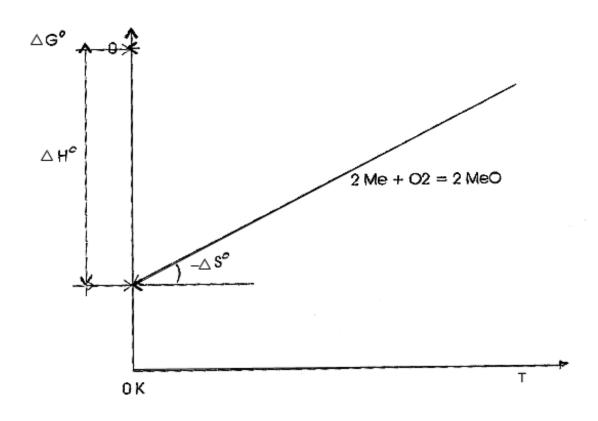
FISICO-QUIMICA DA REDUÇÃO DE ÓXIDOS METÁLICOS

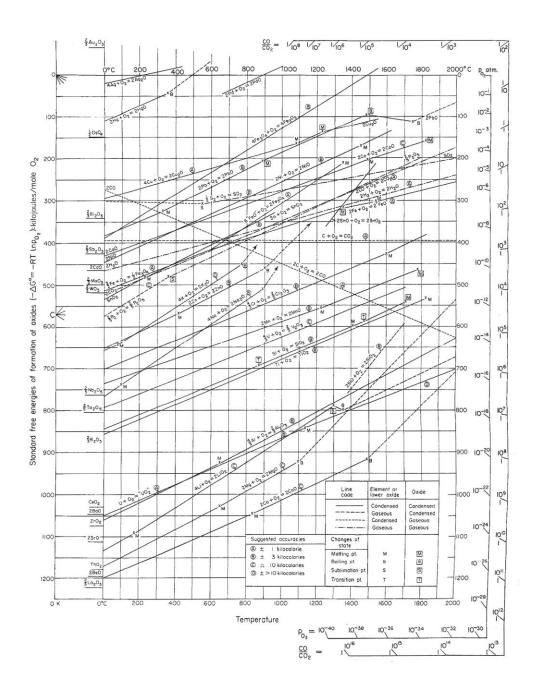
Análise Termodinâmica da Redução de Óxidos Metálicos

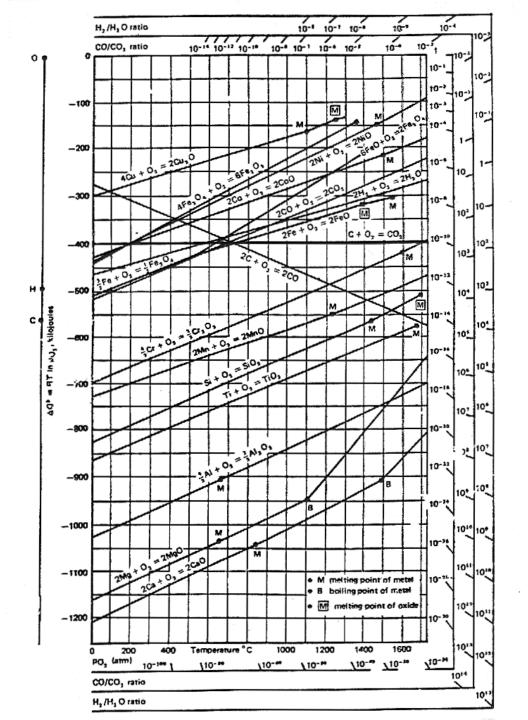
- Energia livre de formação de óxidos metálicos
- $2 Me + O_2 = 2 MeO$
- Me é um metal e $O_{2(g)}$ oxigênio puro.
- a função termodinâmica que indica se reação é irreversível (espontânea), reversível (equilíbrio) ou impossível: variação de energia livre de Gibbs

$$\Delta G = \Delta G^0 + RT \ln \{a_{MeO}^2/(a_{Me}^2, P_{O2})\}$$

$$\Delta G = \Delta G^0$$
 - RT ln P_{O2} (atividades unitárias)


• No equilíbrio, ΔG é nula, portanto:


$$\Delta G^0 = RT \ln P_{O2}$$


- ΔG^0 é variação de energia livre padrão(atividades unitárias, gases a 1 atm de pressão), e vale
- $\Delta G_T^0 = \Delta H_{298}^0 T \Delta S_{298}^0$

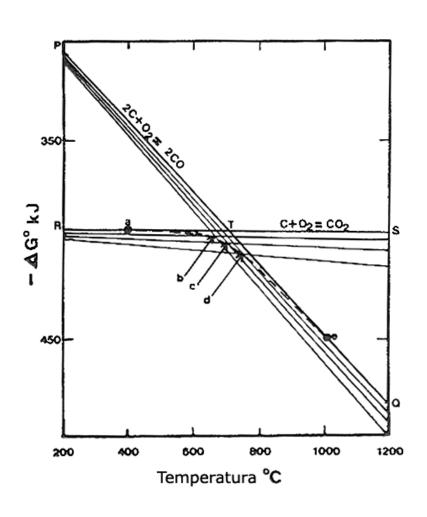
Diagramas de Ellingham

Representação gráfica de ΔG^0 em função da temperatura para a reação de formação de um óxido

Diagramas de Ellingham

- "quem está em baixo reduz quem está em cima"
- Óxidos se tornam menos estáveis conforme temperatura aumenta (oxidação é exotérmica)
- Exceções: CO e CO₂

Sistema Carbono-Oxigênio


carbono forma dois óxidos,

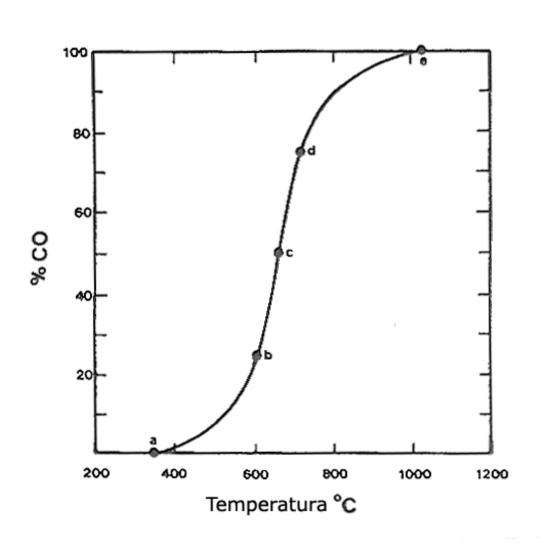
$$C + O_2 = CO_2$$

$$2 C + O_2 = 2 CO$$

calores de formação dos óxidos de carbono monóxido de carbono $\Delta H^0 = -110,5 \text{ kJ/mol de carbono}$ dióxido de carbono $\Delta H^0 = -393,5 \text{ kJ/mol de carbono}$ oxidação do carbono a CO_2 libera quantidade de calor 3,56 vezes maior que a oxidação a CO_2 .

Sistema Carbono-Oxigênio

Reação de Boudouard


$$C + \frac{1}{2}O_2 = CO +$$

$$CO_2 = CO + \frac{1}{2}O_2$$

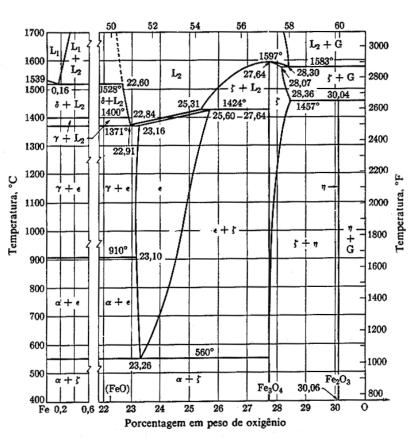
$$CO_2 + C = 2 CO$$

 $\Delta H^0 = +172,5 \text{ kJ/mol de carbono}$

O Sistema Ferro-Oxigênio

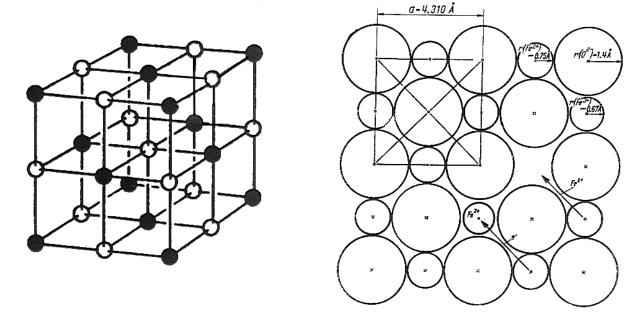
ferro forma três óxidos

hematita (Fe₂O₃), 30 % em peso de oxigênio


magnetita (Fe₃O₄),27,6 % Oxig.

wustita ("FeO"), de 23,1 a 25,6

(FeO) teria 22,3 % de oxigênio; wustita é não-estequiométrica


abaixo de 570°C, wustita decompõe-se:

$$4 \text{ FeO} = \text{Fe}_3\text{O}_4 + \text{Fe}$$

L.S. Darken e R.W. Gurrey, "Iron-Oxygen", Metals Handbook, American Society for Metals, 1948, p. 1212

Wustita

Wustita: estrutura cúbica tipo NaCl

sub-reticulado do oxigênio estrutura CFC

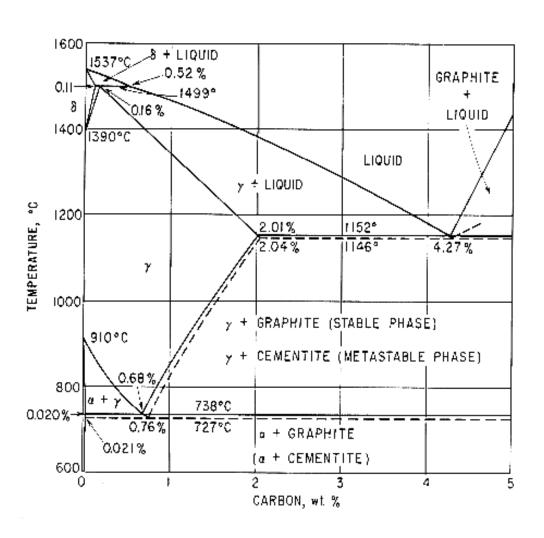
íons de ferro ocupam interstícios octaédricos.

aparente excesso de oxigênio da wustita deficiência em ferro posições não ocupadas no sub-reticulado do ferro lacunas. deficiência de Fe²⁺ em relação a O²⁻ existe determinado número de íons Fe³⁺ para garantir neutralidade elétrica.

• Os íons Fe²⁺ e Fe³⁺ podem trocar de carga, e o excesso de carga positiva na posição ocupada pelo Fe³⁺ é chamado de "buraco positivo". Isto faz com que a wustita tenha boa condutividade elétrica, e lhe confere propriedades de semi-condutor. As lacunas associadas aos buracos positivos também facilitam a difusão do ferro na wustita. A wustita de composição Fe_{0.95}O tem densidade de 5730 kg/m3.

- magnetita (Fe₃O₄, densidade de 5100 kg/m3)
 espinélio inverso, FeO.Fe₂O₃, Fe²⁺ e Fe³⁺ em posições octaédricas do sub-reticulado de oxigênio, e Fe³⁺ ainda em posições tetraédricas.
- hematita comum (α -Fe₂O₃, densidade 5300 kg/m3)

hexagonal, (existe γ -Fe₂O₃ cúbica, instável)


anion O²- muito maior que cátions Fe²+ ou Fe³+

- mobilidade do ferro é então muito maior que a do oxigênio
- difusão de ferro é importante nos processos de redução.

Sequencia de redução

- reduzindo-se hematita acima de 570°C a sequencia de redução será hematita-magnetita-wustita-ferro
- abaixo de 570°C será hematita-magnetita-ferro.
- hematita é hexagonal, magnetita e wustita cúbicos, transformação hematita-magnetita causa grande rearranjo da estrutura, criam-se defeitos (trincas, fissuras)
- transformação magnetita (cúbica)-wustita (também cúbica) pequeno rearranjo estrutural;
- velocidade de redução por gases maior em sólidos porosos que densos, a redução de hematita a ferro é mais rápida que a redução quando o material de partida é magnetita.

Sistema Fe-C

- Estas reações têm a forma geral:
- $MeOy + CO(H_2) = MeOy-1 + CO_2(H_2O)$

no equilíbrio, assumindo atividades unitárias para as fases sólidas,

• $\Delta G^0 = -RT \ln \left\{ Pco_2(PH_2)/Pco(PH_2O) \right\}$

Reações entre óxidos de ferro e gases redutores

reação	ΔH^0 , kJ/mol	Obs
	(CO ou H ₂)	
$3Fe_2O_3+CO=2Fe_3O_4+CO_2$	-52,8	
$Fe_3O_4+CO=3FeO+CO_2$	+36,3	
FeO+CO=Fe+ CO ₂	-17,3	
$Fe_3O_4+4CO=3Fe+4CO_2$	-15,7	abaixo de
		570°C
$3Fe_2O_3+H_2=2Fe_3O_4+H_2O$	+3,0	
$Fe_3O_4 + H_2 = 3FeO + H_2O$	+65,7	
$FeO+ H_2 = Fe+ H_2O$	+13,2	
$Fe_3O_4 + 4H_2 = 3Fe + 4H_2O$	+26,3	abaixo de
		570°C

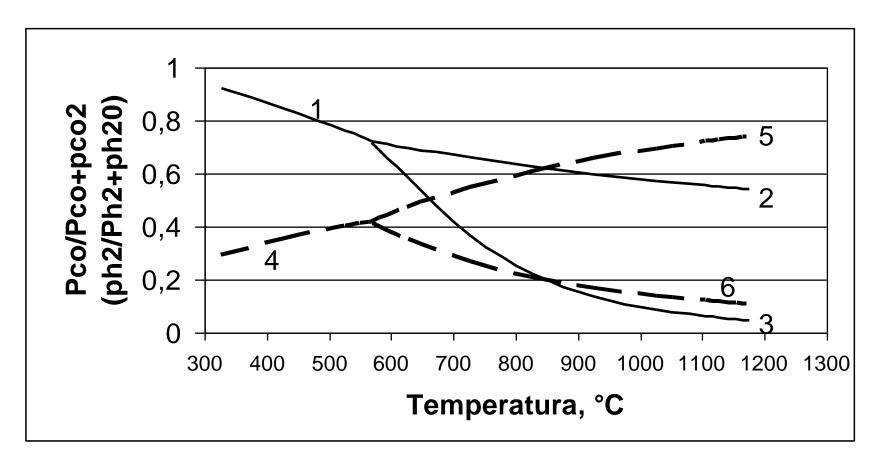


Fig. 8: Condições de equilíbrio dos sistemas Fe-C-O e Fe-H-O.

Fixando: $Pco + Pco_2 = 1$ para redução por CO PH2+PH2O=1 para reação por H_2 ,

- principal diferença entre os diagramas está na inclinação das curvas.
- Isto é devido a que a reação
- $H_{2}+ 1/2 O_{2} = H_{2}O$
- é menos exotérmica (-247,3 kJ) que a reação
- $CO + 1/2 O_2 = CO_2$ (-283 kJ).
- redução de wustita pelo hidrogênio é endotérmica,
- redução da wustita pelo monóxido de carbono é exotérmica

Redução de óxidos de ferro por carbono

•
$$3 \text{ Fe}_2 \text{O}_3 + \text{C} = 2 \text{ Fe}_3 \text{O}_4 + \text{CO}$$

•
$$2 \text{ Fe}_3 O_4 + 2 C = 6 \text{ FeO} + 2 CO$$

•
$$6 \text{ FeO} + 6 \text{ C} = 6 \text{ Fe} + 6 \text{ CO}$$

•
$$3 \text{ Fe}_2 \text{O}_3 + 9 \text{ C} = 6 \text{ Fe} + 9 \text{ CO}$$

Redução de óxidos de ferro por carbono

- $FeO + CO = Fe + CO_2$
- $CO_2 + C = 2 CO_+$
- FeO + C = Fe + CO
- para que a reação global ocorra, é necessário que as duas reações parciais tenham condições termodinâmicas de ocorrer, o que pode ser analisado combinando-se a curva da reação de Boudouard com a da redução do óxido pelo monóxido de carbono.

Redução de óxidos de ferro por carbono

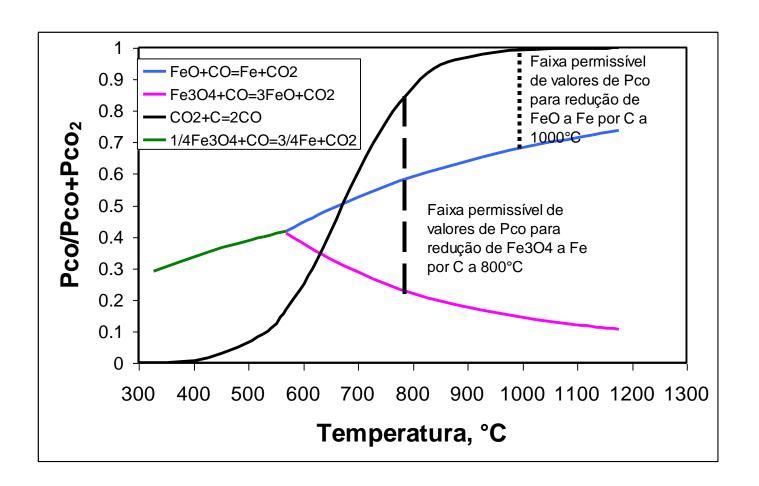
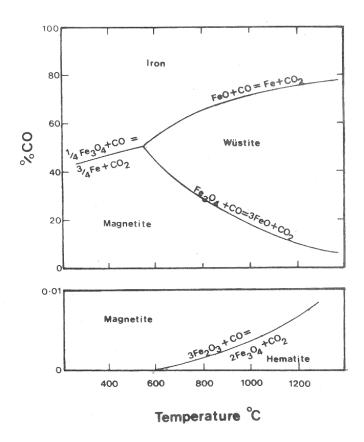



Fig. 9: Composição gasosa em equilíbrio, em função da temperatura, com carbono sólido (Boudouard) e com óxidos de ferro e ferro metálico.

Redução de óxidos de ferro por CO

Redução de óxidos de ferro por carbono sólido