis [26], a data reduction technique, was
then applied to the audio recordings of the semistructured
interviews in the following manner:

1. An initial set of codes was derived from the
interview questionnaire.

2. The interviews were played back, and the subjects’
answers and opinions were transcribed and coded.
This made the coding traceable.

3. If a subject’s opinion or answer was not possible to
code with an existing code, a new code was
declared.

4. Once this was done for all of the interviews, the
codes were then reviewed, refined, and finalized.

5. All of the interviews were then replayed and
recoded with the finalized coding scheme.

The coding schema (see the Appendix, which can be
found in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSE.2008.15) encom-
passed the problems that the developers faced, their
thoughts on the system, and how they worked. Addition-
ally, the no-UML interviews were coded for problems that
occurred due to the models not being available. The UML

interviews were coded to capture the manner in which the
UML diagrams were used. The purpose of the analysis was
to better understand how access to UML documentation
made a difference.

3 EXPERIMENTAL RESULTS

The results from the analysis procedures described in
Section 2.8 are now shown and dissected. The section first
presents and discusses the descriptive statistics, univariate
results, and the qualitative results, and discussion follows.
Last, the main results from the experiment are summarized
in Section 3.5.

3.1 Descriptive Statistics and Univariate Analysis

Recall that four hypotheses are tested with regard to the
effect of UML on the following:

1. the time to perform the change task excluding
diagram modification (using the variable T),

2. the time to perform the change task including
diagram modification (using the variable T 0),

3. submission correctness (using the variables C, C0,
and C00), and

4. design quality (using the variable Q).

These are examined respectively.
Note that the Wilcoxon test and the t-test provide

consistent results in all but one case (C for Task 1 in Table 9
gave a p-value of 0.053). Due to the nonnormal distribution
of the data, the Wilcoxon p-values are used in the
discussions. The significant values also appear in bold in
the tables.

3.1.1 Time

Table 7 shows the descriptive statistics and univariate results
for time (in minutes) across all of the tasks and for each task,
respectively. For each dependent variable (denoted by the
Var column), the results are presented for each treatment
(Treat): the mean of the subjects in the group, the standard
deviation, the smallest data point (Min), the lower quartile
(Lower Quart), the median (Med), the upper quartile (Upper
Quart), the largest data point (Max), the effect size as a
percentage difference between the two means (% diff), the
effect size using Cohen’s d, the p-value from the t test, and the
p-value from the Wilcoxon test.

In terms of time excluding diagram modifications T , the
no-UML group spent 1.4 percent more time in total. The
development time is shorter on the first and the two largest
tasks (3 and 5) for the UML group. The variance is also
smaller for the UML group on the largest tasks (3 and 5),
similar to Tasks 1 and 4, and larger on Task 2. The
minimum is smaller for the UML group in the case of the
two largest tasks and is larger in the case of the other tasks.
The maximum is smaller for the two largest tasks for the
UML group and is larger for other tasks. However, when
including the time that the UML group spent on updating
the UML documentation T 0, then, overall, the no-UML
group finished the tasks 14.5 percent faster than the UML
group. On the two largest tasks (3 and 5), the UML
overhead is the lowest (around 10 percent, even though
there is a lot of UML to update on those tasks). The variance
is also smaller for these largest tasks for the UML group,
similar to Tasks 1 and 4, and larger on Task 2. The

DZIDEK ET AL.: A REALISTIC EMPIRICAL EVALUATION OF THE COSTS AND BENEFITS OF UML IN SOFTWARE MAINTENANCE 415

minimum is always smaller and the maximum is larger for
the no-UML group in the case of the two largest tasks (3 and
5); otherwise, this is smaller. None of the differences in time
is, however, statistically significant at � ¼ 0:05. Further-
more, the effect size measure d is well below 0.5 for both T
and T 0 and, as explained in Section 2.8.1, this indicates a
small treatment effect.

In order to gain a deeper understanding of how the UML
subjects spent their time, Table 8 shows the percentage of time
that the UML subjects have spent on reading and updating
the UML documentation on each task. Note that, unlike the
difference between T and T 0, which compares subjects in the
two groups, this measure only deals with the subjects in the
UML group and the amount of time that they self reported to
have spent on UML. On average, 14.8 percent of the time
spent on each task was spent reading the UML and
13.2 percent of the time was spent on updating the UML.
Note that, in Task 2, there was virtually no UML to be updated
due to the fact that the changes consisted of adding attributes
and associations on class diagrams, and those are updated
automatically. Also remember that Tasks 3 and 5 were the
largest tasks and were fairly similar, while Task 4 was the
most complex task. Keeping this in mind, the table shows that

the subjects spent the most time reading the UML while

working on the tasks that dealt with parts of the system that

they were not familiar with (Tasks 1-4), as the amount of time

spent on reading the UML in Task 5, the only task that dealt

with functionality the developers were already familiar with,

is significantly smaller. In particular, the largest percentage of

time used for reading the UML was spent during Tasks 1 and

2 when the subjects were least experienced with the system.

By Task 5, relatively little time is used on reading the UML:

only 6.5 percent. Next, while the time used for updating the

UML is dependent on the amount and types of changes

introduced to the code, a general trend can be seen when

looking at Tasks 1, 3, and 5. Task 1 requires relatively few

changes in the UML, but, at this time, the developers have

very little experience at updating the UML using the tool

(BTE). While Tasks 3 and 5 require the most changes, the types

of changes are very similar. Thus, one can see that the

percentage of time that the subjects spend on updating the

UML tends to decrease as they gain experience with this

activity.

416 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

TABLE 7
Descriptive Statistics and Univariate Results: Time

TABLE 8
Descriptive Statistics: Percentage of Time Spent on UML

3.1.2 Correctness

Table 9 follows the presentation style used in Table 7 and

introduced in Section 3.1.1, but deals with correctness

instead of time. In terms of the number of tasks submitted

with a fault C, we see that the UML group had 50 percent to

100 percent fewer faults in each and every task and

54.7 percent fewer faults overall. The variance is smaller

on all but the first task (where it is almost equal) for the

UML group. The minimum is zero in both groups across all

tasks. The maximum is always smaller for the UML group

except for on the first task (where it is equal). The

differences are statistically significant in Task 1, with a

p-value of 0.04, and across all the tasks, with a p-value of

0.03. Overall, there is a large positive effect of the UML

treatment on correctness, as indicated by Cohen’s d being

well above 0.8 across all tasks.

The faults that broke the existing functionality C0

occurred 0 percent to 100 percent less often in the UML

group throughout the three tasks, where it was observed (1,

2, and 5) and 50 percent less overall. There were no

significant differences at � ¼ 0:05.
Last, faults stemming from not taking into account all

existing behavior C00 only occurred in Task 1 submissions

(where the subjects are completely new to the system). The

UML group had 70 percent fewer faults of this type, with a

lower variance. The minimum is zero in all of the cases and

the maximum is larger for the no-UML group. The

difference is significant, with a p-value of 0.02. As for C,

the effect size measure d is well above 0.8, indicating a large

benefit of UML on C00.

DZIDEK ET AL.: A REALISTIC EMPIRICAL EVALUATION OF THE COSTS AND BENEFITS OF UML IN SOFTWARE MAINTENANCE 417

TABLE 9
Descriptive Statistics and Univariate Results: Correctness

3.1.3 Design Quality

Table 10 shows the descriptive statistics and the univariate
analysis results for design quality Q. The first column in the
table indicates the design quality criteria, which can be one
of the following: the number of subjects with an acceptable
solution to a subtask (with a maximum of 10, in which case
every subject in the group had an acceptable solution to the
task), the subtasks aggregated (summed) to the task level,
and the subtasks aggregated across all five tasks. Remember
that, in Task 2, there was no flexibility in the implementa-
tion and there was essentially only one way in which the
task could be solved to obtain a functionally correct change;
thus, data for this task is absent from the table.

Overall, the UML group had 7.3 percent more acceptable
solutions. Furthermore, a significant difference was found
for Task 1 (overall), where the subjects lack familiarity with
the system and are changing the existing functionality; the
UML group’s design quality score was 56.2 percent better,
with a p-value of 0.0025. Otherwise, the differences in
quality are relatively small and not statistically significant.

3.2 Discussion of Quantitative Results

Overall, when looking at the total time T that the subjects
spent on the five tasks, we see that the UML group
completed the tasks slightly faster (1.4 percent) than the no-
UML group (Table 7). This difference is not practically or
statistically significant. When we take the time that it takes
to update the UML documentation into account, we see that
the UML group spent 14.5 percent more time on the five
tasks, though this difference is not statistically significant
either (Table 7). The observed cost of keeping the UML
documentation updated can be better understood if we look
at Tasks 1 and 5. During Task 1, the UML subjects have very
little experience in using the UML tool; thus, a certain
learning curve can be expected. On the other hand, by the
time that developers get to Task 5, the UML subjects are fairly

comfortable with using the tool and are adding functionality
to a system that they are fairly familiar with. This is clearly
shown in Table 8. During Task 1, 20.9 percent of the time is
spent reading the UML and 20.8 percent of the time is spent on
updating it. By Task 5, a larger percentage of time is spent on
maintaining the UML (14.6 percent) than reading it (6.5 per-
cent). In Task 1, the UML subjects spent 16.1 percent more
time on the task than the no-UML subjects updating the UML
documentation (Table 7). This goes down by almost half in
Task 5, i.e., to 8.8 percent. Thus, the time spent on the UML in
Task 1 could be considered a worst-case scenario that can be
expected in terms of time overhead. We use the term “worst-
case scenario” since this is what the cost of the UML would be
if there would be no other noticeable gains from the use of the
UML. But, this is not the case since the UML group performed
much better in terms of correctness on every task, i.e.,
50 percent to 100 percent better. The difference is statistically
significant in the first task and across all of the tasks (forC and
C00). This makes sense as, during the first task, the developers
were least familiar with the system; thus, they were more
likely to introduce a fault. This explains why the UML clearly
helped the developers on the first task. Taking a closer look at
correctness reveals that the UML group always did as well as
or better than the no-UML group, even if not all of the
differences are statistically significant. This is probably due to
the fact that the developers in the UML group gained a deeper
understanding of the system, thanks to the UML documenta-
tion, as further suggested by the qualitative analysis in
Section 3.3.

Furthermore, in terms of the design quality Q, significant
gains are found in Task 1. Our explanation is that the fact
that the developers are completely new to the system is
offset by the presence of the UML documentation,
significantly so. The subjects in the UML group delivered
a higher quality solution with lower complexity than did
the subjects in the no-UML group. This is important as this
result suggests that the UML can help prevent code decay

418 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

TABLE 10
Descriptive Statistics and Univariate Results: Design Quality

[27] in real systems when developers are not familiar with
the system.

Tasks 2 and 4 did not follow the general trend, where T
was lower for the UML group (and, in fact, T 0 ended up
being higher as well). We speculate that the reasons for this
are task specific. Task 2 is unique in that it can be solved in a
limited and repetitive manner. As discussed in Section 2.6.2,
this was possible as all that the developer had to do was to
extend functionality in the system by copying/pasting code
and changing the variable name. Furthermore, once the
changes were made, either the application worked or it did
not. Hence, the developer could have solved the task by
having a hunch as to how it can be done, doing the change
in a mechanical manner (without fully understanding the
consequences of the change), and testing the application to
see if the hunch was correct. The no-UML subjects were
more predisposed to solving the task in such a manner as
they dealt directly with the code. Once they had identified a
relevant piece of functionality, it was natural for them to
perform a search in the code, instantly revealing the other
relevant locations. The UML subjects were less likely to
perform such a search as they primarily used the diagrams
and, therefore, performing a search to find relevant occur-
rences is not as easy, natural, or possible to perform. Instead,
the UML subjects tried to find the right place in the code by
studying the diagrams. This procedure inhibited the use of
the search/copy-and-modify approach by the UML subjects.
Conversely, this made the UML subjects less likely to guess
the answer. Unfortunately, no quantitative data can back up

this hypothesis, apart from the large amount of time that the

UML subjects spent on this task (even though, virtually, no

UML had to be updated; see Table 8).
In the case of Task 4, T is slightly higher for the UML

group as well; this may be due to the fact that it was the

most complex task to solve. The complexity stemmed from

the fact that the most complex parts of the system had to be

understood before the task could be solved correctly. Thus,

if proper due diligence was not performed on the task,

faults could be easily introduced.
In summary, the quantitative results show the following:

. The UML was always beneficial in terms of func-
tional correctness (introducing fewer faults into the
software).

. The UML was slightly more costly in terms of time if
the UML documentation was to be updated (though,
slightly less costly if it was not), though these results
were not significant.

. The UML helped produce code of better quality
when the developers were not yet familiar with the
system.

. The largest gains were experienced during the first
task. This is an important finding as developers in
industry are often faced with the “first task” scenario
due to high staff turnover and involvement on a very
large system (where any one developer is only
familiar with a small portion of the system).

DZIDEK ET AL.: A REALISTIC EMPIRICAL EVALUATION OF THE COSTS AND BENEFITS OF UML IN SOFTWARE MAINTENANCE 419

TABLE 11
Summary of Qualitative Results Applicable to All Subjects

Thus, one can conclude that, overall, using the UML can be
beneficial when a developer must extend a nontrivial
system that he/she is unfamiliar with, which is a very
typical occurrence in industry.

3.3 Qualitative Analysis Results

First, results applicable to all of the subjects are presented and
summarized in Table 11. Next, results applicable to the
subjects in the no-UML group are presented and summarized
in Table 12. Finally, results applicable to the subjects in the

UML group are presented and summarized in Table 13. Note

that a more detailed breakdown of the data presented in these

tables can be found in Tables 17 and 18 in the Appendix,

which can be found in the Computer Society Digital Library at

http://doi.ieeecomputersociety.org/10.1109/TSE.2008.15.
Table 11 consists of two types of information: Rows a to f

reflect the subjects’ answers to questions that appeared on

the debriefing questionnaire, whereas rows g to k reflect

information offered by the subjects during the debriefing

420 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

TABLE 12
Summary of Qualitative Results Applicable Solely to the No-UML Subjects

TABLE 13
Summary of Qualitative Results Applicable to the UML Subjects

session (e.g., while discussing the difficulties that they
experienced).

One important topic of discussion during the debriefing
interviews was the problems that all subjects faced while
performing the tasks. With regard to language and frame-
work, the main sources of problems were the lack of Struts
experience (row g), the lack of GUI development experience
in JSP/Struts (row h), and being out of practice with the
Java programming language (row i). The UML subjects
reported having more problems than the no-UML subjects
in this area. Also, the UML subjects reported having more
problems due to the poor naming of variables or classes
(row l). Last, problems in understanding specific areas of
the system most often point to the BCM (a complex part of
the system discussed in Section 2.6.4). Half of the no-UML
subjects reported problems in understanding this part of the
system compared to only two subjects in the UML group.

In terms of the subjects’ opinion of the BESTweb system’s
quality (rows a to c), most subjects in the no-UML group
thought that the system was better than average, as opposed
to just two in the UML group. The one (UML) developer who
considered the system below average was used to developing
safety-critical systems. In terms of the BESTweb system’s
documentation (rows d to f), again, more no-UML subjects
thought that the system documentation was above
average than their UML counterparts. The one (no-UML)
developer who felt that the documentation was below
average thought so due to the lack of any domain models
in the documentation. Furthermore, the UML did not
seem to have an effect on the effort spent on the
architecture document (row k).

Information offered by the no-UML subjects is presented
in Table 12. Half of the subjects reported missing the
presence of at least some models (e.g., the domain model).
Two subjects reported drawing their own UML diagrams to
aid their comprehension of the system. Half of the subjects
also reported having problems in grasping an overview of
the functionality of interest in the system (two of these five
subjects did not report missing models). Two of the subjects
stated that they felt that they would have gained no benefits
from the presence of the UML.

The qualitative results for the UML group, as presented
in Table 13, suggest that the extent to which the UML
documentation was used, as well as its impact, varied
among the UML subjects. The experiment required that all
subjects update the diagrams before they moved on to the
next task. However, the extent to which they used the UML
models to identify change locations prior to performing
code modifications varied greatly among subjects.

First, in terms of the types of UML diagrams used, rows a
to e show that all subjects used the sequence diagrams, all
but two used the use case diagram, half used the class
diagrams and the page flow diagrams (these diagrams
modeled the Struts/JSP elements’ interaction with the rest
of the application), while only one subject used the
statechart diagram. Even though most subjects used a
subset of the available diagram types, all said that they
found the UML generally useful (row f). Seven of the 10
also said that they found that the UML aided in getting an
overview of the system (row g), even though two of these
seven also stated that they used the UML to a lesser extent
(see descriptions for rows h and i).

Taking a closer look at the extent to which the UML was
used reveals that four subjects consciously limited their use of
the UML (row h). One of these four subjects thought that
taking advantage of the UML was optional in the case where
he thought it would make him more efficient (thus, he chose
not to use it “too much” to avoid wasting the client’s time).
Three of these four subjects reported that the low use was due
to the anxiety that it would take more time (to complete the
tasks) and, to a lesser extent, habit (row i). Furthermore, two
of these three subjects (in row i) struggled with implementing
the tasks; thus, the added burden of learning to use the UML
in such a manner was too much for them.

Rows j to l deal with the manner in which the UML was
used and reveal that most of the subjects used the UML
diagrams to navigate around the system, more than half
used it to find the exact places in the code that needed to be
modified, and only two did not look at the UML once they
started development.

Problems and difficulties experienced by the subjects
while using the UML are covered in rows m to r. One of the
most commonly reported frustrations was (row m) the
inability to extract what they were looking for from the
UML diagrams (at some point in time); three subjects
explicitly expressed frustration that they had to go into the
code (and leave the diagram) to look at comments (row q).
This stemmed from three main issues: lack of experience with
understanding nontrivial UML diagrams (it is one thing to
understand individual constructs like a message on a
sequence diagram and another to take these individual
pieces of information and combine them into a complete
mental model), lack of direct access to code comments from
the diagrams (class and association descriptions in the
comments may be crucial to understanding a cluster of
classes on a class diagram), and lack of knowledge as to how a
UML representation translates to code (e.g., composite
aggregation). The last point was observed with respect to
the statechart diagram. Even though the subject understood
the statechart diagram, he could not see how this was
implemented in the code due to a lack of familiarity with the
state pattern [28] (note that the UML tool did not support the
linking of the statechart diagram to code).

It is important to point out that the four developers who
made lesser use of the UML (row h) are a subset of the
seven (row m) aforementioned problems. The other
commonly reported frustration dealt with the UML tool
(row r); the main complaints were that it was very painful
to update the diagrams and the presence of faults (bugs).
Another commonly reported issue dealt with the largest
sequence (row n) and class (row o) diagrams, which was
reported by six subjects. Finally, it is interesting to point out
that trusting the accuracy of the UML diagrams was not a
problem (row p).

In terms of the subject’s perception concerning time
saving, including the time that it took to update the
sequence diagram, two developers said that they felt that
they finished faster thanks to the UML (row s) and two said
that they finished slower because of the UML (row t). One
of the two who said that the UML slowed him down was
the developer who got discouraged when the UML did not
help him as much as he thought it would on the first task.
One developer said that he was “at least as efficient and [the
UML documentation would] make people coming later on

DZIDEK ET AL.: A REALISTIC EMPIRICAL EVALUATION OF THE COSTS AND BENEFITS OF UML IN SOFTWARE MAINTENANCE 421

the project more efficient. Could cut the time [that it takes to
catch up] in half.”

Last, while only one of the subjects (row u) in the UML
group had extensive experience in working with UML
(worked in a similar manner to what was asked of the
subjects in this experiment), the remaining subjects had
training that can be considered representative of what most
practitioners who qualify themselves as experienced in
UML-based developers have. Thus, nine of the subjects
were learning to use the UML in such a comprehensive
manner and none of the 10 had prior experience with the
adopted UML tool. During the interviews, all subjects
agreed that the one day training that they received at the
start of the experiment provided all of the necessary
information needed to use the tool, but they all also said
that they would have liked to have more training (to
various extents). Thus, the training that they received was
adequate (row v).

3.4 Discussion of Qualitative Results

The qualitative results reveal the differences in experiences
that the subjects had with the BESTweb system. Further-
more, subjects from the UML group provided insight into
how they used UML and their opinions of working in such
an environment. This section will look at these two issues
using the presentation format from the previous section,
starting with a discussion comparing the two groups,
followed by a discussion on the no-UML group, and
concluding with a discussion pertinent to the UML group.

The first large difference between the two groups is the
UML group’s seeming disadvantage (to the no-UML group)
in terms of Struts experience and comfort with the Java
language (rows g and i in Table 11). More subjects in the UML
group claimed to have serious problems with Struts than did
the no-UML subjects (eight versus five). This is significant as
the BESTweb system is based on the Struts framework and
this is a framework that has a productivity threshold. Thus,
this could have negatively affected the overall performance of
the UML group. Yet, we recruited people with the required
background, so this was surprising. Taking a look at Task 3
provides some insight into this result since this was the first
Struts-heavy task. The quantitative results do not point to the
UML group having more problems. Thus, the UML may have
helped them deal with lower Struts experience. Furthermore,
the GUI shows that an equal number of subjects in each group
are expressing problems with GUI development in Struts/
JSP. This is further proof that the groups were probably well
matched, despite the self-analysis of their Struts expertise.
Furthermore, three subjects in the UML group reported that
they were rusty in Java. This is a serious issue as it means that
the subjects’ efforts were not solely focused on solving the
tasks. All of these observations suggest that our estimate of
the impact of UML is probably a conservative lower bound.

Next, in terms of the subjects’ perception of the system, the
no-UML subjects had a higher opinion of the system in terms
of the system’s quality and documentation (rows a to f in
Table 11). The most plausible explanation for this may be that
the UML documentation allows one to see more problems
and, therefore, the UML subjects were more critical. Also,
more UML developers complained of poor naming of
variables and classes in the system than no-UML developers,
three versus one (row l in Table 11). The UML developers said
that when they were looking at the sequence diagram, a

poorly named variable or class made the diagram much
harder to understand, forcing them to go to the code. This
may have been less of an issue with the no-UML developers,
as they were already in the code and could immediately look
at associated comments to get the explanation behind the
name (the system was completely documented with Javadoc
comments).

With respect to system comprehension, one specific part of
the system, namely, the BCM, caused particular problems
(row j in Table 11). The no-UML subjects reported having
more problems in understanding this portion of the system.
This may indicate that the UML documentation aided in
understanding this complex part of the system. Additionally,
the BCM is one of the parts of the system that made Task
4 complex (as discussed in Section 2.6.4). The fact that the
UML group took longer to complete Task 4, even without
including the time that they used on updating the UML,
may point to the fact that they took the time to
understand that portion of the system, resulting in fewer
erroneous submissions.

The key discussion point unique to the no-UML subjects
was the lack of models in the documentation. This
discussion varied greatly as each subject’s opinion was
largely influenced by their previous experience in using
models (if any) and was completely out of our control.
Keeping these points in mind, the qualitative results reveal
that half of the subjects reported missing some kind of a
model representation of the system (e.g., the domain model;
see row a in Table 12) and two of these ended up drawing
their own UML diagrams (both drew class diagrams and
one also drew sequence diagrams) for the more complex
parts of the system (row b in Table 12). Also, half of the
subjects reported having problems in gaining an overview
of functionality (row c in Table 12), three of which also
reported missing models (row a in Table 12).

The UML subjects all found the UML to be generally
useful (row f in Table 13), even though they used the UML
to various extents (at the very least, they had to update it).
Curiously, even though they all found it useful, only one
subject used the UML to its fullest extent: the subject did not
try to minimize the amount of time spent on the UML and
made use of all of the diagram types and used the UML
artifacts for navigating and locating code-change places.
This varying use of UML among the subjects will now be
examined, first in general terms and then in terms of
specific types of diagrams.

Four of the subjects reported that they did not use the
UML to the maximum extent out of habit (row h in Table 13).
Furthermore, three of these four subjects also said that they
did not take as much advantage of the UML as they could
have for fear that it would take longer to solve the task in that
manner (row i in Table 13). These subjects would use the UML
to get an overview of the system but would then try to rely on
the code to hasten the development time by, for example,
checking a detail in the code rather than going back to the
sequence diagram. This was unfortunate because, if the
developer had an incorrect solution to the problem, either
because they did not understand the specifications or because
they formulated an incorrect (mental) solution, they did not
give UML a chance to help them arrive at the correct solution.
One of the subjects did not like to rely on the UML as he felt
more confident with the code. He only used the parts of the
UML that he found the most useful as opposed to trying to

422 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

take advantage of all of the UML documentation by reading
and understanding it. Yet another subject spent a lot of time
trying to use the UML on the first task. When he felt the UML
did not help him solve the task, this discouraged him from
using it to the same extent on the remaining four tasks. Thus,
we can conclude that the primary reason for the lack of use of
the UML in general is out of habit (or lack of experience with
the UML) and fear of being inefficient. This is anecdotally
confirmed by the fact that the only subject who took
advantage of the UML to the full extent was the subject with
extensive experience with UML (row u in Table 13).

In terms of the use of specific diagram types (rows a to e
in Table 13), half of the developers took advantage of only
two types of diagrams. Most subjects used the UML
artifacts for navigation purposes and in order to obtain an
overview of the system (rows j and g in Table 13) and this is
confirmed by the fact that the use case and sequence
diagrams were the most used (rows a and b in Table 13).
Unfortunately, two of the developers did not use the use
case diagram (row a in Table 13). This is unfortunate as all
other developers that used the use case diagram reported
that it was very beneficial. This is natural as it is the starting
point from where the developer finds the use cases that
need to be modified. These use cases are linked to the
sequence diagrams that show which classes, objects, and
methods are involved in the execution of the functionality
specified by the use case. The class and the Struts-specific
page flow diagrams (rows c and d in Table 13) were used by
half of the developers and the statechart diagram (row e in
Table 13) was only used by one of the developers (the one
who was highly experienced at using UML). When asked
why they did not take advantage of these UML diagrams,
they said that either they did not feel the need or, since the
other diagrams were much less integrated into the tool, it
seemed troublesome to use them (not worth the effort). The
fact that only half of the subjects used class diagrams was
particularly surprising. While the class diagram is quite
well integrated into the tool, the problem was the presence
of too much irrelevant information at the same time
(irrelevant for the specific task). Unlike in the case of
sequence diagrams, which inherently only display the
objects and interaction pertaining to a specific use case,
the class diagrams display a “package view.” In this view,
the class diagrams display all of the classes/associations in
the package. This often leads to unnecessarily complex
diagrams since system learning occurs in an iterative
manner. When a developer needs to modify the function-
ality of a use case, he/she first needs to focus only on the
classes pertaining to that use case. This is very difficult
when the classes are buried in a package view class
diagram as they need to filter out the unnecessary parts of
the diagram cognitively. One way of addressing this
problem is to have a use case view of a class diagram. In
this view, only the classes/associations that are used by the
accompanying sequence diagram would be visible. Further-
more, class diagram views should also enable the creation
of a special cluster of classes, for example, belonging to a
design pattern.

The developers listed the following advantages when
modeling:

. Traceability is the ability to quickly identify relevant
parts of the system that need to be understood in

order to implement a change (or determine the parts
of the system that they needed to understand in
order to solve the task). With the UML, this is
accomplished by first identifying the relevant use
case (on the use case diagram) and then looking at
the according sequence diagram.

. Visualization and abstraction through modeling can
convey information that is hard to retrieve from the
code:

1. Unnecessarily complex solutions are easily
visible. For example, if a sequence diagram is
very large (cannot be easily viewed on the
computer screen), then it may help if the
solution was simplified by decomposing it into
subsystems. This, in turn, creates a more
modularized and easier to understand solution.

2. Composition is clearly seen. This helps prevent
deterioration of the system’s architecture (refer-
ences will not be passed to objects that should
not have them).

3. All states and transitions are explicitly specified,
helping the developer understand “the big
picture” faster.

4. With sequence diagrams, comments can be made
on the dynamic view of the system (as opposed to
the comments found in the code that only relate to
the system from a static point of view).

Conversely, the developers revealed the following
frustrations that they experienced:

. It was very painful and problematic to create and
update sequence diagrams. This is primarily a
problem with the tool and not the UML itself (row r
in Table 13).

. The UML diagrams were useful for understanding
parts of the system that they were unfamiliar with,
but later, after gaining familiarity with the system,
the developers thought that the UML was less useful
overall due to the overhead of creating/keeping the
UML diagrams up-to-date. Though the diagrams
were still useful at determining if the solution was
good, again a lot of this overhead stemmed from the
developers that had to struggle with the tool.

. When a developer tried to understand the system
from the UML diagrams and yet failed to do so, he/
she reverted to the code. The developer then felt that
time was wasted on the UML diagrams.

. The large sequence diagram and the large class
diagram were overwhelming (rows n and o in
Table 13). It is interesting to note that the developer
who was very experienced with UML reported
having trouble with the large class diagram but not
with the large sequence diagram.

So, overall, we can see that the main problems faced by
developers are either related to deficiencies in the tool or the
need for further training and experience in using UML. This
confirms further that the potential benefits of UML in the
mid and long terms are probably larger than what was
observed in this experiment.

Based on the discussions with the subjects, we also
believe that the following items will help the adoption of
the UML in practice:

DZIDEK ET AL.: A REALISTIC EMPIRICAL EVALUATION OF THE COSTS AND BENEFITS OF UML IN SOFTWARE MAINTENANCE 423

. A refined UML tool that developers do not need to
struggle with (row r in Table 13). The tool should
enable developers to use a subset of its functionality,
allowing for a gradual adaptation (see Section 6).

. A book on UML that, instead of describing the
notation, draws on the best practices from experi-
enced users of UML. This book would be analogous
to the design patterns book for Object-Oriented
programming [28] and the effective series book for
Java and C++ [29], [30]. The book would deal with
topics such as the following (raised during the
training of the UML subjects):

1. heuristics for sequence diagrams, like the max-
imum number of elements that can appear on
the diagram [31], and

2. when it is more appropriate to use the collabora-
tion diagram instead of the sequence diagrams.

3.5 Summary of Results

In terms of time, the UML subjects used more time if the
UML documentation was to be updated (though slightly
less if it were not). With the total time T that the subjects
spent on the five tasks, we see that the UML group
completed the tasks slightly faster (1.4 percent) than the no-
UML group (Table 7). This difference is not practically or
statistically significant. When we take the time that it takes
to update the UML documentation into account, we see that
the UML group spent 14.5 percent more time on the five
tasks, though this difference is not statistically significant
either and may therefore be due to chance. On average, the
UML subjects spent 14.8 percent of the total time reading
the UML documentation and 13.2 percent updating the
documentation.

UML was always beneficial in terms of functional
correctness (introducing fewer faults into the software).
The subjects in the UML group had, on average, a
practically and statistically significant 54 percent increase
in the functional correctness of changes ðp ¼ 0:03Þ. UML
also helped produce code of better quality when the
developers were not yet familiar with the system. A
significant difference was found for Task 1, where the
UML group’s design quality score was 56.2 percent higher
ðp ¼ 0:0025Þ, though, across all the tasks, there was an
insignificant 7 percent improvement in design quality
ðp ¼ 0:22Þ.

All of the qualitative evidence suggests that the observed
impact of UML on change quality and productivity is
probably very conservative in this experiment. The UML
subjects were at a disadvantage when it came to Struts
experience and familiarity with Java. We also observed that
half of the subjects only used two diagram types, with the use
case and sequence diagrams being, by far, the most used. Four
of the subjects did not use the UML to the extent that they
could have due to concern that UML would make them less
efficient and out of habit (not being used to using UML). The
subjects also experienced severe problems when dealing with
the tool and in understanding the large sequence and class
diagrams. However, the qualitative evidence also explains
the observed benefits of UML. The no-UML group had more
problems in understanding a complex part of the system. All
subjects found the UML to be generally useful: The largest

benefits were the traceability of use cases to code and the
ability to quickly get an overview of the system.

The results of this experiment, both qualitative and
quantitative, can also be used to guide industrial adoption
with respect to, at the very least, applications with similar
properties (e.g., Web applications). In the case of developers
who are not very experienced in using UML and who will
perform maintenance tasks on a system that they are not
familiar with, the use case diagram and the sequence
diagrams seem to be the most cost-efficient parts of UML.
This appears to be the case for two reasons. First,
developers inexperienced with UML are overwhelmed by
too many diagram types and will only use those that are
easy to use. Next, these two diagrams help them quickly
identify the relevant code for the specific functionality
needed to perform the maintenance tasks. Given these
advantages, these two types of diagrams can also be
considered a cost-efficient starting point for introducing
UML into the organization.

4 THREATS TO VALIDITY

The reported experiment is generally very realistic and, in
particular, when compared to previously reported experi-
ments on UML. In fact, the main strength of this experiment
lies in its external validity: Professionals worked on a real
system, used real tools, and implemented real tasks.
Furthermore, the fact that the developers worked until the
tasks were implemented correctly ensures that this experi-
ment does not suffer from construct validity problems with
respect to correctness: How do you include unfinished or
incorrect solutions in your analysis?

The hypotheses were formulated in such a way that the
results obtained could be generalized to a target population of
professional Java consultants performing real programming
tasks with professional development tools in a realistic work
setting. However, this is an ambitious goal, one that is
difficult to achieve. For example, there is a trade-off between
ensuring realism (to reduce threats to external validity) and
ensuring control (to reduce threats to internal validity). This
section discusses what we consider to be the most important
threats to the validity of this experiment and offers sugges-
tions for improvements in future experiments.

4.1 Statistical Conclusion Validity

Validity of statistical conclusions concerns 1) whether the
presumed cause and effect covary and 2) how strongly they
covary. For the first of these inferences, one may incorrectly
conclude that cause and effect covary when, in fact, they do
not (a Type I error) or incorrectly conclude that they do not
covary when, in fact, they do (a Type II error). For the
second inference, one may overestimate or underestimate
the magnitude of covariation and the degree of confidence
that the estimate warrants [32].

Recall that the individual level of significance for the
hypothesis tests was set to � ¼ 0:05. No significant
differences were found with respect to the dependent
variable time. While the effect size between the time that it
took to implement the tasks without accounting for the time
spent on updating the UML documentation T was
negligible (1.4 percent), the effect size for the time spent
on implementing the tasks in total T 0 was �14:5 percent.
Furthermore, the effect size measure d is well below 0.5 for

424 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

both T and T 0 and, as explained in Section 2.8.1, this
indicates a small treatment effect. Considering the fact that
the number of subjects that we used in the experiment was
determined by budget constraints, it is illuminating to note
that, for us to find a statistically significant difference with
80 percent power, the UML group would have to have a
mean of 45 percent larger or smaller than the no-UML
group (using the UML group’s variance). Thus, given the
effect sizes and our sample size, we were unlikely to find a
statistically significant effect.

4.2 Internal Validity

The internal validity of an experiment is “the validity of
inferences about whether the observed covariation between
A (the presumed treatment) and B (the presumed outcome)
reflects a causal relationship from A to B as those variables
were manipulated or measured” [32]. If changes in B have
causes other than the manipulation in A, there is a threat to
the internal validity.

The main threat to internal validity in this experiment
could have been the lack of random assignment to the two
treatment groups: no-UML and UML. This was not possible
due to practical reasons (see Section 2.4), thus making this a
quasi-experiment. Fortunately, the groups were, in every
practical aspect, equivalent, as discussed in Section 2.4.
Furthermore, an ANCOVA was performed to adjust for the
effects of grade, degree, and experience in terms of years
and LOC written, all producing no different results
(although grade and degree explained the variance best).
Thus, we do not consider this to be a major threat. Note
that, during the debriefing interview, three subjects in the
UML group reported that they felt rusty in Java (see
Section 3.3). Also, three more subjects in the UML group felt
that the lack of knowledge in Struts caused serious
problems. So, if there is any imbalance between the UML
and no-UML groups, it is to the detriment of the former.

4.3 Construct Validity

Construct validity concerns the degree to which inferences
are warranted from 1) the observed persons, settings, and
cause and effect operations included in a study to 2) the
constructs that these instances might represent. The ques-
tion is therefore whether the sampling particulars of a study
can be defended as measures of general constructs [32].

In the case of this experiment, we examine three such
constructs. First, to investigate the effects of UML, the
subject must have actually used the UML, as discussed in
Section 4.3.1. Next, one of our dependent variables deals
with software quality, a concept inherently without a
precise definition [20]. In Section 4.3.2, we discuss the
issues that are present in our definition of design quality, a
small aspect of software quality. Last, no experimental
setting can show the true cost of fixing a fault. The
shortcomings of measuring fault cost via the time effort
that it takes the developer to correct the fault are addressed
in Section 4.3.3.

4.3.1 Usage of the UML

UML has many facets [33]: the choice of diagrams that are
used, the level of detail of these diagrams, and the type of
tool that is used (if any). In this experiment, we use five
types of diagrams at the level of detail used in [10] (use case,
sequence, class, statechart, and page flow). Also, the

subjects were given a state-of-the-art UML development
environment along with the printed UML documentation.

To ensure at least a minimum usage of the UML, the
following steps were taken: The UML subjects were given
training in the UML tool, the subjects were encouraged to
take advantage of the UML (and not simply to ignore it,
assuming that this way, they would save time), and the
UML had to be updated before the solution was accepted.
Even with all of these precautions, half of the developers
took advantage of only two types of diagrams (see the
Appendix, which can be found in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSE.2008.15). This is not too surprising given that
nine out of the 10 UML subjects were new to such extensive
use of UML and there is a learning curve before complete
use of the artifacts can be made. In fact, only the subject
who was highly experienced in using UML (in such a
manner) took advantage of all the diagram types. Further-
more, the tool can be improved in many ways for both ease
of understanding the existing design and ease of updating
the artifacts (see Section 6). Consequently, the results of this
study might be a conservative measure of UML’s effective-
ness since the developers probably did not reach their
maximum level of efficiency during the experiment. To
address this threat, future experiments should consider
using developers who have passed the learning curve of
using UML in such an advanced manner (note that the
necessary subjects with such a background could not
feasibly be found at the time of this experiment). In fact,
such experiments always need to select a trade-off between
assessing the maximum potential benefit of UML and
realistic impact based on current common skills. We chose
to focus on the latter in this experiment as we feel that UML
experiments with highly trained students (in UML) give
insight into the former [6].

4.3.2 Design Quality

We have chosen to focus on a limited aspect of design quality,
a subtopic of the broad topic on software quality. As
discussed in Section 2.7, arriving at a score for the solutions’
design quality involved 1) breaking down each task into
subtasks, 2) specifying whether a potential solution followed
the proper OO principles [10], and 3) categorizing each
subject’s solution according to the scheme. Although this is
only a small aspect of software quality, it was chosen as it met
our two criteria: 1) It could be used to compare the solutions
across all of the subjects and 2) it is repeatable. While the
decision regarding the type of code that follows proper OO
design principle is, to some extent, subjective, the process that
we used to determine if a solution is acceptable or not is
repeatable as each solution clearly maps to a defined category
(ensuring reliability). Furthermore, the granularity at which
this analysis was performed could be finer (e.g., we could also
evaluate the variable names used), but then, it would not be
easy to compare the quality of the solutions across all of the
subjects. The main reason for this was the fact that the
developers changed the system in a substantial manner and
had a lot of flexibility in the manner in which they extended
the design.

4.3.3 Cost of Fixing Faults

In this experiment, the cost associated with correcting a
fault was the amount of time that it took the developer to fix

DZIDEK ET AL.: A REALISTIC EMPIRICAL EVALUATION OF THE COSTS AND BENEFITS OF UML IN SOFTWARE MAINTENANCE 425

the specified fault. These faults were precisely pointed out
to the subjects by the experimenters; the time spent by the
experimenters to find the faults was not included in T and
T 0. This is not realistic as, in real-world scenarios, when a
user finds a fault, the costs are much greater than just the
correction effort. In [7], [8], experts mostly agreed that, for
severe defects, “finding and fixing a software problem after
delivery is often 100 times more expensive than finding and
fixing it during the requirements and design phase.” Some
of the reasons for this increase in cost are listed as follows:

. The time to find the defect increases.

. There is a cost to package and deliver the fix.

. There is a potential cost to the customer due to
downtime or data corruption.

. The company may suffer in terms of damage to
reputation and share price.

4.4 External Validity

The issue of external validity concerns whether a causal
relationship holds 1) over variations in persons, settings,
treatments, and outcomes that were in the experiment and
2) for persons, settings, treatments, and outcomes that were
not in the experiment [32].

The major strength of this study is, in fact, its external
validity: The subjects were experienced professional soft-
ware developers from various consulting companies who
worked on a real nontrivial system where they implemen-
ted real and also nontrivial change tasks by using a real
development environment (IDE) during an extended period
of time (compared to other empirical studies on UML). Of
course, the fact that some minimal degree of control had to
be exercised (thus, the situation did not ideally recreate “a
normal day at the office” for the developers) was a trade-off
that had to be made to strike a balance between external
validity and internal validity.

The scope of this study is limited to situations in which
the developers have no prior knowledge of the system to be
changed and it is possible that the results do not apply to
situations in which the developers are also the original
designers. Also, it may be the case that the results do not
apply to systems in different domains.

5 RELATED WORK

In what follows, we contrast the results from this experi-
ment with the results from other experiments and studies
that have investigated, in the context of program compre-
hension and maintenance, the costs and benefits of using
UML and the impact of program documentation. This
chapter is divided into two sections, where a general
overview of the related work is given in Section 5.1 while an
additional piece of related work in which two of the authors
of this paper have been involved is discussed separately in
Section 5.2 due to its close relationship to the work
presented above. This latter section also discusses the
principles of replication in software engineering experi-
ments and shows how our work fits in this context.

5.1 Overview

One investigation evaluating whether using UML is cost-
effective in a realistic context for a large project has been
conducted in the form of a qualitative case study [1]. The

participants in the case study acknowledged that, despite
some difficulties (e.g., the need for adequate training),
there are clear benefits to be derived from using UML
(e.g., traceability from functional requirements to code).
Although not all aspects of that work are comparable to this
one, the ones that can be compared are in accordance: All of
the subjects in the UML group found the diagrams to be
useful and traceability was enhanced.

Another experiment was conducted to assess the
qualitative efficacy of UML diagrams in aiding program
understanding [34]. Fifteen subjects whose UML expertise
varied (six beginners, eight intermediate, and one expert)
had to analyze a series of UML diagrams (with access to
code) and complete a detailed 60-minute questionnaire
concerning a hypothetical software system. Results from the
experiment suggest that UML’s efficacy in supporting
program understanding is limited by 1) unclear specifica-
tions of syntax and semantics in some of UML’s more
advanced features, 2) spatial layout problems (e.g., large
diagrams are not easy to read), and 3) insufficient support
for representing the domain knowledge required in under-
standing a program. This experiment only concurs with
point 2). Note that, in this experiment, a Struts UML profile
was used to adequately model the domain knowledge.

Furthermore, a controlled experiment investigated how
access to textual system documentation (the requirements
specification, design document, test report, and user
manual) helped when performing maintenance tasks [35].
The results indicated that having documentation available
during system maintenance reduces the time needed to
understand how maintenance tasks can be performed by
approximately 20 percent. The subjects who had the
documentation available also showed better understanding
and a more detailed solution to how the change can be
incorporated as compared to those who had only the source
code available. The results also suggested that there is an
interaction between the maintainer’s skill (as indicated by a
pretest score) and the potential benefits of the system
documentation: The most skilled maintainers benefited the
most from the documentation. Although this work is not
directly relevant, it is still relevant as UML can be
considered as a form of documentation. Our experiment
does not support the claim that UML decreases the time
that it takes to perform the tasks nor that the most skilled
maintainers benefited the most from the UML documenta-
tion. However, our experiment confirms that the presence
of additional documentation in UML form gives the
developers a better understanding of the system (via better
correctness results).

5.2 Replication

In software engineering, as in other sciences, no single
study can fully answer a large fundamental research
question. Huxley [36] notes that “. . . in science, as in
common life, our confidence in a law is in exact proportion
to the absence of variation in the result of our experimental
verifications.” This problem is addressed via experiment
replications, that is, the repetition of an experiment where
some variables may or may not vary. Replications are
necessary until such a time when additional verifications
carry no further power of confirmation. The question of the
validity of replications is addressed in detail in [37]. The
authors persuasively argue that “. . . given the human

426 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

component and the rich variety of software and hardware
technologies, it surely is beholden on the community to
perform many many such verifications.” Furthermore, the
authors emphasize that “only under exceptional circum-
stances should one-shot studies involving subjects be relied
upon.” This point of view is shared by Curtis [38]: “. . .
results are far more impressive when they emerge from a
program of research rather than from one-shot studies.”

Subjecting theory to experimental test is a crucial
scientific activity, but researchers must be sure of their
results before relying on them to take action. Popper [39]
noted that “We do not take even our own observations quite
seriously, or accept them as scientific observation, until we
have repeated and tested them.” Unfortunately, although it
is agreed by the scientific community that replication is a
crucial aspect of the scientific method, it is not widely
practiced in software engineering. A systematic review of
controlled experiments in software engineering showed
that only 18 percent of the experiments were replicated [40].
This problem is not unique to software engineering, as
noted by Collins [41]: “For the vast majority of science,
replicability is an axiom rather than a matter of practice.”
This is also noted by Broad and Wade [42]: “How much
erroneous . . . science might be turned up if replication were
regularly practiced, if self-policing were a more than
imaginary mechanism?”

A replication can vary along three dimensions [37]:
experimental method, tasks, and subjects. A basic finding
replicated over several different methods carries greater
weight, as stated by Brewer and Hunter [43]: “The employ-
ment of multiple research methods adds to the strength of
the evidence.”

Second, experimenters must decide whether a similar or
alternative task should be used. Again, a basic finding
replicated over several different tasks carries greater
weight. Curtis [38] stated, “When a basic finding . . . can
be replicated over several different tasks . . . , it becomes
more convincing.”

Third, the subjects must be considered. Not surprisingly,
a basic finding replicated over several different categories of
subjects also carries greater weight. This is especially true in
the context of software engineering, where skills and
experience have such extensive influence on the cost-
effectiveness of technologies [44], [45].

This experiment can be a considered a differentiated [40]
replication of two previous experiments [6], henceforth
referred to as the Oslo/Ottawa experiment, since the same
phenomena is studied, but all three replication dimensions
are changed (maximizing the weight of the replication):
experimental method, task, and subject. The experimental
method itself is composed of various aspects related to the
ways in which the studied constructs are measured, how
the impact of the treatment (i.e., the UML) is analyzed, and
how the randomization of subjects is performed. These
differences will now be presented in a rigorous and
structured manner.

Table 14 outlines the main differences in terms of the
experimental method, whereas Table 15 describes the
measurement of dependent variables separately for the
sake of improving the tables’ legibility.

Though both studies are looking to evaluate and study
the impact of using UML on software evolution, the manner
in which they do this greatly differs, as shown in Tables 14

and 15. The Ottawa experiment used a larger number of
subjects and thus has greater statistical conclusion validity
due to increased power. However, this experiment ad-
dresses the major weakness of the Oslo/Ottawa experi-
ment, namely, external validity, by the increase of realism.
Thus, with respect to validity threats, the two studies are
complementary.

Realism is increased in several ways. Professional soft-
ware developers are used instead of students. The system
that the developers work on is a real-world system instead
of artificial small systems. The settings are real world (the
developers had their own office) instead of a university
laboratory setting. The tasks took much more time to
implement. The UML tools used in the Oslo/Ottawa
experiment, namely, TAU [46] and Visio [47], were not as
sophisticated and state-of-the-art as the one used in this
experiment.

As opposed to the Oslo/Ottawa experiment, the devel-
opers in this experiment did not have time constraints. The
drawback was that, because of the larger cost incurred, we
could not recruit as many subjects as in the Ottawa
experiment. But, the absence of time constraints allowed
us to ensure that the developers had to submit a
functionally correct solution before being allowed to
proceed to the next task. Thus, time is measured differently
in the two studies. Furthermore, we could also more closely
monitor that the subjects followed experimental procedures
throughout the experiment (the Ottawa experiment lost
11 subjects due to the subjects not following instructions
properly). In the Oslo/Ottawa experiment, solutions were
not checked for their correctness before being accepted. This
is a crucial difference from the previous experiment as it
makes the data analysis more reliable since we did not have
to deal with partially correct solutions. In the Oslo
experiment (which was, in a way, a pilot for the Ottawa
experiment), correctness was measured by the percentage
of correctly implemented tasks. In the Ottawa experiment,
correctness was measured by the number of passed
functional test cases. In this experiment, correctness was
measured by the number of submissions (attempts) before
arriving at the functionally correct solution.

Other differences include the fact that blocking was used
in the Oslo/Ottawa experiment to ensure group equality.
Although no blocking was performed in this experiment (due
to practical reasons), a post hoc analysis of the subjects data
demonstrated that the groups were equivalent, which is a
result that we were expecting, given our recruitment strategy.

In the Oslo experiment, the subjects implemented the
four tasks in one day for a duration of up to eight hours.
The Oslo experiment had five change tasks that were
completed during five course laboratories of three hours
each, one task per laboratory, spaced a week apart.

Last, the design quality evaluation in the Ottawa
experiment was at a finer degree than in this experiment
due to the small size of the system and change tasks by
counting the number of operations, attributes that should be
added, modified, or deleted based on each identified
solution. No design quality evaluation was performed for
the Oslo experiment.

The results of both studies are contrasted in Table 16. The
results of two studies must be compared carefully due to the
already discussed differences in research method and
measurement of variables. For example, effort was measured

DZIDEK ET AL.: A REALISTIC EMPIRICAL EVALUATION OF THE COSTS AND BENEFITS OF UML IN SOFTWARE MAINTENANCE 427

428 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

TABLE 15
Study Comparison: Dependent Variables

TABLE 14
Study Comparison: Experimental Method

in a different way. In Oslo/Ottawa, effort was equal to
time “until a solution was submitted,” while, in this
experiment, effort was equal to time until a correct solution
was submitted.

First, in terms of effort, Oslo/Ottawa reports that “When
considering only the time required to make code changes,
using UML documentation helps save effort overall.” This is
largely consistent with the results in this experiment: On
average, the UML subjects spent less time, but the results in
this experiment were not significant, perhaps due to the lack
of statistical power. Next, Oslo/Ottawa reports that “When
including the time necessary to modify the diagrams, no
savings in effort are visible.” In fact, in both studies, the
no-UML groups finished faster.

In terms of the time spent on updating the UML
documentation, the Oslo/Ottawa experiment reports an
overhead of 35 percent and 30 percent, respectively. This is
higher than the overhead in this experiment (13.2 percent).
We believe that this is due to this experiment having more
experienced subjects, using a more sophisticated tool, for a
longer duration (having had more time to get used to the tool).

In terms of the time spent on updating the UML documenta-
tion, the Oslo/Ottawa experiment did not collect quantitative
data but reports that “Most people [thought that they] spent
less than 25% of the time in laboratory sessions under-
standing UML diagrams, over all tasks.” In this experiment,
on average, the subjects spent 14.8 percent of their time
understanding the UML documentation (see Section 3.1.1).

In terms of correctness, in Oslo/Ottawa, “. . . both
experiments show that, for the most complex task, the
subjects who used UML documentation performed sig-
nificantly better than those who did not.” These results are
similar: We saw significant benefits of the UML in terms of
correctness.

Design quality was investigated in the Ottawa experiment,
where it was found that “. . . using UML helped achieve
changes with superior design quality, which would then be
expected to facilitate future, subsequent changes.” Across all
of the tasks, this is inconsistent with our results, though it is
consistent with the results on Task 1. This may be due to two
factors: 1) The subjects in this experiment were experienced
software developers and 2) they had to refine the solution

DZIDEK ET AL.: A REALISTIC EMPIRICAL EVALUATION OF THE COSTS AND BENEFITS OF UML IN SOFTWARE MAINTENANCE 429

TABLE 16
Study Comparison: Results

until it was functionally correct before it was accepted. This
may have resulted in a stronger convergence of the design
quality of the UML and the no-UML groups.

In summary, it is interesting to note that the results of the
two studies show many similarities, despite the studies
being very differentiated (differences in experimental
method, tasks, and subjects). Thus, because we obtain
similar results after using different measurements, both
with trained students and with professionals, and systems
of widely varying size, we can be confident that UML will
bring practically significant benefits in a large number of
conditions.

6 SUGGESTED IMPROVEMENTS TO THE UML TOOL

During the course of this experiment, from its design to the
debriefing interviews with the subjects, ideas emerged with
respect to possible improvements to the UML tool that we
used, namely, BTE [9], in terms of usability, code genera-
tion, rule enforcement with respect to class and sequence
diagrams, and means of gradual adoption of the UML tools
into widespread use. Although these recommendations are
targeted at BTE, most probably they also apply to other
UML tools.

First, the subjects in the UML group expressed the need to
return to the code to read comments. These comments can be
made available directly on the diagram, saving the developer
the need to go into the code, as that is highly distracting. One
way of making these code comments available on the
diagram is via tooltips. For example, on the class diagram,
hovering over a class would bring up a tooltip containing its
corresponding Javadoc comments. Hovering over a method
in a class or an association would bring up its comment. On
the sequence diagram, a tooltip with the code comment
would appear when hovering over an object, a method, or a
message. On use case diagrams, when hovering over a use
case, a tooltip can show its description.

In the case of sequence diagrams, the following
improvements to the UML tools are highly recommended:

. When scrolling down on a sequence diagram, the
objects should never disappear from view.

. The updating of existing diagrams can be facilitated

by 1) being able to add a message to an existing

sequence diagram (in the appropriate place) directly

from the code view and 2) the option of using

dynamic analysis on the corresponding use case

(with the appropriate filters being applied) and the

(new) missing elements being automatically shown

to the developer. The new additions can then be

accepted or rejected from being displayed on the

sequence diagram.
. It should be possible to generate a sequence diagram

from dynamic analysis. Even though this is difficult
to accomplish in a complete manner [48], an
incomplete diagram that the developer could later
refine would still be helpful.

. The developer should be able to ask the tool to
display elements that are absent on the sequence
diagram and then selectively choose to add elements
that should appear on that sequence diagram.

. Upon selecting an object or method on the sequence
diagram, the corresponding class (and method)
should be highlighted in a different color on the
class diagram so that the developer saves time when
looking for it.

In the case of class diagrams, as discussed in Section 3.4,
support for views is necessary to help developers focus on
the important parts of a class diagram (a view on a class
diagram would only show the classes and associations of
interest). Next, in addition to the ability of visually
specifying composite relationships and immutable (frozen)
classes, safeguards can be put in place to ensure that these
rules are not violated. Also, generation of the clone and
equals method can be largely automated when this
information is explicitly specified (composition and immut-
ability). This is important as these methods are very tricky
to implement correct, as discussed in [29].

In terms of additional UI support for class diagrams, a
specific use of the class diagram was deemed as potentially
being very useful: the possibility for an IDE to show a
subset of a class diagram where the only classes that would
be displayed are 1) the class of interest (e.g., being currently
selected/modified) and 2) the class with which the class in
1) has immediate relations (that is, classes that exchange
messages in sequence diagrams). This could also be used to
gradually introduce UML into the development environ-
ment and let developers gradually adopt UML. Further-
more, this tool could also be used for visual dependency
analysis. On a related note, a major inconvenience in the
tool that was used in the experiment was the fact that the
usage dependencies had to be specified manually, which is
an unnecessary burden placed on the developers.

An investigation into a competing tool, namely, IBM’s
Rational Software Architect [49], revealed that it imple-
ments only one of the suggestions presented here: When
scrolling down on a sequence diagram, the objects never
disappear from view.

7 CONCLUSIONS

An experiment was conducted to investigate the costs and
benefits associated with the UML during maintenance and
evolution. This is the first such experiment performed on a
real system, using professional developers as subjects and
working with a state-of-the-art UML tool during an
extended period of time. This paper provides very clear
insights in terms of the kinds of (minimum) benefits that
can be expected from using UML and the factors limiting or
boosting such benefits. In turn, such information can be
used to decide about whether and how UML can be
introduced in a development organization. Although
experiments are needed in other contexts as well (e.g., use
of UML during initial development), we focused on
software maintenance and evolution by a nonoriginal
developer as this consumes the majority of the resources
in a typical software organization.

The quantitative results show that UML did not have a
significant impact on the time that it took to perform the
change tasks, both excluding and including the time that it
took to update the UML documentation. However, in terms
of the functional correctness of the changes, UML had a
practically and significantly positive impact, despite the fact
that the UML subjects were not experts in UML and

430 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

encountered many problems with the modeling tool. Last,
in terms of design quality, a post hoc analysis revealed a
significant difference in the first task, where the UML
subjects were not yet familiar with the system and delivered
solutions of higher quality. However, significant differences
were not observed on the remaining four tasks. The
qualitative results explained the probable root causes of
the observed benefits: traceability from functionality to code
and an abstract overview of the system structure and
functionality. It also provided evidence that the observed
benefits of using UML were probably conservative and that
better tools and even more experience would likely yield a
larger return on investment.

In terms of related work, the results largely support
those of similar experiments, especially [6]. Because we
obtain similar results by using different measurements,
both with trained students and professionals and systems of
widely varying size, we can be confident that UML will
bring practically significant benefits under a large number
of conditions.

Last, even though such experiments are very costly and
labor intensive (this experiment took 3 years of preparation,
running, analysis, and write-up), we deem these crucial and
well worth the cost and effort in order to mature the manner
in which new techniques are adopted in software engineer-
ing. Usually, when researchers want to assess the effects of
software engineering technologies with real tasks and
professional developers, they resort to case studies for
which there is much less control. Unlike industrial case
studies, this experiment controls for many extraneous
factors that can impact our ability to analyze the effect of
UML on software maintenance. However, the conducting of
controlled experiments with a high degree of realism
introduces several issues that need to be tackled regarding
experiment design, instrumentation and measurement, and
practical execution. Thus, an additional contribution of this
paper is that it serves as an in-depth example of how such
controlled experiments can be conducted.

ACKNOWLEDGMENTS

The authors are grateful to Hans Christian Benestad, Magne
Jørgensen, Tanja Gruschke, Marek Voká�c, and Kjetil
Moløkken-Østvold for their valuable contributions to this
work. They also thank the developers and organizers at the
participating software companies. Last, they thank the
anonymous reviewers for their insightful suggestions that
improved the paper.

REFERENCES

[1] B. Anda, K. Hansen, I. Gullesen, and H.K. Thorsen, “Experiences
from Using a UML-Based Development Method in a Large
Organization,” Empirical Software Eng. J., vol. 11, pp. 555-581, 2006.

[2] K. Beck, Extreme Programming Explained. Addison-Wesley, 2000.
[3] R.S. Pressman, Software Engineering: A Practitioner’s Approach,

seventh ed. McGraw Hill, 2005.
[4] R. Glass, Facts and Fallacies of Software Engineering. Addison-

Wesley, 2002.
[5] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model-

Driven Architecture—Practice and Promise. Addison-Wesley, 2003.
[6] E. Arisholm, L.C. Briand, S.E. Hove, and Y. Labiche, “The Impact

of UML Documentation on Software Maintenance: An Experi-
mental Evaluation,” IEEE Trans. Software Eng., vol. 32, pp. 365-381,
2006.

[7] T. McGibbon, “Software Reliability Data Summary,” Data
Analysis Center for Software, 1996.

[8] F. Shull, V. Basili, B. Boehm, A.W. Brown, P. Costa, M. Lindvall, D.
Port, I. Rus, R. Tesoriero, and M. Zelkowitz, “What We Have
Learned about Fighting Defects,” Proc. Eighth IEEE Int’l Symp.
Software Metrics, 2002.

[9] “Borland Together for Eclipse,” Borland, 2004.
[10] B. Bruegge and A.H. Dutoit, Object-Oriented Software Engineering

Using UML, Patterns, and Java, second ed. Prentice Hall, 2004.
[11] J. Holmes, Struts: The Complete Reference. McGraw-Hill, 2004.
[12] “JavaServer Pages 2.0 Specification,” Sun Microsystems, 2003.
[13] J. Gosling, The Java Language Specification, second ed. Addison-

Wesley, 2000.
[14] T.A. Powell, HTML: The Complete Reference, third ed. Osborne/

McGraw-Hill, 2001.
[15] “Eclipse,” IBM, 2004.
[16] M. Kofler, MySQL. Apress, 2001.
[17] “BESTweb,” Simula Research Laboratory, http://simula.no/

BESTweb/, 2004.
[18] M. Jørgensen and M. Shepperd, “A Systematic Review of Software

Development Cost Estimation Studies,” IEEE Trans. Software Eng.,
vol. 33, no. 1, pp. 33-53, Jan. 2007.

[19] R. Binder, Testing Object-Oriented Systems: Models, Patterns, and
Tools. Addison-Wesley, 2000.

[20] J. Tian, Software Quality Engineering: Testing, Quality Assurance, and
Quantifiable Improvement. John Wiley & Sons/IEEE CS Press, 2005.

[21] J.L. Devore and N. Farnum, Applied Statistics for Engineers and
Scientists. Duxbury, 1999.

[22] L.V. Garcia, “Escaping the Bonferroni Iron Claw in Ecological
Studies,” Oikos, vol. 105, pp. 657-663, 2004.

[23] J. Cohen, Statistical Power Analysis for the Behavioral Sciences,
second ed. L. Erlbaum Assoc., 1988.

[24] R.H. Myers, D.C. Montgomery, and G.G. Vining, Generalized Linear
Models: With Applications in Engineering and the Sciences. J. Wiley,
2002.

[25] S.E. Hove and B. Anda, “Experiences from Conducting Semi-
Structured Interviews in Empirical Software Engineering Re-
search,” Proc. 11th IEEE Int’l Symp. Software Metrics, 2005.

[26] O.R. Holsti, Content Analysis for the Social Sciences and Humanities.
Addison-Wesley, 1969.

[27] S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, and A. Mockus,
“Does Code Decay? Assessing the Evidence from Change
Management Data,” IEEE Trans. Software Eng., vol. 27, pp. 1-12,
2001.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[29] J. Bloch, Effective Java Programming Language Guide. Prentice Hall,
2001.

[30] S. Meyers, Effective C++, second ed. Addison-Wesley, 1997.
[31] G.A. Miller, “The Magical Number Seven, Plus or Minus Two:

Some Limits on Our Capacity for Processing Information,” The
Psychological Rev., vol. 63, pp. 81-97, 1956.

[32] W.R. Shadish, T.D. Cook, and D.T. Campbell, Experimental and
Quasi-Experimental Designs for Generalized Causal Inference. Hought-
on Mifflin, 2002.

[33] M. Fowler and K. Scott, UML Distilled: A Brief Guide to the Standard
Object Modeling Language, second ed. Addison-Wesley, 2000.

[34] S. Tilley and S. Huang, “A Qualitative Assessment of the Efficacy
of UML Diagrams as a Form of Graphical Documentation in
Aiding Program Understanding,” Proc. ACM SIGDOC ’03,
pp. 184-191, 2003.

[35] E. Tryggeseth, “Report from an Experiment: Impact of Documen-
tation on Maintenance,” Empirical Software Eng. J., vol. 2, pp. 201-
207, 1997.

[36] T.H. Huxley, “We are All Scientists,” The New Treasury of Science,
H. Shapley, S. Rapport, and H. Wright, eds., Collins, 1965.

[37] A. Brooks, M. Roper, M. Wood, J. Daly, and J. Miller,
“Replication’s Role in Software Engineering,” Guide to Advanced
Empirical Software Eng., F. Schull, J. Singer, and D. Sjoberg, eds.,
pp. 365-379, Springer Science, 2008.

[38] B. Curtis, “Measurement and Experimentation in Software
Engineering,” Proc. IEEE, vol. 68, pp. 1144-1157, 1980.

[39] K.R. Popper, The Logic of Scientific Discovery. Hutchinson, 1968.

DZIDEK ET AL.: A REALISTIC EMPIRICAL EVALUATION OF THE COSTS AND BENEFITS OF UML IN SOFTWARE MAINTENANCE 431

[40] D.I.K. Sjøberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A.
Karahasanovic, N.-K. Liborg, and A.C. Rekdal, “A Survey of
Controlled Experiments in Software Engineering,” IEEE Trans.
Software Eng., vol. 31, pp. 1-21, 2005.

[41] H.M. Collins, Changing Order Replication and Induction in Scientific
Practice. Sage Publications, 1985.

[42] W. Broad and N. Wade, Betrayers of the Truth. Oxford Univ. Press,
1986.

[43] J. Brewer and A. Hunter, Multimethod Research: A Synthesis of
Styles. Sage Publications, 1989.

[44] E. Arisholm and D.I.K. Sjøberg, “Evaluating the Effect of a
Delegated versus Centralized Control Style on the Maintainability
of Object-Oriented Software,” IEEE Trans. Software Eng., vol. 30,
pp. 521-534, 2004.

[45] E. Arisholm, H.E. Gallis, T. Dybå, and D.I.K. Sjøberg, “Evaluating
Pair Programming with Respect to System Complexity and
Programmer Expertise,” IEEE Trans. Software Eng., vol. 33,
pp. 65-86, 2007.

[46] “TAU,” Telelogic, 2003.
[47] “Visio,” Microsoft, 2002.
[48] L.C. Briand, Y. Labiche, and J. Leduc, “Toward the Reverse

Engineering of UML Sequence Diagrams for Distributed Java
Software,” IEEE Trans. Software Eng., vol. 32, pp. 642-663, 2006.

[49] “Rational Software Architect,” IBM, 2007.

Wojciech James Dzidek received the BEng
degree in computer systems and the MEng
degree in software engineering from Carleton
University, Ottawa. He is currently working
toward the PhD degree in software engineering
at the Simula Research Laboratory, Oslo. His
PhD dissertation is focused on the empirical
evaluation of the costs and benefits of UML in
software maintenance. His research interests
include model-driven development, testing and

quality assurance, and empirical software engineering. He is a student
member of the IEEE.

Erik Arisholm received the MSc degree in
electrical engineering from the University of
Toronto and the PhD degree in computer
science from the University of Oslo. He has
seven years of industrial experience in Canada
and Norway as a lead engineer and a design
manager. He currently heads a research project
on software maintenance in the Department of
Software Engineering at the Simula Research
Laboratory and is an associate professor in the

Department of Informatics at the University of Oslo. His research
interests include empirical studies of maintainability, object-oriented
analysis and design, and software quality measurement and prediction.
He is a member of the IEEE and the IEEE Computer Society.

Lionel C. Briand is a professor of software
engineering at the Simula Research Laboratory
and the University of Oslo. He is currently on
leave from the Department of Systems and
Computer Engineering at Carleton University,
Ottawa, where he is a full professor and the
Canada Research Chair in Software Quality
Engineering. Before that, he was the head of the
Department of Software Quality Engineering at
the Fraunhofer Institute for Experimental Soft-

ware Engineering, Kaiserslautern, Germany. He was also a research
scientist in the Software Engineering Laboratory, a consortium of the
NASA Goddard Space Flight Center, CSC, and the University of
Maryland. He has been on the program, steering, or organization
committees of many international, IEEE, and ACM conferences. He is a
co-editor in chief of Empirical Software Engineering (Springer) and is a
member of the editorial boards of Systems and Software Modeling
(Springer) and Software Testing, Verification, and Reliability (Wiley).
From 2000 to 2004, he was on the editorial board of the IEEE
Transactions on Software Engineering. His research interests include
model-driven development, testing and quality assurance, and empirical
software engineering. He is a senior member of the IEEE and a member
of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

432 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

