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PREFACE TO THE FIRST EDITION

Take a pocket compass, place it on a table, and watch the needle. It will jiggle around,
oscillate, and finally come to rest, pointing more or less north. Therein lie two mysteries.
The first is the origin of the earth’s magnetic field, which directs the needle. The second
is the origin of the magnetism of the needle, which allows it to be directed. This book
is about the second mystery, and a mystery indeed it is, for although a great deal is
known about magnetism in general, and about the magnetism of iron in particular, it
is still impossible to predict from first principles that iron is strongly magnetic.

This book is for the beginner. By that I mean a senior or first-year graduate student in
engineering, who has had only the usual undergraduate courses in physics and materials
science taken by all engineers, or anyone else with a similar background. No knowledge
of magnetism itself is assumed.

People who become interested in magnetism usually bring quite different backgrounds to
their study of the subject. They are metallurgists and physicists, electrical engineers and
chemists, geologists and ceramists. Each one has a different amount of knowledge of
such fundamentals as atomic theory, crystallography, electric circuits, and crystal chemistry.
I have tried to write understandably for all groups. Thus some portions of the book will be
extremely elementary for most readers, but not the same portions for all readers.

Despite the popularity of the mks system of units in electricity, the overwhelming
majority of magneticians still speak the language of the cgs system, both in the laboratory
and in the plant. The student must learn that language sooner or later. This book is therefore
written in the cgs system.

The beginner in magnetism is bewildered by a host of strange units and even stranger
measurements. The subject is often presented on too theoretical a level, with the result
that the student has no real physical understanding of the various quantities involved,
simply because he has no clear idea of how these quantities are measured. For this
reason methods of measurement are stressed throughout the book. All of the second
chapter is devoted to the most common methods, while more specialized techniques are
described in appropriate later chapters.

Xiii



Xiv PREFACE TO THE FIRST EDITION

The book is divided into four parts:

1. Units and measurements.

2. Kinds of magnetism, or the difference, for example, between a ferromagnetic and a
paramagnetic.

3. Phenomena in strongly magnetic substances, such as anisotropy and magnetostriction.
4. Commercial magnetic materials and their applications.

The references, selected from the enormous literature of magnetism, are mainly of two
kinds, review papers and classic papers, together with other references required to buttress
particular statements in the text. In addition, a list of books is given, together with brief indi-
cations of the kind of material that each contains.

Magnetism has its roots in antiquity. No one knows when the first lodestone, a natural
oxide of iron magnetized by a bolt of lightning, was picked up and found to attract bits of
other lodestones or pieces of iron. It was a subject bound to attract the superstitious, and it
did. In the sixteenth century Gilbert began to formulate some clear principles.

In the late nineteenth and early twentieth centuries came the really great contributions of
Curie, Langevin, and Weiss, made over a span of scarcely more than ten years. For the next
forty years the study of magnetism can be said to have languished, except for the work of a
few devotees who found in the subject that fascinations so eloquently described by the late
Professor E. C. Stoner:

The rich diversity of ferromagnetic phenomena, the perennial
challenge to skill in experiment and to physical insight in
coordinating the results, the vast range of actual and

possible applications of ferromagnetic materials, and the
fundamental character of the essential theoretical problems
raised have all combined to give ferromagnetism a width of
interest which contrasts strongly with the apparent narrowness
of its subject matter, namely, certain particular properties

of a very limited number of substances.

Then, with the end of World War II, came a great revival of interest, and the study of
magnetism has never been livelier than it is today. This renewed interest came mainly
from three developments:

1. A new material. An entirely new class of magnetic materials, the ferrites, was devel-
oped, explained, and put to use.

2. A new tool. Neutron diffraction, which enables us to “see” the magnetic moments of
individual atoms, has given new depth to the field of magnetochemistry.

3. A new application. The rise of computers, in which magnetic devices play an essen-
tial role, has spurred research on both old and new magnetic materials.

And all this was aided by a better understanding, gained about the same time, of magnetic
domains and how they behave.

In writing this book, two thoughts have occurred to me again and again. The first is that
magnetism is peculiarly a hidden subject, in the sense that it is all around us, part of our



PREFACE TO THE FIRST EDITION XV

daily lives, and yet most people, including engineers, are unaware or have forgotten that
their lives would be utterly different without magnetism. There would be no electric
power as we know it, no electric motors, no radio, no TV. If electricity and magnetism
are sister sciences, then magnetism is surely the poor relation. The second point concerns
the curious reversal, in the United States, of the usual roles of university and industrial lab-
oratories in the area of magnetic research. While Americans have made sizable contri-
butions to the international pool of knowledge of magnetic materials, virtually all of
these contributions have come from industry. This is not true of other countries or other
subjects. I do not pretend to know the reason for this imbalance, but it would certainly
seem to be time for the universities to do their share.

Most technical books, unless written by an authority in the field, are the result of a
collaborative effort, and I have had many collaborators. Many people in industry have
given freely from their fund of special knowledge and experiences. Many others have
kindly given me original photographs. The following have critically read portions of the
book or have otherwise helped me with difficult points: Charles W. Allen, Joseph J.
Becker, Ami E. Berkowitz, David Cohen, N. F. Fiore, C. D. Graham, Jr., Robert G.
Hayes, Eugene W. Henry, Conyers Herring, Gerald L. Jones, Fred E. Luborsky, Walter
C. Miller, R. Pauthenet, and E. P. Wohlfarth. To these and all others who have aided in
my magnetic education, my best thanks.

B.D. C.

Notre Dame, Indiana
February 1972



PREFACE TO THE SECOND EDITION

B. D. (Barney) Cullity (1917—-1978) was a gifted writer on technical topics. He could
present complicated subjects in a clear, coherent, concise way that made his books
popular with students and teachers alike. His first book, on X-ray diffraction, taught the
elements of crystallography and structure and X-rays to generations of metallurgists. It
was first published in 1967, with a second edition in 1978 and a third updated version in
2001, by Stuart R. Stock. His book on magnetic materials appeared in 1972 and was simi-
larly successful; it remained in print for many years and was widely used as an introduction
to the subjects of magnetism, magnetic measurements, and magnetic materials.

The Magnetics Society of the Institute of Electrical and Electronic Engineers (IEEE) has
for a number of years sponsored the reprinting of classic books and papers in the field of
magnetism, including perhaps most notably the reprinting in 1993 of R. M. Bozorth’s
monumental book Ferromagnetism, first published in 1952. Cullity’s Introduction to
Magnetic Materials was another candidate for reprinting, but after some debate it was
decided to encourage the production of a revised and updated edition instead. I had for
many years entertained the notion of making such a revision, and volunteered for the
job. It has taken considerably longer than I anticipated, and I have in the end made
fewer changes than might have been expected.

Cullity wrote explicitly for the beginner in magnetism, for an undergraduate student
or beginning graduate student with no prior exposure to the subject and with only a
general undergraduate knowledge of chemistry, physics, and mathematics. He emphasized
measurements and materials, especially materials of engineering importance. His treatment
of quantum phenomena is elementary. I have followed the original text quite closely in
organization and approach, and have left substantial portions largely unchanged. The
major changes include the following:

1. T have used both cgs and SI units throughout, where Cullity chose cgs only. Using
both undoubtedly makes for a certain clumsiness and repetition, but if (as I hope)

xvi



PREFACE TO THE SECOND EDITION Xvii

the book remains useful for as many years as the original, SI units will be increasingly
important.

2. The treatment of measurements has been considerably revised. The ballistic galvano-
meter and the moving-coil fluxmeter have been compressed into a single sentence.
The electronic integrator appears, along with the alternating-gradient magnetometer,
the SQUID, and the use of computers for data collection. No big surprises here.

3. There is a new chapter on magnetic materials for use in computers, and a brief chapter
on the magnetic behavior of superconductors.

4. Amorphous magnetic alloys and rare-earth permanent magnets appear, the treatment
of domain-wall structure and energy is expanded, and some work on the effect of
mechanical stresses on domain wall motion (a topic of special interest to Cullity)
has been dropped.

I considered various ways to deal with quantum mechanics. As noted above, Cullity’s treat-
ment is sketchy, and little use is made of quantum phenomena in most of the book. One
possibility was simply to drop the subject entirely, and stick to classical physics. The
idea of expanding the treatment was quickly dropped. Apart from my personal limitations,
I'do not believe it is possible to embed a useful textbook on quantum mechanics as a chapter
or two in a book that deals mainly with other subjects. In the end, I pretty much stuck with
Cullity’s original. It gives some feeling for the subject, without pretending to be rigorous or
detailed.

References

All technical book authors, including Cullity in 1972, bemoan the vastness of the technical
literature and the impossibility of keeping up with even a fraction of it. In working closely
with the book over several years, I became conscious of the fact that it has remained useful
even as its many references became obsolete. I also convinced myself that readers of the
revised edition will fall mainly into two categories: beginners, who will not need or
desire to go beyond what appears in the text; and more advanced students and research
workers, who will have easy access to computerized literature searches that will give
them up-to-date information on topics of interest rather than the aging references in an
aging text. So most of the references have been dropped. Those that remain appear
embedded in the text, and are to old original work, or to special sources of information
on specific topics, or to recent (in 2007) textbooks. No doubt this decision will disappoint
some readers, and perhaps it is simply a manifestation of authorial cowardice, but I felt it
was the only practical way to proceed.

I would like to express my thanks to Ron Goldfarb and his colleagues at the National
Institute of Science and Technology in Boulder, Colorado, for reading and criticizing the
individual chapters. I have adopted most of their suggestions.

C. D. Granam

Philadelphia, Pennsylvania
May 2008



CHAPTER 1

DEFINITIONS AND UNITS

1.1 INTRODUCTION

The story of magnetism begins with a mineral called magnetite (Fe;0,), the first magnetic
material known to man. Its early history is obscure, but its power of attracting iron was cer-
tainly known 2500 years ago. Magnetite is widely distributed. In the ancient world the most
plentiful deposits occurred in the district of Magnesia, in what is now modern Turkey, and
our word magnet is derived from a similar Greek word, said to come from the name of this
district. It was also known to the Greeks that a piece of iron would itself become magnetic if
it were touched, or, better, rubbed with magnetite.

Later on, but at an unknown date, it was found that a properly shaped piece of magnetite,
if supported so as to float on water, would turn until it pointed approximately north and
south. So would a pivoted iron needle, if previously rubbed with magnetite. Thus was
the mariner’s compass born. This north-pointing property of magnetite accounts for the
old English word lodestone for this substance; it means “waystone,” because it points
the way.

The first truly scientific study of magnetism was made by the Englishman William
Gilbert (1540-1603), who published his classic book On the Magnet in 1600. He experi-
mented with lodestones and iron magnets, formed a clear picture of the Earth’s magnetic
field, and cleared away many superstitions that had clouded the subject. For more than a
century and a half after Gilbert, no discoveries of any fundamental importance were
made, although there were many practical i ements in the manufacture of magnets.
Thus, in the eightee nt ompound :ﬁ;ag ere made, compo f many
magnetized steel str;%j:stened tog , which could™Iift 28 times their o eight of
iron. This is all the more remarkab hen we realize that there was only one way of
making magnets at that time: the iron or steel had to be rubbed with a lodestone, or with

Introduction to Magnetic Materials, Second Edition. By B. D. Cullity and C. D. Graham
Copyright © 2009 the Institute of Electrical and Electronics Engineers, Inc.
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2 DEFINITIONS AND UNITS

another magnet which in turn had been rubbed with a lodestone. There was no other way
until the first electromagnet was made in 1825, following the great discovery made in 1820
by Hans Christian Oersted (1775—1851) that an electric current produces a magnetic field.
Research on magnetic materials can be said to date from the invention of the electromagnet,
which made available much more powerful fields than those produced by lodestones, or
magnets made from

In this book we shdll consider basic m: tic quantities and the units in which they are
expressed, ways of making magnetic meas ents, theories of magnetism, magnetic beha-
vior of materials, and, finally, the properties of commercially important magnetic materials.
The study of this subject is complicated by the existence of two different systems of units:
the SI (Internationa em) or mks, and the cgs ( romagnetic or emu) s s. The SI
system, currently tal,[%:]n all physics courses, is s rd for scientific work throughout the
world. It has not, however, been enthusiastically accepted by workers agnetism.
Although both systems describe the same physical reality, they start from somewhat differ-
ent ways of visualizing that reality. As a consequence, converting from one system to the
other sometimes involves more than multiplication by a simple numerical factor. In
addition, the designers of the SI system left open the possibility of expressing some mag-
netic quantities in more than one way, which has not helped in speeding its adoption.

The SI system has a clear advantage when electrical and magnetic behavior must be con-
sidered together, as when dealing with electric currents generated inside a material by mag-
netic effects (eddy currents). Combining electromagnetic and electrostatic cgs units gets
very messy, whereas using SI it is straightforward.

At present (early twenty-first century), the SI system is widely used in Europe, especially
for soft magnetic materials (i.e., materials other than permanent magnets). In the USA and
Japan, the ¢ mu system is still used by the majority of research workers, although the
use of SI is stowly increasing. Both systems are found in reference works, research papers,
materials and instrument specifications, so this book will use both sets of units. In Chapter
1, the basic equations of each system will be developei%Eentially; in subsequent chapters
the two systems will b, d in parallel. However, n ry equation or numerical value
will be duplicated; theE%jis to ide conversions in cases where they are not obvious
or where they are needed for cl . %}

Many of the equations in this introductory chapter and the next are stated without proof
because their derivations can be found in most physics textbooks.

1.2 THE cgs-emu SYSTEM OF UNITS

1.2.1 Magnetic Poles

Almost everyone as a child has played with magnets and felt the mysterious forces of
attraction and repulsion between them. These forces appear to originate in regions called
poles, located near the ends of the magnet. The end of a pivoted bar magnet which
points approximately toward the north geographic pole of the Earth is called the north-
seeking pole, or, more briefly, the north pole. Since unlike poles attract, and like poles
repel, this convention means that there is a region of south polarity near the north geo-
graphic pole. The law governing the forces between poles was discovered independently
in England in 1750 by John Michell (1724—-1793) and in France in 1785 by Charles
Coulomb (1736—18006). This law states that the force F between two poles is proportional
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Fig. 1.1 Torsion balance for measuring the forces between poles.

to the product of their pole strengths p; and p, and inversely proportional to the square of
the distance d between them:

pip
d2

F=k2L2 (1.1)

If the proportionality constant k is put equal to 1, and we measure F in dynes and d in centi-
meters, then this equation becomes the definition of pole strength in the cgs—emu system. A
unit pole, or pole of unit strength, is one which exerts a force of 1 dyne on another unit pole
located at a distance of 1 cm. The dyne is in turn defined as that force which gives a mass of
1 g an acceleration of 1 cm/ sec’. The weight of a 1 g mass is 981 dynes. No name has been
assigned to the unit of pole strength.

Poles always occur in pairs in magnetized bodies, and it is impossible to separate them.'
If a bar magnet is cut in two transversely, new poles appear on the cut surfaces and two
magnets result. The experiments on which Equation 1.1 is based were performed with mag-
netized needles that were so long that the poles at each end could be considered approxi-
mately as isolated poles, and the torsion balance sketched in Fig. 1.1. If the stiffness of
the torsion-wire suspension is known, the force of repulsion between the two north poles
can be calculated from the angle of deviation of the horizontal needle. The arrangement
shown minimizes the effects of the two south poles.

A magnetic pole creates a magnetic field around it, and it is this field which produces a
force on a second pole nearby. Experiment shows that this force is directly proportional to
the product of the pole strength and field strength or field intensity H:

F = kpH. (1.2)

If the proportionality constant k is again put equal to 1, this equation then defines H: a field
of unit strength is one which exerts a force of 1 dyne on a unit pole. If an unmagnetized

'"The existence of isolated magnetic poles, or monopoles, is not forbidden by any known law of nature, and serious
efforts to find monopoles have been made [P. A. M. Dirac, Proc. R. Soc. Lond., A133 (1931) p. 60; H. Jeon and
M. J. Longo, Phys. Rev. Lett., 75 (1995) pp. 1443—1446]. The search has not so far been successful.
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Fig. 1.2 External field of a bar magnet.

piece of iron is brought near a magnet, it will become magnetized, again through the agency
of the field created by the magnet. For this reason H is also sometimes called the magnetiz-
ing force. A field of unit strength has an intensity of one oersted (Oe). How large is an
oersted? The magnetic field of the Earth in most places amounts to less than 0.5 Oe, that
of a bar magnet (Fig. 1.2) near one end is about 5000 Oe, that of a powerful electromagnet
is about 20,000 Oe, and that of a superconducting magnet can be 100,000 Oe or more.
Strong fields may be measured in kilo-oersteds (kOe). Another cgs unit of field strength,
used in describing the Earth’s field, is the gamma (1y = 1075 Oe).

A unit pole in a field of one oersted is acted on by a force of one dyne. But a unit pole is
also subjected to a force of 1 dyne when it is 1 cm away from another unit pole. Therefore,
the field created by a unit pole must have an intensity of one oersted at a distance of 1 cm
from the pole. It also follows from Equations 1.1 and 1.2 that this field decreases as the
inverse square of the distance d from the pole:

H:d—”z. (1.3)

Michael Faraday (1791-1867) had the very fruitful idea of representing a magnetic field by
“lines of force.” These are directed lines along which a single north pole would move, or to
which a small compass needle would be tangent. Evidently, lines of force radiate outward
from a single north pole. Outside a bar magnet, the lines of force leave the north pole and
return at the south pole. (Inside the magnet, the situation is more complicated and will be
discussed in Section 2.9) The resulting field (Fig. 1.3) can be made visible in two dimen-
sions by sprinkling iron filings or powder on a card placed directly above the magnet. Each
iron particle becomes magnetized and acts like a small compass needle, with its long axis
parallel to the lines of force.

The notion of lines of force can be made quantitative by defining the field strength H as
the number of lines of force passing through unit area perpendicular to the field. A line of
force, in this quantitative sense, is called a maxwell.> Thus

10e = 1line of force/cm* = 1 maxwell /cm?.

2James Clerk Maxwell (1831—1879), Scottish physicist, who developed the classical theory of electromagnetic
fields described by the set of equations known as Maxwell’s equations.
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Fig. 1.3 Fields of bar magnets revealed by iron filings.

Imagine a sphere with a radius of 1 cm centered on a unit pole. Its surface area is 477 cm?.
Since the field strength at this surface is 1 Oe, or 1 line of force/ cmz, there must be a
total of 4 lines of force passing through it. In general, 4mp lines of force issue from a

pole of strength p.
1.3 MAGNETIC MOMENT

Consider a magnet with poles of strength p located near each end and separated by a dis-
tance /. Suppose the magnet is placed at an angle 6 to a uniform field H (Fig. 1.4). Then
a torque acts on the magnet, tending to turn it parallel to the field. The moment of this

torque is
) l . l .
(pH sin 6) 2 + (pH sin 6) 3 = pHI sin 6

When H =1 0Oe and 6 = 90°, the moment is given by
(1.4)

“p

9l

F=pH
Fig. 1.4 Bar magnet in a uniform field. (Note use of plus and minus signs to designate north and

south poles.)
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where m is the magnetic moment of the magnet. It is the moment of the torque exerted on
the magnet when it is at right angles to a uniform field of 1 Oe. (If the field is nonuniform, a
translational force will also act on the magnet. See Section 2.13.)

Magnetic moment is an important and fundamental quantity, whether applied to a bar
magnet or to the “electronic magnets” we will meet later in this chapter. Magnetic poles,
on the other hand, represent a mathematical concept rather than physical reality; they
cannot be separated for measurement and are not localized at a point, which means that
the distance / between them is indeterminate. Although p and [ are uncertain quantities indi-
vidually, their product is the magnetic moment m, which can be precisely measured.
Despite its lack of precision, the concept of the magnetic pole is useful in visualizing
many magnetic interactions, and helpful in the solution of magnetic problems.

Returning to Fig. 1.4, we note that a magnet not parallel to the field must have a certain
potential energy E, relative to the parallel position. The work done (in ergs) in turning it
through an angle d6 against the field is

l
dE, = 2(pH sin 0) <2>d0 = mH sin 6 d6.

It is conventional to take the zero of energy as the 6 = 90° position. Therefore,

)
E, = J mH sin 0d6 = —mH cos 6. (1.5)
90°

Thus E}, is —mH when the magnet is parallel to the field, zero when it is at right angles, and
+mH when it is antiparallel. The magnetic moment m is a vector which is drawn from the
south pole to the north. In vector notation, Equation 1.5 becomes

E,=-m-H (1.6)

Equation 1.5 or 1.6 is an important relation which we will need frequently in later sections.

Because the energy E, is in ergs, the unit of magnetic moment m is erg/oersted. This
quantity is the electromagnetic unit of magnetic moment, generally but unofficially
called simply the emu.

1.4 INTENSITY OF MAGNETIZATION

When a piece of iron is subjected to a magnetic field, it becomes magnetized, and the level
of its magnetism depends on the strength of the field. We therefore need a quantity to
describe the degree to which a body is magnetized.

Consider two bar magnets of the same size and shape, each having the same pole
strength p and interpolar distance /. If placed side by side, as in Fig. 1.5a, the poles add,
and the magnetic moment m = (2p)l = 2pl, which is double the moment of each individual
magnet. If the two magnets are placed end to end, as in Fig. 1.5b, the adjacent poles cancel
and m = p(2]) = 2pl, as before. Evidently, the total magnetic moment is the sum of the
magnetic moments of the individual magnets.

In these examples, we double the magnetic moment by doubling the volume. The mag-
netic moment per unit volume has not changed and is therefore a quantity that describes the
degree to which the magnets are magnetized. It is called the intensity of magnetization, or
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Fig. 1.5 Compound magnets.

simply the magnetization, and is written M (or I or J by some authors). Since

m=" (1.7)
v
where v is the volume; we can also write
pl _p p
M="—="= 1.8
v v/l A (18

where A is the cross-sectional area of the magnet. We therefore have an alternative
definition of the magnetization M as the pole strength per unit area of cross section.

Since the unit of magnetic moment m is erg/oersted, the unit of magnetization M is
erg/oersted cm®. However, it is more often written simply as emu/ cm®, where “emu” is
understood to mean the electromagnetic unit of magnetic moment. However, emu is some-
times used to mean ‘“‘electromagnetic cgs units” generically.

It is sometimes convenient to refer the value of magnetization to unit mass rather than
unit volume. The mass of a small sample can be measured more accurately than its
volume, and the mass is independent of temperature whereas the volume changes with
temperature due to thermal expansion. The specific magnetization o is defined as

m M
— =— emu/g, (1.9)
vp p /

where w is the mass and p the density.

Magnetization can also be expressed per mole, per unit cell, per formula unit, etc. When
dealing with small volumes like the unit cell, the magnetic moment is often given in units
called Bohr magnetons, ug, where 1 Bohr magneton = 9.27 x 1072 erg/Oe. The Bohr
magneton will be considered further in Chapter 3.

1.5 MAGNETIC DIPOLES

As shown in Appendix 1, the field of a magnet of pole strength p and length /, at a distance
from the magnet, depends only on the moment pl of the magnet and not on the separate
values of p and [, provided r is large relative to [. Thus the field is the same if we halve
the length of the magnet and double its pole strength. Continuing this process, we obtain
in the limit a very short magnet of finite moment called a magnetic dipole. Its field is
sketched in Fig. 1.6. We can therefore think of any magnet, as far as its external field
is concerned, as being made up of a number of dipoles; the total moment of the magnet
is the sum of the moments, called dipole moments, of its constituent dipoles.
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Fig. 1.6 Field of a magnetic dipole.

1.6 MAGNETIC EFFECTS OF CURRENTS

A current in a straight wire produces a magnetic field which is circular around the wire axis
in a plane normal to the axis. Outside the wire the magnitude of this field, at a distance r cm
from the wire axis, is given by

2i
H =" Oe, (1.10)

where i is the current in amperes. Inside the wire,

2ir

H=—
lOr%

Oe,

where ry is the wire radius (this assumes the current density is uniform). The direction of the
field is that in which a right-hand screw would rotate if driven in the direction of the current
(Fig. 1.7a). In Equation 1.10 and other equations for the magnetic effects of currents, we are
using “mixed” practical and cgs electromagnetic units. The electromagnetic unit of current,
the absolute ampere or abampere, equals 10 international or “ordinary” amperes, which
accounts for the factor 10 in these equations.

If the wire is curved into a circular loop of radius R cm, as in Fig. 1.7b, then the field at
the center along the axis is

2
H=2""0e. 111
10R ¢ (1.11)

The field of such a current loop is sketched in (c). Experiment shows that a current loop,
suspended in a uniform magnetic field and free to rotate, turns until the plane of the loop is
normal to the field. It therefore has a magnetic moment, which is given by

R%i  Ai
T2 _ 2 amp - cm?or erg/Oe, (1.12)

m(loop) = 0 10
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Fig. 1.7 Magnetic fields of currents.

where A is the area of the loop in cm?”. The direction of m is the same as that of the axial field
H due to the loop itself (Fig. 1.7b).

A helical winding (Fig. 1.8) produces a much more uniform field than a single loop.
Such a winding is called a solenoid, after the Greek word for a tube or pipe. The field
along its axis at the midpoint is given by

_ dqmni
T 10L

H Oe, (1.13)
where n is the number of turns and L the length of the winding in centimeters. Note that the
field is independent of the solenoid radius as long as the radius is small compared to the
length. Inside the solenoid the field is quite uniform, except near the ends, and outside it
resembles that of a bar magnet (Fig. 1.2). The magnetic moment of a solenoid is given by

nAi erg

1.14
10 Oe’ (1.14)

m(solenoid) =

where A is the cross-sectional area.

Fig. 1.8 Magnetic field of a solenoid.
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Fig. 1.9 Amperian current loops in a magnetized bar.

As the diameter of a current loop becomes smaller and smaller, the field of the loop
(Fig. 1.7¢) approaches that of a magnetic dipole (Fig. 1.6). Thus it is possible to regard a
magnet as being a collection of current loops rather than a collection of dipoles. In fact,
André-Marie Ampere (1775-1836) suggested that the magnetism of a body was due to
“molecular currents” circulating in it. These were later called Amperian currents.
Figure 1.9a shows schematically the current loops on the cross section of a uniformly mag-
netized bar. At interior points the currents are in opposite directions and cancel one another,
leaving the net, uncanceled loop shown in Fig. 1.9b. On a short section of the bar these
current loops, called equivalent surface currents, would appear as in Fig. 1.9c. In the
language of poles, this section of the bar would have a north pole at the forward end,
labeled N. The similarity to a solenoid is evident. In fact, given the magnetic moment
and cross-sectional area of the bar, we can calculate the equivalent surface current in
terms of the product ni from Equation 1.14. However, it must be remembered that, in the
case of the solenoid, we are dealing with a real current, called a conduction current,
whereas the equivalent surface currents, with which we replace the magnetized bar, are
imaginary (except in the case of superconductors; see Chapter 16.)

1.7 MAGNETIC MATERIALS

We are now in a position to consider how magnetization can be measured and what the
measurement reveals about the magnetic behavior of various kinds of substances.
Figure 1.10 shows one method of measurement. The specimen is in the form of a ring,’
wound with a large number of closely spaced turns of insulated wire, connected through
a switch S and ammeter A to a source of variable current. This winding is called the
primary, or magnetizing, winding. It forms an endless solenoid, and the field inside it is
given by Equation 1.13; this field is, for all practical purposes, entirely confined to the

3Sometimes called a Rowland ring, after the American physicist H. A. Rowland (1848—1901), who first used this
kind of specimen in his early research on magnetic materials. He is better known for the production of
ruled diffraction gratings for the study of optical spectra.
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Fig. 1.10 Circuit for magnetization of a ring. Dashed lines indicate flux.

region within the coil. This arrangement has the advantage that the material of the ring
becomes magnetized without the formation of poles, which simplifies the interpretation
of the measurement. Another winding, called the secondary winding or search coil, is
placed on all or a part of the ring and connected to an electronic integrator or fluxmeter.
Some practical aspects of this measurement are discussed in Chapter 2.

Let us start with the case where the ring contains nothing but empty space. If the switch
S is closed, a current i is established in the primary, producing a field of H oersteds, or
maxwells/ cm2, within the ring. If the cross-sectional area of the ring is A cmz, then the
total number of lines of force in the ring is HA = ® maxwells, which is called the magnetic
Slux. (It follows that H may be referred to as a flux density.) The change in flux Ad through
the search coil, from 0 to ®, induces an electromotive force (emf) in the search coil accord-
ing to Faraday’s law:

E=—-10%n (%) or JEdt =—10"%n AD,

where 7 is the number of turns in the secondary winding, ¢ is time in seconds, and E is
in volts.

The (calibrated) output of the voltage integrator [E dr is a measure of A®, which in
this case is simply ®. When the ring contains empty space, it is found that ®,yeerveds
obtained from the integrator reading, is exactly equal to ®.yren, Which is the flux pro-
duced by the current in the primary winding, i.e., the product A and H calculated
from Equation 1.13.
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However, if there is any material substance in the ring, ®pserveq is found to differ from
D urent- This means that the substance in the ring has added to, or subtracted from, the
number of lines of force due to the field H. The relative magnitudes of these two quantities,
Dopserved and Peyrene, €nable us to classify all substances according to the kind of magnet-
ism they exhibit:

Dopserved < Peurrent,  diamagnetic (i.e., Cu, He)
Dopserved > Peurrent,  paramagnetic (i.e., Na, Al)

or antiferromagnetic (i.e., MnO, FeO)
Dopserved > Peurent,  ferromagnetic (i.e., Fe, Co, Ni)

or ferrimagnetic (i.e., Fe3O4)

Paramagnetic and antiferromagnetic substances can be distinguished from one another
by magnetic measurement only if the measurements extend over a range of temperature.
The same is true of ferromagnetic and ferrimagnetic substances.

All substances are magnetic to some extent. However, examples of the first three types
listed above are so feebly magnetic that they are usually called “nonmagnetic,” both by the
layman and by the engineer or scientist. The observed flux in a typical paramagnetic, for
example, is only about 0.02% greater than the flux due to the current. The experimental
method outlined above is not capable of accurately measuring such small differences,
and entirely different methods have to be used. In ferromagnetic and ferrimagnetic
materials, on the other hand, the observed flux may be thousands of times larger than
the flux due to the current.

We can formally understand how the material of the ring causes a change in flux if we
consider the fields which actually exist inside the ring. Imagine a very thin, transverse cavity
cut out of the material of the ring, as shown in Fig. 1.11. Then H lines/ cm? cross this gap,
due to the current in the magnetizing winding, in accordance with Equation 1.13. This flux
density is the same whether or not there is any material in the ring. In addition, the applied
field H, acting from left to right, magnetizes the material, and north and south poles are pro-
duced on the surface of the cavity, just as poles are produced on the ends of a magnetized
bar. If the material is ferromagnetic, the north poles will be on the left-hand surface and
south poles on the right. If the intensity of magnetization is M, then each square centimeter
of the surface of the cavity has a pole strength of M, and 47M lines issue from it. These are
sometimes called lines of magnetization. They add to the lines of force due to the applied
field H, and the combined group of lines crossing the gap are called lines of magnetic flux or

Fig. 1.11 Transverse cavity in a portion of a Rowland ring.
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lines of induction. The total number of lines per cm? is called the magnetic flux density or
the induction B. Therefore,

B=H +4mM. (1.15)

The word “induction” is a relic from an earlier age: if an unmagnetized piece of iron were
brought near a magnet, then magnetic poles were said to be “induced” in the iron, which
was, in consequence, attracted to the magnet. Later the word took on the quantitative
sense, defined above, of the total flux density in a material, denoted by B. Flux density
is now the preferred term.

Because lines of B are always continuous, Equation 1.15 gives the value of B, not only in
the gap, but also in the material on either side of the gap and throughout the ring. Although
B, H, and M are vectors, they are usually parallel, so that Equation 1.15 is normally written
in scalar form. These are vectors indicated at the right of Fig. 1.11, for a hypothetical case
where B is about three times H. They indicate the values of B, H, and 47M at the section
AA’ or at any other section of the ring.

Although B, H, and M must necessarily have the same units (lines or maxwells/ cmz),
different names are given to these quantities. A maxwell per cm? is customarily called a
gauss (G),4 when it refers to B, and an oersted when it refers to H. However, since in
free space or (for practical purposes) in air, M = 0 and therefore B = H, it is not uncommon
to see H expressed in gauss. The units for magnetization raise further difficulties. As we
have seen, the units for M are erg/Oe cm’, commonly written emu/ cm’, but 47M, from
Equation 1.15, must have units of maxwells/cm?, which could with equal justification
be called either gauss or oersteds. In this book when using cgs units we will write M in
emu/cm3, but 47wM in gauss, to emphasize that the latter forms a contribution to the
total flux density B. Note that this discussion concerns only the names of these units
(B, H, and 47M ). There is no need for any numerical conversion of one to the other, as
they are all numerically equal. It may also be noted that it is not usual to refer, as is
done above, to H as a flux density and to HA as a flux, although there would seem to be
no logical objection to these designations. Instead, most writers restrict the terms “flux
density” and “flux” to B and BA, respectively.

Returning to the Rowland ring, we now see that @ pgevea = BA, because the integrator
measures the change in the total number of lines enclosed by the search coil. On the other
hand, @ ene = HA. The difference between them is 47mMA. The magnetization M is zero
only for empty space. The magnetization, even for applied fields H of many thousands of
oersteds, is very small and negative for diamagnetics, very small and positive for paramag-
netics and antiferromagnetics, and large and positive for ferro- and ferrimagnetics. The
negative value of M for diamagnetic materials means that south poles are produced on
the left side of the gap in Fig. 1.11 and north poles on the right.

Workers in magnetic materials generally take the view that H is the “fundamental” mag-
netic field, which produces magnetization M in magnetic materials. The flux density B is a
useful quantity primarily because changes in B generate voltages through Faraday’s law.

The magnetic properties of a material are characterized not only by the magnitude
and sign of M but also by the way in which M varies with H. The ratio of these two

“Carl Friedrich Gauss (1777-1855), German mathematician was renowned for his genius in mathematics. He also
developed magnetostatic theory, devised a system of electrical and magnetic units, designed instruments for
magnetic measurements, and investigated terrestrial magnetism.
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quantities is called the susceptibility x:

M emu
== — 1.16
XTH Oc-cm’ (1.16)
Note that, since M has units A - cm? / cm3, and H has units A/cm, y is actually dimension-
less. Since M is the magnetic moment per unit volume, y also refers to unit volume and is
sometimes called the volume susceptibility and given the symbol Y, to emphasize this fact.
Other susceptibilities can be defined, as follows:

Xm = X,/p = mass susceptibility (emu/Oe g), where p = density,
Xa = X,A = atomic susceptibility (emu/Oe g atom), where A = atomic weight,
Xm = XuM' = molar susceptibility (emu/Oe mol), where M’ = molecular weight.

Typical curves of M vs H, called magnetization curves, are shown in Fig. 1.12 for
various kinds of substances. Curves (a) and (b) refer to substances having volume suscep-
tibilities of —2 x 10~ and 420 x 10~°, respectively. These substances (dia-, para-, or
antiferromagnetic) have linear M, H curves under normal circumstances and retain no
magnetism when the field is removed. The behavior shown in curve (c), of a typical
ferro- or ferrimagnetic, is quite different. The magnetization curve is nonlinear, so that y
varies with H and passes through a maximum value (about 40 for the curve shown).

Two other phenomena appear:

1. Saturation. At large enough values of H, the magnetization M becomes constant at its
saturation value of M.

2. Hysteresis, or irreversibility. After saturation, a decrease in H to zero does not reduce
M to zero. Ferro- and ferrimagnetic materials can thus be made into permanent
magnets. The word hysteresis is from a Greek word meaning “to lag behind,” and
is today applied to any phenomenon in which the effect lags behind the cause,
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Fig. 1.12 Typical magnetization curves of (a) a diamagnetic; (b) a paramagnetic or antiferromag-
netic; and (c) a ferromagnetic of ferrimagnetic.
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leading to irreversible behavior. Its first use in science was by Ewing® in 1881, to
describe the magnetic behavior of iron.

In practice, susceptibility is primarily measured and quoted only in connection with dia-
and paramagnetic materials, where y is independent of H (except possibly at very low temp-
eratures and high fields). Since these materials are very weakly magnetic, susceptibility is of
little engineering importance. Susceptibility is, however, important in the study and use of
superconductors.

Engineers are usually concerned only with ferro- and ferrimagnetic materials and need to
know the total flux density B produced by a given field. They therefore often find the B, H
curve, also called a magnetization curve, more useful than the M, H curve. The ratio of B to
H is called the permeability :

B
n= I (dimensionless). (1.17)
Since B = H + 47M, we have
B
w=1+4my. (1.18)

Note that w is not the slope dB/dH of the B, H curve, but rather the slope of a line from the
origin to a particular point on the curve. Two special values are often quoted, the initial
permeability py and the maximum permeability ... These are illustrated in Fig. 1.13,
which also shows the typical variation of w with H for a ferro- or ferrimagnetic. If not other-
wise specified, permeability wu is taken to be the maximum permeability p,,.x. The local
slope of the B, H curve dB/dH is called the differential permeability, and is sometimes

Hm

My | ——

Ho

(a) (b)

Fig. 1.13 (a) B vs H curve of a ferro- or ferrimagnetic, and (b) corresponding variation of u with H.

5J. A. Ewing (1855-1935), British educator and engineer taught at Tokyo, Dundee, and Cambridge and did
research on magnetism, steam engines, and metallurgy. During World War I, he organized the cryptography
section of the British Admiralty. During his five-year tenure of a professorship at the University of Tokyo
(1878-1883), he introduced his students to research on magnetism, and Japanese research in this field has flour-
ished ever since.
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used. Permeabilities are frequently quoted for soft magnetic materials, but they are mainly
of qualitative significance, for two reasons:

1. Permeability varies greatly with the level of the applied field, and soft magnetic
materials are almost never used at constant field.

2. Permeability is strongly structure-sensitive, and so depends on purity, heat treatment,
deformation, etc.

We can now characterize the magnetic behavior of various kinds of substances by their
corresponding values of y and

1. Empty space; x = 0, since there is no matter to magnetize, and u = 1.

2. Diamagnetic; y is small and negative, and w slightly less than 1.

3. Para- and antiferromagnetic; y is small and positive, and w slightly greater than 1.
4. Ferro- and ferrimagnetic; y and w are large and positive, and both are functions of H.

The permeability of air is about 1.000,000,37. The difference between this and the per-
meability of empty space is negligible, relative to the permeabilities of ferro- and ferrimag-
netics, which typically have values of w of several hundreds or thousands. We can therefore
deal with these substances in air as though they existed in a vacuum. In particular, we can
say that B equals H in air, with negligible error.

1.8 SI UNITS

The SI system of units uses the meter, kilogram, and second as its base units, plus the
international electrical units, specifically the ampere. The concept of magnetic poles is gen-
erally ignored (although it need not be), and magnetization is regarded as arising from
current loops.

The magnetic field at the center of a solenoid of length /, n turns, carrying current i, is
given simply by

ni ampere turns

H (1.19)

l meter
Since n turns each carrying current i are equivalent to a single turn carrying current ni, the
unit of magnetic field is taken as A/m (amperes per meter). It has no simpler name. Note
that the factor 47 does not appear in Equation 1.19. Since the factor 4 arises from solid
geometry (it is the area of a sphere of unit radius), it cannot be eliminated, but it can be
moved elsewhere in a system of units. This process (in the case of magnetic units) is
called rationalization, and the SI units of magnetism are rationalized mks units. We will
see shortly where the 47 reappears.
If a loop of wire of area A (m?) is placed perpendicular to a magnetic field H (A /m), and
the field is changed at a uniform rate dH/dr = const., a voltage is generated in the loop
according to Faraday’s law:

dH
E=—kA <E) volt. (1.20)
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The negative sign means that the voltage would drive a current in the direction that would
generate a field opposing the change in field. Examination of the dimensions of Equation
1.20 shows that the proportionality constant £ has units

V - sec _V-sec
m2-(A-m!) A-m’

Since

A\
A - sec!

is the unit of inductance, the henry (H), the units of k are usually given as H/m (henry per
meter). The numerical value of k is 47 x 10" H /m; it is given the symbol uq (or some-
times I'), and has various names: the permeability of free space, the permeability of
vacuum, the magnetic constant, or the permeability constant. This is where the factor 4
appears in rationalized units.

Equation 1.20 can alternatively be written

E=-A (i{—?) or JEdt = —AAB. (1.21)

Here B is the magnetic flux density (V sec/m?). A line of magnetic flux in the SI system is
called a weber (Wb =V sec), so flux density can also be expressed in Wb/ m?2, which is
given the special name of the fesla (T).6

In SI units, then, we have a magnetic field H defined from the ampere, and a magnetic
flux density B, defined from the volt. The ratio between these two quantities (in empty
space), B/H, is the magnetic constant .

A magnetic moment m is produced by a current i flowing around a loop of area A, and so
has units A - m*. Magnetic moment per unit volume M = m /V then has units

A~m2_

A-m’l,
3
m

the same as the units of magnetic field. Magnetization per unit mass becomes

A-m? /A -m? _]m3
o= orA-m  —
w kg kg

The SI equivalent of Equation 1.15 is

B = po(H + M), (1.22)

with B in tesla and H and M in A/m. This is known as the Sommerfeld convention. It is
equally possible to express magnetization in units of tesla, or po(A/m). This is known

®Nicola Tesla (1856—1943), Serbian-American inventor, engineer, and scientist is largely responsible for the
development of alternating current (ac) technology.
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as the Kennelly convention, under which Equation 1.15 becomes
B=puH+1 (1.23)

and [ (or J) is called the magnetic polarization. The Sommerfeld convention is “recog-
nized” in the SI system, and will be used henceforth in this book.

Volume susceptibility yv is defined as M/H, and is dimensionless. Mass susceptibility
Xm has units

A - m? 1 m3

ke A-m! kg’

or reciprocal density. Other susceptibilities are similarly defined.
Permeability u is defined as B/H, and so has the units of ug. It is customary to use
instead the relative permeability

_ M
My =
Mo
which is dimensionless, and is numerically the same as the cgs permeability pu.
Appendix 3 gives a table of conversions between cgs and SI units.

1.9 MAGNETIZATION CURVES AND HYSTERESIS LOOPS

Both ferro- and ferrimagnetic materials differ widely in the ease with which they can be
magnetized. If a small applied field suffices to produce saturation, the material is said to
be magnetically soft (Fig. 1.14a). Saturation of some other material, which will in
general have a different value of M, may require very large fields, as shown by curve
(c). Such a material is magnetically hard. Sometimes the same material may be either mag-
netically soft or hard, depending on its physical condition: thus curve (a) might relate to a
well-annealed material, and curve (b) to the heavily cold-worked state.

Figure 1.15 shows magnetization curves both in terms of B (full line from the origin in
first quadrant) and M (dashed line). Although M is constant after saturation is achieved, B
continues to increase with H, because H forms part of B. Equation 1.15 shows that the slope

(a) (b) (©)

0 H

Fig. 1.14 Magnetization curves of different materials.
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Fig. 1.15 Magnetization curves and hysteresis loops. (The height of the M curve is exaggerated
relative to that of the B curve.)

dB/dH is unity beyond the point By, called the saturation induction; however, the slope of
this line does not normally appear to be unity, because the B and H scales are usually quite
different. Continued increase of H beyond saturation will cause wu(cgs) or u.(SI) to approach
1 as H approaches infinity. The curve of B vs H from the demagnetized state to saturation is
called the normal magnetization or normal induction curve. It may be measured in two
different ways, and the demagnetized state also may be achieved in two different ways,
as will be noted later in this chapter. The differences are not practically significant in
most cases.

Sometimes in cgs units the intrinsic induction, or ferric induction, B;=B — H, is
plotted as a function of H. Since B — H = 47M, such a curve will differ from an M, H
curve only by a factor of 4 applied to the ordinate. B; measures the number of lines of
magnetization/ cm?, not counting the flux lines due to the applied field.

If H is reduced to zero after saturation has been reached in the positive direction, the
induction in a ring specimen will decrease from B to B,, called the retentivity or residual
induction. If the applied field is then reversed, by reversing the current in the magnetizing
winding, the induction will decrease to zero when the negative applied field equals the coer-
civity H.. This is the reverse field necessary to “coerce” the material back to zero induction;
it is usually written as a positive quantity, the negative sign being understood. At this point,
M is still positive and is given by |Hc /47| (cgs) or He (SI). The reverse field required to
reduce M to zero is called the intrinsic coercivity H.; (or sometimes ;H. or Hi). To empha-
size the difference between the two coercivities, some authors write gH,. for the coercivity
and »,H, for the intrinsic coercivity. The difference between H,. and H,; is usually negligible
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for soft magnetic materials, but may be substantial for permanent magnet materials. This
point will be considered further in our consideration of permanent magnet materials in
Chapter 14.

If the reversed field is further increased, saturation in the reverse direction will be reached
at —B;. If the field is then reduced to zero and applied in the original direction, the induction
will follow the curve —B;, —B,, +B,. The loop traced out is known as the major hysteresis
loop, when both tips represent saturation. It is symmetrical about the origin as a point of
inversion, i.e., if the right-hand half of the loop is rotated 180° about the H axis, it will
be the mirror image of the left-hand half. The loop quadrants are numbered 1-4 (or some-
times I-IV) counterclockwise, as shown in Fig. 1.15, since this is the order in which they
are usually traversed.

If the process of initial magnetization is interrupted at some intermediate point such as a
and the corresponding field is reversed and then reapplied, the induction will travel around
the minor hysteresis loop abcdea. Here b is called the remanence and c the coercive field (or
in older literature the coercive force). (Despite the definitions given here, the terms rema-
nence and retentivity, and coercive field and coercivity, are often used interchangeably.
In particular, the term coercive field is often loosely applied to any field, including H.,
which reduces B to zero, whether the specimen has been previously saturated or not.
When “coercive field” is used without any other qualification, it is usually safe to assume
that “coercivity” is actually meant.)

There are an infinite number of symmetrical minor hysteresis loops inside the major
loop, and the curve produced by joining their tips gives one version of the normal induction
curve. There are also an infinite number of nonsymmetrical minor loops, some of which are
shown at fg and hk.

If a specimen is being cycled on a symmetrical loop, it will always be magnetized in one
direction or the other when H is reduced to zero. Demagnetization is accomplished by sub-
jecting the sample to a series of alternating fields of slowly decreasing amplitude. In this
way the induction is made to traverse smaller and smaller loops until it finally arrives at
the origin (Fig. 1.16). This process is known as cyclic or field demagnetization. An alterna-
tive demagnetization method is to heat the sample above its Curie point, at which it
becomes paramagnetic, and then to cool it in the absence of a magnetic field. This is
called thermal demagnetization. The two demagnetization methods will not in general
lead to identical internal magnetic structures, but the difference is inconsequential for

Fig. 1.16 Demagnetization by cycling with decreasing field amplitude.
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most practical purposes. Some practical aspects of demagnetization are considered in the
next chapter.

PROBLEMS

1.1

1.2

1.3

1.4

Magnetization M and field strength H have the same units (A/m) in ST units. Show
that they have the same dimensional units (length, mass, time, current) in cgs.

A cylinder of ferromagnetic material is 6.0 cm long and 1.25 cm in diameter, and has
a magnetic moment of 7.45 x 107 emu.

a. Find the magnetization of the material.

b. What current would have to be passed through a coil of 200 turns, 6.0 cm long and
1.25 cm in diameter, to produce the same magnetic moment?

c. If a more reasonable current of 1.5 ampere is passed through this coil, what is the
resulting magnetic moment?

A cylinder of paramagnetic material, with the same dimensions as in the previous
problem, has a volume susceptibility xy of 2.0 x 10~ (SI). What is its magnetic
moment and its magnetization in an applied field of 1.2 T?

A ring sample of iron has a mean diameter of 5.5 cm and a cross-sectional area of 1.2
cm?. It is wound with a uniformly distributed winding of 250 turns. The ring is
initially demagnetized, and then a current of 1.5 ampere is passed through the
winding. A fluxmeter connected to a secondary winding on the ring measures a
flux change of 8.25 x 10”2 weber.

a. What magnetic field is acting on the material of the ring?

b. What is the magnetization of the ring material?

c. What is the relative permeability of the ring material in this field?



CHAPTER 2

EXPERIMENTAL METHODS

2.1 INTRODUCTION

No clear understanding of magnetism can be attained without a sound knowledge of the
way in which magnetic properties are measured. Such a statement, of course, applies to
any branch of science, but it seems to be particularly true of magnetism. The beginner is
therefore urged to make some simple, quantitative experiments early in her study of the
subject. Quite informative measurements on an iron rod, which will vividly demonstrate
the difference between B and H, for example, can be made with inexpensive apparatus:
an electronic integrator (an integrator adequate for demonstration purposes can be made
as described in Section 2.5), an easily made solenoid, some wire, and a variable-output
dc power supply. Most books on magnetism contain some information on experimental
methods. The text by Crangle [J. Crangle, The Magnetic Properties of Solids, Edward
Arnold (1977)] provides more detailed information than most. Books and papers devoted
entirely to magnetic measurements are those of Zijlstra [H. Zijlstra, Experimental
Methods in Magnetism (2 vols), North-Holland (1967)], and McGuire and Flanders
[T. R. McGuire and P. J. Flanders, Direct Current Magnetic Measurements, Magnetism
and Metallurgy, Volume 1, Ami E. Berkowitz and Eckart Kneller, Eds., Academic Press
(1969)]. The standards of the ASTM (originally the American Society for Testing and
Materials) Committee A06 specify equipment and procedures for various magnetic
measurements, mainly but not exclusively of soft magnetic materials under dc or power fre-
quency conditions.

The experimental study of magnetic materials requires (a) a means of producing the field
which will magnetize the material, and (b) a means of measuring the resulting effect on the
material. We will therefore first consider ways of producing magnetic fields, by solenoids,
by electromagnets, and by permanent magnets. Then we will take up the various methods of

Introduction to Magnetic Materials, Second Edition. By B. D. Cullity and C. D. Graham
Copyright © 2009 the Institute of Electrical and Electronics Engineers, Inc.
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measuring the magnetization curve and the hysteresis loop of a strongly magnetic
substance, and finally, in the last section of this chapter, the methods of measuring the
susceptibility of a weakly magnetic substance. Methods of measuring more specialized
magnetic properties (e.g. anisotropy, magnetostriction, and core losses) will be dealt with
at the appropriate place in later chapters.

The student who wishes to gain a good understanding of magnetic materials cannot
afford to slight the contents of this chapter, even if she is not particularly interested in
measurements, because some quite basic magnetic phenomena are first introduced here.
For example, the demagnetizing fields discussed in Section 2.9 have an importance not
restricted to measurements; these fields can affect the magnetic state and magnetic behavior
of many specimens.

2.2 FIELD PRODUCTION BY SOLENOIDS

Solenoids are useful for measurements on specimens of almost any shape, but are particu-
larly suited to rods and wires. They can be designed to produce fields ranging up to more
than 200 kilo-oersteds (kOe) or 16 MA /m or 20 tesla (T), although simple solenoids are
limited to fields below about 1 kOe or 0.1 T. [Although the SI unit of field is the A/m,
it is common to express field strengths, especially large field strengths, in units of
woH = B (tesla).] Two types of solenoids can be distinguished, normal and
superconducting.

2.2.1 Normal Solenoids

These are usually made with insulated copper wire, wound on a tube of any electrically
insulating material, such as polyvinyl chloride (PVC) pipe. For the dimensions shown in
Fig. 2.1, the field H at a point P on the axis, distant x from the center, is given by

j L+2 L-2
H=C" e i ol :
L 12\/D>+ (L+2x)?> 2vD?+ (L—2x)

@.1)

| L |
i
c P +
1.0
H
Hio 0.5
0
Position P

Fig. 2.1 Single-layer solenoid and its field distribution. The axial field at point P is expressed as the
fraction of the field at the center of an infinitely long solenoid.
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where n is the number of turns and i is the current in amperes. With C; = 1 and L measured
in meters, the field is in A/m; with C; = 47/10 and L measured in centimeters, the field is
in oersteds. The terms inside the brackets are dimensionless when all quantities are
measured in the same units. Note that the coil diameter is measured to the center of the
winding; that is, the value of D is the outer diameter of the tube plus twice the radius of
the wire.

At the center of the solenoid (x = 0), this reduces to

ni L
and, when L*> D2, to
H=C % 2.3)

In any solenoid, the field is highest at the center and decreases towards the ends. The field at
the end of a long solenoid is just one-half of the field at the center. But the field over the
middle half is quite uniform, as shown by Fig. 2.1, and the values in Table 2.1, which
are derived from Equation 2.1. In this table, Hy, is the field, given by Equation 2.3, at
the center of an infinitely long solenoid. When the L/D ratio is 20, for example, the
field over the middle half is uniform to within 0.15% and is only about 0.13% less than
that produced by an infinitely long solenoid. The field variation in the radial direction is
generally negligible.

To achieve a higher field, it is preferable to increase n/L by winding the wire in two or
more layers rather than to increase the current. Although H is proportional to i, the heat
developed in the winding is proportional to iR, where R is its resistance. Thus doubling
the number of layers and keeping the current constant will double H, R, and the amount
of heat; whereas doubling the current will double H, but quadruple the heat. Solenoids con-
sisting of relatively few layers can be treated mathematically as a series of concentric sole-
noids of increasing diameter whose fields add together. Very thick solenoids (many layers)
are the subject of an extensive literature, which is well summarized by Montgomery
[E. Bruce Montgomery, Solenoid Magnet Design, Wiley-Interscience (1969)].

Cooling of the winding becomes necessary for continuous fields larger than about 1 kOe
or 0.1 T. This can be accomplished in a variety of ways, such as by blowing air over the
solenoid with a fan, by immersing the solenoid in a cooling liquid, usually water but poss-
ibly liquid nitrogen, by winding the wire on a water-cooled tube; or by forming the winding
from copper tubing so that it can carry both electric current and cooling water.

TABLE 2.1 Field Uniformity in Solenoids

H at Edge of
L/D H at Center Middle Half
5 0.9806 Hins 0.9598 Hinr
10 0.9950 0.9892
20 0.9987 0.9972

50 0.9996 0.9994
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Solenoids are usually made from high-purity copper wire insulated with a thin, flexible
enamel insulating coating. Such wire is made and sold as magnet wire; it is available in a
wide range of diameters, and with various types and thicknesses of insulating coatings. The
thinnest coating is generally adequate for solenoid construction, but a high-temperature
insulation may be desirable. The enamel insulations are organic materials, and are
limited to working temperatures of 240°C or lower. For higher temperatures, braided fiber-
glass tubing may be used, although it is bulky compared to enamel coatings. Also available,
but expensive, is nickel-plated copper wire with a bonded surface layer of very small insu-
lating ceramic particles. Its operating temperature is limited by oxidation of the wire rather
than failure of the insulating layer.

Solenoid design is a matter of balancing several conflicting requirements, and the fol-
lowing points should be kept in mind:

1. D is determined by the working space required within the solenoid.

2. The ratio L/D is fixed by the distance over which field uniformity is required.
Because the specimen to be tested must normally be subjected to a reasonably
uniform field, this means that the maximum specimen length effectively determines
the ratio L/D, with the coil length L 1.5-2 times the length of the sample. Specimen
length is in turn governed by the factors discussed in Section 2.6.

3. For a given L, the field is proportional to the number of ampere-turns ni, and the
power required (which is equal to the rate of heat generated) is proportional to i’R.

4. For a given current, the voltage required from the power source is proportional to R,
which in turn is proportional to n. For the most effective use of a given power supply,
the solenoid resistance R should be chosen so that at maximum field the power supply
operates at both its maximum current and maximum voltage ratings.

Helmholtz coils will produce an almost uniform field over a much larger volume than a
solenoid. Two identical thin parallel coils, ideally with square cross-section, are placed at a
distance apart equal to their common radius r (Fig. 2.2). The field parallel to the axis of the
coils at a point P on the axis a distance z from the midpoint is given by

Cc . r? r?

H:7m 23/2+ |
P+ E—Fz ”+ I:—z
2 2

The distance between the two coils is L, so for the Helmholtz configuration L = r. Here C,
is defined as in Equation 2.1, dimensions are in centimeters for cgs and meters for SI, and n
is the number of turns in each coil. At the center of the coil system (z = 0)

2.4)

8 ni ni
H=——C—=0716Cy—. 2.5
5\/§C1 . C p (2.5)

Figure 2.3 shows the field from each of the individual coils (normalized to unity), and the
total field from both. G. G. Scott [J. Appl. Phys., 28 (1957) pp. 270-272] gives equations
for both components of the field at points off the axis. For the same power consumption,
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Fig. 2.2 Helmholtz coils. The spacing between coils L is equal to the coil radius r.

O
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Helmholtz coils produce a field which is only a few percent of that produced by a solenoid
of length r. They are thus confined to low-field applications.

By increasing the coil spacing slightly, the length of the uniform field region can be
increased at the cost of a slight dip in field at the center. Figure 2.4 compares the computed
fields of a “pure” Helmholtz coil with one where the coil spacing has been increased by
10%. The arrows show the distance over which the field is within 0.7% of the maximum
field. Increasing the coil spacing by 10% lowers the maximum field by about 5%, but
increases the length of the uniform field by almost 50%. Equation 2.4 is written in a

form than permits the effect of changing the coil spacing L to be easily calculated.

/
/

1.6

\

-1.0 -0.5

0.0
0.0

0.5

1.0

Fig. 2.3 Field distribution in Helmholtz coils. Position is specified in units of the coil radius r. The
light lines show the field (normalized to unity) from the individual coils (gray bars), located at +0.5 r,

and the heavy line is the total field.
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Fig. 2.4 Field distribution in a “pure” Helmholtz coil (upper curve) compared with field distribution
in a Helmholtz coil pair whose coil spacing has been increased by 10%. The dimension lines show the
distance over which the field is uniform within 0.7% of the maximum field.

The power supply to a solenoid or Helmholtz coil pair must normally provide variable
direct current. Variable dc power supplies, dry cells, lead-acid storage batteries, or alternat-
ing current rectifiers (with suitable filtering) can all be used. If the field needs to be reversed
during the measurement, so as to record a hysteresis loop, either a reversing switch is
needed or a bipolar power supply can be used. The bipolar supply permits a smooth and
unbroken reversal of the field, which is often a significant advantage. Solenoids may be
driven with alternating current (ac) when required. The inductance of the solenoid must
be considered, which may require balancing capacitors and can lead to high voltages
appearing across the terminals of the solenoid.

2.2.2 High Field Solenoids

To produce very high fields with normal solenoids requires very large power input, and two
major design problems must be addressed. The first is the removal of large amounts of heat.
(Note that maintaining a steady magnetic field by means of an electric current is a process of
exactly zero efficiency. All the input power goes into heat.) The second is providing suffi-
cient mechanical strength to resist the large forces acting on current carriers in the presence
of large fields.

Beginning about 1936, Francis Bitter [Rev. Sci. Instrum., 10 (1939) pp. 373-381]
began the development of high-field solenoids of a new type. The coil of a Bitter
magnet 1is sketched in Fig. 2.5, and a photograph of two partly assembled coils in
shown in Fig. 2.6. (Any device which produces a field is commonly referred to as a
“magnet,” whether or not it contains iron.) The winding is composed, not of wire, but
of thin disks of copper or a copper alloy. These disks, usually 1 ft (30 cm) or more in
diameter and about 0.04 in (1 mm) thick, have a central hole and a narrow radial slot
and are insulated from each other by similarly cut sheets of thin insulating material.
Each copper disk is rotated about 20° with respect to its neighbor, so that the region
of overlap provides a conducting path for the current to flow from one disk to the
next. The current path through the entire stack of disks is therefore helical, and the
stack of disks acts as a solenoid. The disks are clamped tightly together and enclosed



2.2 FIELD PRODUCTION BY SOLENOIDS 29

H

Water

Copper

Insulator

Fig. 2.5 Sketch of a Bitter magnet solenoid. Arrows indicate the current path from one disk to
another.

N

Fig. 2.6 Photograph of partially-assembled Bitter magnets. Figures 2.6 and 2.7 are by Walter
Thorner, National High Magnetic Field Laboratory.
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Fig. 2.7 Assembled Bitter magnet. (a) Top view with meter stick; (b) front view.
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in a case (not shown in the sketch). Cooling water is pumped axially through the magnet,
through a large number of small holes or slots cut in each disk. At the National High
Magnetic Field Laboratory (NHMFL) in Florida, dc fields of 45T (450kOe) can be
produced in a magnet with a bore of 32mm (1.25in), requiring dc current up to
67,000 amperes and power inputs of about 20 MW. The NHFML operates Bitter
magnets of various sizes, maximum field, and field uniformity. The photographs in
Fig. 2.7 show top and side views of a Bitter magnet ready for use.

Many aspects of the design of high-field Bitter magnets are treated in the book by
Montgomery, previously cited. Bitter magnets require large motor-generator sets, consist-
ing of an ac motor driving a dc generator, or else high power rectifier systems, to
provide the necessary large variable dc currents. Such installations, together with the
necessary cooling water supply and pumps, are expensive and only a few exist in the world.

Pulsed fields offer a less costly approach to the problem of measurements in high fields.
If the measurement can be made quickly, by means of high-speed data collection, then only
a transient field is needed. This is most commonly done by slowly charging a bank of
capacitors and then abruptly discharging them through a solenoid. A large pulse of
current, lasting a fraction of a second, is produced, and the problem of heat removal is
thus greatly minimized or even eliminated, depending on the magnitude of the field
required. Pulsed fields up to 200 kOe (20 T) or more can be attained in special water-
cooled or cryogenically-cooled solenoids, and pulsed fields of moderate strength (10—30
kOe, 1-3T) in conventional, wire-wound, uncooled solenoids are easily obtained. Even
higher fields and longer pulse durations of 0.5s or more are reached by extracting the
stored rotational energy of a large dc generator in a relatively long current pulse. The
design of pulsed field solenoids must also take into account the large forces acting on
the current carriers.

For even higher fields, flux compression devices can be used. A large field is created
inside a heavy copper tube, which is then compressed radially inward, usually by explosive
charges. A large induced current flows around the tube, which effectively keeps all the flux
lines within the tube. As the tube area shrinks, the flux density, or field, increases. In this
case, the sample is destroyed as the experiment is carried out.

2.2.3 Superconducting Solenoids

The phenomenon of superconductivity provides a radically different approach to the high-
field problem. When a normal metal is cooled near OK, its electrical resistivity decreases to
a low but nonzero value p,, called the residual resistivity (Fig. 2.8a). However, the resistivity
of some metals and alloys decreases abruptly to zero at a critical temperature 7. These
materials are called superconductors; lead (7, = 7.2K) and tin (T, = 3.7K) are examples.
(The magnetic properties of superconductors are also important; see Chapter 16.) If a
current is once started in a circuit formed of a superconductor maintained below T, it
will persist indefinitely without any power input or heat generation, because the resistance
is zero. The attractive possibility at once presents itself of producing very large magnetic
fields by making a solenoid of, for example, lead wire and operating it below 7. by immer-
sing the windings in liquid helium (4.2K). However, soon after the discovery of supercon-
ductivity in 1911, it was found that an applied magnetic field decreased T, and a field of a
few hundred oersteds or several tens of milli-tesla destroyed the superconductivity comple-
tely (Fig. 2.8b). Thus, when the field produced by the solenoid itself exceeds a critical value
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Fig. 2.8 (a) Variation of electrical resistivity with temperature for a normal metal and a super-
conductor. (b) Dependence of critical temperature on magnetic field.

H.,, the normal resistivity of the wire returns, along with the attendant problems of heating
and power consumption.

The solution to this problem was not found until 1961 when Kunzler et al.
[J. E. Kuntzler, E. Buehler, F. S. L. Hsu, and J. H. Wernick, Phys. Rev. Lett., 6 (1961)
pp- 89-91] discovered that the niobium-tin intermetallic compound Nb;Sn remains super-
conducting even at a field of 88 kOe or 8.8 T or 7 MA m. It was later found that the critical
field of this alloy at 4.2K, the temperature of liquid helium, is 220 kOe or 17.6 MA /m.
NbsSn is very brittle, and various metallurgical problems had to be solved before it was
successfully made in the form of a composite tape suitable for a solenoid winding. It
was later found that Nb—Zr and Nb—Ti alloys, which are reasonably ductile, are supercon-
ducting up to fields of about 80 kOe or 6.4 MA /m at 4.2K. Superconducting solenoids of
all three of these materials have been constructed.

Once current is flowing in a superconducting solenoid, no power input is required for the
solenoid itself. However, a superconducting short-circuit link must be provided while the
field is constant, and opened when the field needs to be altered. For this reason, supercon-
ducting solenoids in which the field needs to be swept, or frequently changed, are com-
monly operated with external power supplies and with nonsuperconducting leads
carrying the current to the magnet.

A superconducting solenoid must be maintained at or near the temperature of liquid
helium, which means that liquid helium must be purchased or a helium liquifier must be
operated. The sample environment is therefore naturally at liquid helium temperature, but
can be maintained at temperatures up to room temperature or even higher with appropriate
equipment. Temperatures significantly above room temperature are hard to obtain.
Superconducting solenoids are the common choice when fields above about 20 kOe
or 2T are required, up to a maximum of about 200kOe or 20T (unless the sample
needs to be at high temperature). Superconducting materials with much higher critical
temperatures have been discovered, but have not yet (2007) been made into successful
high-field magnets.

The great interest in high magnetic fields extends beyond studies of their effects on the
magnetic properties of materials. They are needed for a wide range of experiments in solid-
state physics and biology, and for magnetic resonance imaging (MRI) systems.
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2.3 FIELD PRODUCTION BY ELECTROMAGNETS

In the ordinary laboratory, the need for fields larger than those obtainable from conventional
solenoids is met with electromagnets. These usually produce fields up to about 20 kOe or
2 T, although some are capable of 3 T in a small volume.

An electromagnet consists essentially of an iron “core” around which is wrapped a coil
of wire carrying a direct current. Figure 2.9 illustrates its development. A simple solenoid is
shown in Fig. 2.9a; the field H at its center C is proportional to the number of ampere-turns
per unit length of its winding, in accordance with Equation 2.3. If an iron rod is inserted in
the coil, as in Fig. 2.9b, the field at its center C, inside the iron, is now very much larger,
because the field is now given by B, which is the sum of H due to the current and M due to
the iron (in appropriate units; Equation 1.15). We cannot, of course, make any use of the
field at a point inside the iron. However, the field at the point P, just outside the end of
the rod, is also equal to B. Further away, the lines of force diverge and the flux density,
or field strength, decreases rapidly. The iron has, in effect, multiplied the field due to the
current, and the multiplying factor is simply the permeability u or w., because B = uH.
Thus, if the permeability is 2000 for H= 100e or 1mT, the field inside and just
outside the iron is 20,000 Oe or 2 T. In this way quite a large field can be obtained with
a relatively low current. Here we have ignored the fact that B inside the rod near one end
is much less than B in the center of the rod, as we shall see in Section 2.6. When this
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effect is taken into account, we find that the current in the coil has to produce a field H many
times larger than 10 Oe or 1 mT if the flux density B at the end of the rod is to be 20,000 G
or 2 T. Even so, this current will still be very much less than if the iron were absent.

The rotor of an ordinary electric motor or generator is fundamentally a rotating electro-
magnet, composed of an iron core wound with copper wire. If these machines are to do any
useful work, they must operate at high flux densities; without the flux-multiplying power of
iron they would be not much more than scientific toys. It is a most remarkable fact of tech-
nological history that, when Faraday and Henry and their successors needed this power,
they found it readily available in ordinary cheap iron, which later work has shown to be
the best element for this purpose in the whole periodic table. One wonders what direction
the development of technology would have taken if the only strongly ferromagnetic element
had a price like that of gold or platinum.

The divergence of the lines of force near the ends of a straight iron rod can be reduced by
bending the rod into a circle so that the ends nearly touch, as in Fig. 2.9¢c. The flux then
travels directly from one pole to the other across the air gap. As the current in the winding is
increased, the magnetization of the iron increases to its saturation value M. The maximum
contribution of the iron to the field in the air gap is therefore about 21.5 kG or 2.15 T, if the
pole faces are flat. Any further increase is due only to an increased current in the winding.
To make this contribution more effective, the turns of the winding are brought close to the
air gap, and the magnet assumes the final form shown in Fig. 2.9d. The flux generated by
the winding passes through the core into the yoke, and back through the other core. Both
core and yoke are made of iron or low-carbon steel, annealed to produce high permeability.
The yoke must also be massive enough to resist the strong force of attraction between the
two poles. The windings are usually water-cooled. The size of a magnet is specified in terms
of the diameter of its poles, and electromagnets are made in a range of sizes from 3 to 12

Fig. 2.10 Commercial electromagnet (center). Power supply at left, control and measurement equip-
ment on right. Courtesy Lake Shore Cryotronics, Inc.
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inches (7.5 to 30 cm) or more. Figure 2.10 shows a commercial electromagnet with its
power supply and measuring equipment.

When a field uniform over a fairly large volume is required, flat pole faces are used. To
achieve higher fields, tapered pole pieces (pole caps) can be installed. The free poles
formed on the tapered surfaces contribute to the field at the center of the gap, as suggested
by Fig. 2.9¢e. This contribution can be comparable to M, [Y. Ishikawa and S. Chikazumi,
Jap. J. Appl. Phys., 1 (1962) p. 155], but this higher field is achieved only in a smaller
volume and it is not very uniform. A still further increase in field can be obtained by
making the pole pieces of an Fe—Co alloy, which has a saturation magnetization about
10% higher than that of Fe.

In many electromagnets the size of the air gap (distance between poles) can be adjusted
by a screw mechanism or by interchangeable pole caps of varying size. The larger the gap,
the smaller the field, because the larger air gap increases the reluctance of the magnetic
circuit (see Section 2.8) and because much of the flux then leaves the volume of the gap
proper and forms the “fringing flux” indicated in Fig. 2.9c and e. Figure 2.11a shows
how the field in the gap depends on gap size and the current in the winding for an
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Fig. 2.11 Magnetic field (kOe) vs current in a 12-inch electromagnet: (a) 4-inch and 1-inch gaps;
(b) with 4-inch tapered pole caps, 2-inch and 1-inch gaps.
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Fig. 2.12 Halbach cylinder. Solid arrows show direction of local magnetization. The open arrow is
the resulting field.

electromagnet with flat 12-inch diameter pole pieces; Fig. 2.11b shows the increase in field
that results if pole caps tapering to 4-inch diameter are installed in the same magnet.

2.4 FIELD PRODUCTION BY PERMANENT MAGNETS

A constant magnetic field up to some limiting value can be produced by an appropriate geo-
metrical arrangement of one or more permanent magnets. This is frequently useful, in
meters, motors, loudspeakers, and other devices, but a fixed field is generally not appropri-
ate for experimental work. However, the development of rare earth permanent magnets has
led to materials that can retain their magnetization in very large reverse fields, and this
makes possible an arrangement of rotating permanent magnets that can provide magnetic
fields in the working space varying continuously from +20 to —20kOe or +2 to —2T.
No cooling water is required, and the only power is that needed to physically rotate the
magnets [O. Cugat, P. Hansson, and J. M. D. Coey, IEEE Trans. Magn., 30 (1994) p. 4602].

The device is based on an arrangement called the Halbach cylinder (Fig. 2.12). The
direction of local magnetization in a permanent magnet ring at any angular position 0 is
rotated by an angle 20 from its original orientation at # = 0. The result is a uniform field
across a diameter of the cylinder, as shown by the large open arrow. In practice, the cylinder
is replaced with an array of uniformly-magnetized blocks arranged in an octagon, as shown
in Fig. 2.13. If two Halbach arrays are arranged concentrically, as in Fig. 2.14, and if the
inner array is made of a material whose state of magnetization is not altered significantly
by the field of the outer array, then the field at the center is simply the sum of the field
from each of the individual arrays. In Fig. 2.14, the fields of the two arrays are in opposite
directions, so if both arrays produce the same central field, the net field is zero. If either
array is rotated through 180°, the fields add, and the net field is the sum of the two individ-
ual fields. By appropriate rotation of the two arrays, the central field can have any value and
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any direction up to this sum. Using high-quality rare-earth permanent magnet materials, this
maximum field can be as high as 20 kOe or 2 T, as noted above.

2.5 MEASUREMENT OF FIELD STRENGTH

The field H to which a specimen is subjected in a measurement of its magnetic properties
must be known, by calculation or measurement. If the field is produced by a solenoid,
the field strength can be calculated from the current, number of turns, and length of the
winding, since these quantities can all be determined with good accuracy. However, the
field in the gap of an electromagnet must be measured, because it depends not only on
the current in the windings but also on the geometry and magnetic properties of the core
and yoke. It is possible to measure this field for a range of magnet currents and prepare cali-
bration curves like those of Fig. 2.11, although these do not take account of the fact that the
field at a given current varies slightly depending on whether the field is increasing or
decreasing, due to the hysteresis in the core material.

The two most common methods of measuring magnetic fields are by means of the Hall
effect and by electronically integrating the voltage induced in a search coil.

2.5.1 Hall Effect

This effect' occurs in any conductor carrying a current in the presence of a transverse mag-
netic field. If there is a current i in a plate-shaped conductor (Fig. 2.15), then two opposite
points a and b will be at the same potential in the absence of a magnetic field. When a field
H acts at right angles to the plate, the current path is distorted, and an emf ey is developed
between a and b. The magnitude of this Hall emf is proportional to the product of the
current and the field:

iH
ey = Ry ’7 vol, (2.6)

where ¢ is the thickness of the plate, and Ry, the Hall constant, is a property of the material.
The effect occurs both in metals and semiconductors, but is very much larger in the latter.

If i is kept constant, then ey is a measure of field strength H. If i is alternating, then ey is
also alternating and can be easily amplified. The sensing element, called a Hall probe, is
usually the semiconductor InSb in commercial instruments. The probe can be made very
small, 1 mm? or less, and is usually mounted on the end of a thin rod connected by a

Fig. 2.15 Sketch of a Hall plate, showing the relationship between field, current, and emf.

'Discovered in 1879 by the American physicist Edwin Hall (1855—1938) when he was a student under
H. A. Rowland at Johns Hopkins University.
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small-diameter cable to a control unit containing the current source, amplifier, and indicat-
ing meter. Depending on the orientation of the semiconductor chip, the measured field can
be perpendicular to the rod (transverse probe) or parallel to the rod (axial probe).
Multirange instruments are available for measurement of fields ranging from values
smaller than the Earth’s field to 30 kOe (3 T) or more. Because of the small size of the
probe, these instruments are well suited to the measurement of fields in confined regions,
or of field gradients. Alternating fields may also be measured, up to some frequency
limit set by the characteristics of the measuring circuit.

Commercial instruments, called gaussmeters or teslameters, have a manual zero setting,
and if it is necessary to measure very small fields the zero must be set with the probe located
in a magnetically shielded cylinder to eliminate the Earth’s field of about 0.5 Oe or 40 A /m.
In practice, the relationship between Hall voltage and field is not perfectly linear, and
becomes increasingly non-linear at high fields. This means that generally Hall probes
can be used only with control units for which they have been specifically calibrated.

Calibration of a Hall probe requires a series of accurately known fields. It is possible to
buy small permanent magnet assemblies of known field strengths in small gaps just large
enough to insert a probe; these are stable over long time periods. Alternatively, the field
of an electromagnet can be very accurately measured with a nuclear magnetic resonance
probe. The NMR technique is the standard for establishing an accurate value of a magnetic
field; NMR is discussed briefly later in this chapter, and in somewhat more detail in
Chapter 12. The technique depends on the measurement of a frequency, which can be
done to very high precision and accuracy.

2.5.2 Electronic Integrator or Fluxmeter

By Faraday’s law, a changing magnetic flux ¢ through a coil of N turns generates a voltage
in the coil proportional to the rate of change of flux

d
e=—-C,N— volt, 2.7

where in ST units C; =1 and ¢ is in webers or volt-seconds; in cgs units C, = 10 8 and @is
in maxwells. Time ¢ is in seconds.
Rewriting Equation 2.7 we obtain

edt=—C, Ndo, (2.8)
and integrating,
1 $2
J edt = —CzNJ deo=—C, N Aep. (2.9)
0 $1

An instrument to integrate the voltage from a search coil is called a fluxmeter. Various
moving-coil devices have been used in the past, but fluxmeters are now electronic integra-
tors based on capacitative feedback around an operational amplifier (see Fig. 2.16). The
electronic integrator provides a voltage output that can be digitized and recorded, rather
than a pointer deflection that must be written down.
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Fig. 2.16 Electronic integrator (schematic). Eoy = 1/RC f(; E;, dt.

If the flux is uniform over the area of the coil A, there will be a flux density in the coil:

_¢
B=+. (2.10)

B is in gauss = maxwell/cm” (cgs) or tesla = weber/m” = V-sec/m?* (SI). Then
Jedt:—CzNAAB V - sec. 2.11)

Note that a fluxmeter measures only changes in flux or flux density. If the measuring coil
encloses no magnetic material, B = H (cgs) or B = uoH (SI), and the fluxmeter measures
the field H. A fluxmeter can be used to record H during the measurement of a hysteresis
loop, when the value of the starting field is known. To measure a constant field, the
search coil must be moved from the unknown field to a zero-field region, or rotated
through 180°. For this kind of measurement (finding the value of a constant field) a Hall
probe is generally more convenient, since it provides a continuous reading.

The voltage generated in a search coil is often quite small. Consider a coil of 100 turns
and area 1 cm? = 10™* m?, in a field that changes from +100 to — 100 Oe or +8 to —8 kA
m in 1 sec. From Equation 2.11, the coil voltage has an average value of 0.2 mV, and the
integrated voltage is 0.2 mV-sec. Small parasitic voltages, usually thermally induced at dis-
similar-metal junctions, can cause significant background drift at these signal levels, and
fluxmeters always have some kind of drift control built in. Electronic fluxmeters generally
have a limiting sensitivity of about 10 maxwell turns = 10 gauss cm? turns or 10> weber
turns = 10> tesla m? turns. This means that a quantity about 100 times larger can be
measured to 1% precision.

Calibration of a fluxmeter is in principle not required. The properties of an electronic
integrator depend only on the values of its input resistor R and its feedback (integrating)
capacitor C, according to

1
Con = J eindt. 2.12)
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Resistors of accurately known value are readily available, but not capacitors, and the
precise measurement of capacitance is difficult. So calibration is usually accomplished
with a coil of known area-turns in a known magnetic field, or with a purchased or con-
structed mutual inductor. Commercial instruments are calibrated before delivery. Note
that the resistance of the measuring coil must be added to the internal resistance of the inte-
grator to give the correct value of R in Equation 2.12. This correction is usually, but not
always, small.

A suitable calibrating apparatus can be simply constructed by placing a search coil of
known area-turns at the center of a solenoid of known dimensions, with the axes of the
two coils aligned parallel. The field at the center of the solenoid is known from Equation
2.2 or 2.3, so the magnetic flux through the search coil is known. This device is in fact a
mutual inductor. Alternatively, a known input signal can be provided to the integrator in
the form of a small fixed voltage applied for a controlled time period. From the example
in a previous paragraph, a fixed voltage of 100 wV could be applied for exactly 2 sec, or
0.2mV for 1 sec.

2.5.3 Other Methods

Various other methods can be and have been used to measure magnetic fields.

Rotating Coil Magnetometer 1f a search coil in a field is continuously rotated about
an axis perpendicular to the field, an alternating emf will be generated that is proportional
to the field strength. This voltage may be brought out through slip rings and measured
directly, or converted to pulsating dc by a mechanical commutator (electronic rectifiers
do not work well at low voltages). The slip rings can be eliminated if the coil is oscillated
through 90 or 180° rather than rotated. The output signal is inherently linear with field, but
the rotating or oscillating coil and its mechanical drive system is bulky compared to a Hall
probe.

Magnetoresistance Most conducting materials show a change in resistance when
placed in a magnetic field. The effect is generally small and non-linear, and has not been
very successfully used for field measurement. Very large values of magnetoresistance
can be found in certain special materials and thin film arrays. This effect is used to sense
changes in field in magnetic computer storage and memory devices, but not for the
measurement of field strength. See Chapter 15.

Fluxgate Magnetometer A rod or strip of soft magnetic material driven beyond its
linear magnetization region by an alternating field will display a symmetric hysteresis
loop. If a dc field is superimposed on the ac field, the hysteresis loop will become asym-
metric as it is displaced from a center at H = 0, as in Fig. 2.17. The asymmetry is easily
detected, and can be cancelled by applying an opposing dc field with a small solenoid sur-
rounding the sensing strip. The current required to cancel the asymmetry is a direct measure
of the field that caused the original asymmetry. An instrument based on this principle is
called a fluxgate (or saturable core) magnetometer, and is commonly used to detect
changes in the Earth’s field for archeology and oil-field surveys, to control a coil current
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Fig. 2.17 Principle of fluxgate magnetometer (schematic).

to produce a stable magnetic environment in the laboratory, etc. The fluxgate magnetometer
is generally limited by heating in the balancing coil to the measurement of fields not
much greater than the Earth’s field. The sensing element is also large compared to a
Hall element. Further details are given in Section 2.5.3.

Magnetic Potentiometer or Chattock Coil This is a tightly wound coil, usually
but not necessarily semi-circular, wound on a nonmagnetic form, whose two ends lie in
the same plane (see Fig. 2.18). If no current flows in the coil, the line integral § H dI
around the path shown by the dotted line must be zero. We can write this integral as the

Fig. 2.18 Sketch of Chattock coil or magnetic potentiometer.
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sum of two parts:

B A
J Hdl—!—J HdL = 0. (2.13)
A B

If the field is uniform from A to B along the line L, we may write

B

A
J HdL:HAL:—J H dl. (2.14)
B A

If the output of the Chattock coil is connected to an integrator, the integrated voltage is pro-
portional to the change in H along the line L. Or the Chattock coil can be moved from the
field-measuring position to a region of zero field, and the integrator output will be pro-
portional to the (constant) field between A and B.

It is difficult to make a very small Chattock coil, so this device has been used less as
sample sizes have grown smaller over the years. It also suffers from the disadvantage of
being unable to measure a steady field without there being a relative motion of the
sample and the coil.

Nuclear Magnetic Resonance This was referred to above as a calibration method.
The resonance frequency of an atomic nucleus depends linearly on the applied field. A
probe containing a modest quantity of appropriate nuclei, plus coils for applying and detect-
ing high-frequency fields, is placed in the field to be measured and the frequency at which
resonance occurs is determined. Frequencies can be measured with high accuracy and pre-
cision, and the conversion factor from frequency to field is known with high accuracy and
precision, so this method is the most accurate way to measure magnetic fields. The probe is
relatively large, and the instrumentation is expensive; also the field must be uniform over
the volume of the probe. The subject is treated in somewhat more detail in Chapter 12.

SQUID Magnetometer This device is based on the tunneling of superconducting elec-
trons across a very narrow insulating gap, called a Josephson junction, between two super-
conductors. A sketch of the device in its usual form is shown in Fig. 2.19. A
superconducting measuring current flows through the ring, dividing so that equal currents
pass through each of two Josephson junctions. A changing magnetic flux through the ring
generates a voltage and a current in the ring, according to Faraday’s Law. This induced
current adds to the measuring current in one junction, and subtracts in the other. Because
of the wave nature of the superconducting current, the result is a periodic appearance of
resistance in the superconducting circuit, and the appearance of a voltage between points
A and B. Each voltage step corresponds to the passage of a single flux quantum across
the boundary of the ring. The existence of the flux quantum was demonstrated in somewhat
similar experiments on superconducting rings; its value is 4/2e = 2.07 x 1075 weber or
Tm?, or 2.07 x 10~ 7 maxwell or gauss cm? . This sensitivity is rarely needed in a measure-
ment of magnetic field, and in practice the device is most commonly linked to a coil to
measure the flux from a small sample, and thus the sample magnetization. In this form it
is called a SQUID (for superconducting quantum interference device) magnetometer.
Since a superconducting Josephson device requires low-temperature operation, it is
usually used in conjunction with a superconducting solenoid.
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Fig. 2.19 SQUID (superconducting quantum interference device) flux sensor.

2.6 MAGNETIC MEASUREMENTS IN CLOSED CIRCUITS

Lines of magnetic induction B are continuous and form closed loops. The region occupied
by these closed loops is called a magnetic circuit. Sometimes the flux follows a well-
defined path, sometimes not. When the flux path lies entirely within strongly magnetic
material, except possibly for a small amount of leakage flux, the circuit is said to be
closed. If the flux passes partially through “nonmagnetic” material, usually air, the
circuit is said to be open.

An important property of a closed and homogeneous magnetic circuit is that the material
comprising it can be magnetized without the production of magnetic poles, and therefore
without the production of any magnetic fields due to the material itself. As we shall see,
this circumstance considerably simplifies the determination of the field H, which causes
the magnetization.

The simplest example of a closed magnetic circuit is a ring, with a uniform circular or
square or rectangular cross-section, magnetized circumferentially. We will now consider
how the normal induction curve and hysteresis loop of a ring specimen can be determined.
A search coil of N turns is wound directly on the ring, often over a thin layer of electrically
insulating tape to protect the electrical insulation on the wire. This is called the secondary
winding, and since it will carry no significant current, it can be made using the smallest
practical wire size. If the material is known to be homogeneous and nondirectional, this
winding need not extend around the entire circumference of the sample. However, not
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Fig. 2.20 Arrangement for measuring the magnetic properties of a ring sample.

many samples can be reliably known to meet these conditions, so a complete circumferen-
tial winding is usually best. This winding should consist of a single layer if possible (and it
usually is). Over this is placed a magnetizing winding of n turns. This is the primary
winding. It must carry the magnetizing current, and its wire diameter must be chosen
accordingly (see Fig. 2.20). The primary winding must be distributed uniformly around
the sample circumference, and may consist of multiple layers. A current i through this
winding subjects the material of the ring to a field H, given by

H:CI% Oc or A/m (2.15)

where C is defined at Equation 2.1. The quantity L is the circumference of the ring (cm for
cgs, m for SI). Note that the field will be larger around the inside circumference and smaller
around the outside circumference, as the value of L varies. A common recommendation
is that

Dousige = Dinsige _ ) | (2.16)

D mean
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where the Ds are the diameters of the sample ring. This ensures that the field is uniform
within +5% over the volume of the ring sample. The value of L in Equation 2.15 is
then taken as the mean circumference of the ring.

The general procedure is to vary the current through the primary winding and measure its
magnitude (usually from the voltage drop across a low-value shunt resistor in series), while
simultaneously integrating the output voltage from the secondary winding with a fluxmeter.
The primary winding current can be converted directly to magnetic field by means of
Equation 2.15, and the integrator output is proportional to changes in the flux density in
the sample. The two voltages are plotted as x and y signals to give the hysteresis loop of
the sample material. The plot may be produced directly using an x—y recorder, but more
commonly the voltages are converted to digital values using an analog-to-digital (A —D)
converter and a computer. The hysteresis loop may then be plotted on the computer
screen and/or on a printer, using the software that controls the A—D converter or some
other program. An ordinary spreadsheet program works very well. A complete setup for
measuring and recording hysteresis loops is called a hysteresigraph, or sometimes a
hysteresisgraph.

Before beginning the measurement, the fluxmeter controls should be adjusted for
minimum drift, and the fluxmeter should be reset to give zero output. If only a complete
hysteresis loop is needed, it is best to start the integration at the maximum field (+
or —). The field is then varied from its maximum value, through zero, to its maximum
value in the opposite direction, and then back to its original value. Use of a bipolar
power supply allows the magnetizing current to be varied smoothly through zero; otherwise
a reversing switch is required, with the direction of current flow reversed at zero current.
The field sweep may be manually controlled, or controlled by a computer driving a pro-
grammable power supply. It may be desirable to decrease the rate of field change while tra-
versing the steepest parts of the loop. Unless the loop shape is bizarre, it is normally
sufficient to acquire about 50 data points for the entire loop, although with most software
and hardware setups it is easy to acquire many more points.

If there is drift in the integrator during the measurement, the plotted loop will not close
perfectly at the starting /ending tip. The usual practice is to correct for this by assuming the
drift rate is constant throughout the measurement, and applying a linearly increasing (posi-
tive or negative) correction to each recorded point such that the plotted loop closes.

Since the zero setting of the fluxmeter will not in general coincide with the demagne-
tized state of the sample, the plotted loop will be displaced from zero in the y direction
and a constant value must be added to (or subtracted from) each measured y value to
center the loop about the x axis. Finally, it is necessary to convert the recorded voltages
to values of field and flux density, using the dimensions of the sample, the value of the
series resistor in the primary circuit, the number of turns in the two windings, and the
calibration factor of the fluxmeter. Some or all of these corrections and calibrations
may be made automatically in the software if routine measurements are being made on
similar samples.

Note that this procedure measures the magnetic flux density B, not the magnetization M.
Since it is not possible to apply very large circumferential fields to a ring sample, the
method is generally limited to measurements on soft magnetic materials, in which B is
large relative to H (or woH ) and the distinction between B and 47M (or uoM) is not
significant. However, the correction from B to M is easily made if necessary, using
47M = B — H (cgs) or uyM = B — uyH (SD).
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To measure the normal magnetization curve, we must start with a demagnetized sample
at zero field, so that H = 0 and B = 0 simultaneously. As noted in Chapter 1, there are two
ways to demagnetize a ring sample: thermal and cyclic. Thermal demagnetization is
achieved by heating the sample above its Curie temperature and cooling in zero field.
This is tedious at best, and furthermore once any significant field is applied to the
sample, the demagnetized state is lost and can only be regained by another thermal
cycle. So usually a demagnetized state is achieved by subjecting the sample to a series
of decreasing positive and negative fields, as indicated in Fig. 1.16. The sample then tra-
verses a series of smaller and smaller symmetrical hysteresis loops collapsing toward the
origin. At H=0 and B = 0, the fluxmeter is set to zero and the field increased to its
maximum value to record the normal curve. Before the introduction of the electronic flux-
meter, when point by point readings were necessary, a series of symmetrical hysteresis
loops with increasing maximum field could be measured, and the normal curve taken as
the line joining the tips of the loops.

In principle, the thermally demagnetized state is not the same as the cyclically demag-
netized state, and the resulting normal magnetization curves might differ. Thermal demag-
netization is hardly ever used in practice, mainly because it is time-consuming but also
because the thermally demagnetized state will rarely be achieved in the actual operation
of a magnetic device, and so is of limited practical interest. Of course, the cyclically demag-
netized state is also rarely achieved in working devices.

Sometimes minor hysteresis loops, in which the field limits do not correspond to mag-
netic saturation, and may not be symmetrical about H = 0, are of interest. They are easy to
record using the system described above. See Fig. 1.15.

The time to record a nominally dc hysteresis loop is generally a minute or less. Ac loops
can be measured up to some limiting frequency; the limit may be set by the power supply,
the A—D converter, or the eddy-currents in the material (see Chapter 12).

Ring specimens, although free from magnetic poles, have some disadvantages. As noted
above, it is generally not possible to apply very high magnetic fields to the sample. Primary
and secondary windings must be applied to each specimen to be tested, and this can be
time-consuming. There are toroidal coil winding machines to speed this procedure.
Some specimens cannot be formed into a satisfactory ring. For example, if a wire or rod
is bent into a circle, there will be a significant gap at the joint. If the joint is welded, it
is not in the same magnetic state as the rest of the ring and this can lead to erroneous
results. Sheet material, on the other hand, is often quite satisfactory; rings can be
stamped out, and if necessary a number of these can be stacked together to form a compo-
site, laminated ring. Small ring samples of thin sheet material may be placed in a snugly
fitting protective plastic cover, called a core box, before the windings are applied. Note
that sheet material is usually magnetically anisotropic; it has different properties in
directions at different angles to the direction in which the sheet was originally rolled.
Therefore, measurements on rings cut or stamped from such sheets reveal only the
average properties over the various directions in the sheet. Thin strip material may be
coiled like a roll of masking tape to make a laminated ring. Such a sample is known as
a tape-wound core.

A “ring” sample need not be circular, but may be cut in the form of a hollow square or
other closed geometrical figure. This is appropriate, for example, when the sample is a
single crystal, and the properties in a particular crystallographic direction are required.
Such a sample is generally called a picture-frame sample.
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2.7 DEMAGNETIZING FIELDS

Before considering magnetic measurements in open circuits, we must examine the nature of
the fields involved. A magnetic field H can be produced either by electric currents or by
magnetic poles. If due to currents, the lines of H are continuous and form closed loops;
for example, the H lines around a current-carrying conductor are concentric circles. If
due to poles, on the other hand, the H lines begin on north poles and end on south poles.

Suppose a bar sample is magnetized by a field applied from left to right and sub-
sequently removed. Then a north pole is formed at the right end, and a south pole at the
left, as shown in Fig. 2.21a. We see that the H lines, radiating out from the north pole
and ending at the south pole, constitute a field both outside and inside the magnet which
acts from north to south and which therefore tends to demagnetize the magnet. This self-
demagnetizing action of a magnetized body is important, not only because of its bearing

(a)

B —

Inside the
magnet
4aM —

(b)

Fig. 2.21 Fields of a bar magnet in zero applied field. (a) H field, and (b) B field. The vectors in the
center indicate the values and directions of B, Hy, and 47M (cgs units) at the center of the magnet.
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Fig. 2.22 Variation of the demagnetizing field along the length of a bar magnet.

on magnetic measurements, but also because it strongly influences the behavior of magnetic
materials in many practical devices. We will therefore consider it in some detail.

The demagnetizing field Hy acts in the opposite direction to the magnetization M which
creates it. In Fig. 2.21a, Hy is the only field acting, and the relation B = H + 47M becomes
B= —Hy+ 47M (cgs), or B = uy(H + M) becomes B = —uyHy + oM (SI). The flux
density B inside the magnet is therefore less than 47mM (uoM ) but in the same direction,
because Hy (uoHy) can never exceed 47mM (uoM ) in magnitude. These vectors are indicated
in Fig. 2.21, along with a sketch of the B field of the magnet. Note that lines of B are con-
tinuous and are directed from south to north inside the magnet. Outside the magnet, B = H
(cgs) or B = uyH (SI) and the external fields in Fig. 2.21a and b are therefore identical. The
magnet of Fig. 2.21b is in an open magnetic circuit, because part of the flux is in the magnet
and part is in air.

As Fig. 2.21b shows, the flux density of a bar magnet is not uniform: the lines diverge
toward the ends, so that the flux density there is less than in the center. This results from the
fact that H, is stronger near the poles, and Fig. 2.22 shows why: the dashed lines show the H
field due to each pole separately, and the resultant curve has a minimum at the center.

The variation in induction along a bar magnet is easily demonstrated experimentally. A
closely fitting but moveable search coil, connected to a fluxmeter, is placed around the
magnet at a particular point and then removed to a distance where the field is negligible;
the resulting deflection is proportional to B at that point. The distribution of B shown in
Fig. 2.23a was measured on a steel bar magnet. Newer and better permanent magnets are
more resistant to demagnetization, so the same experiment using an alnico magnet of
almost the same length-to-area ratio gives a different result (Fig. 2.23b), but still shows
the reduction in flux at the ends of the sample due to the demagnetizing field. Ferrite
and rare-earth permanent magnets would show even less drop in flux, but these materials
are not normally made as rods or bars magnetized lengthwise.

When a soft magnetic body is placed in a field, it alters the shape of that field. Thus, in
Fig. 2.24, suppose that Fig. 2.24a is a uniform field, such as the field of a solenoid. It may
be regarded as either an H field or a B field. The B field of a magnet in zero applied field is
shown in Fig. 2.24b. The B field in Fig. 2.24c is the vector sum of the fields in Fig. 2.24a
and b. The flux tends to crowd into the magnet, as though it were more permeable than the
surrounding air; this is the origin of the term permeability for the quantity u. At points
outside the magnet near its center, the field is actually reduced. The same general result
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Fig. 2.23 (a) Measured flux density vs position in a steel bar magnet. (b) Same for an alnico bar
magnet. The two magnets had similar length/area ratios.

is obtained if the body placed in the field is originally unmagnetized, because the field itself
will produce magnetization. Figure 2.24 applies to a material like iron, with p > 1. The
opposite effect occurs for a diamagnetic body: the flux tends to avoid the body, so that
the flux density is greater outside than inside. (Because lines of B are continuous, the B
lines of Fig. 2.24 must close on themselves outside the drawing. If the field in which the
body was placed was generated by a solenoid, then the manner in which the lines close
is suggested in Fig. 1.8.)

The extent to which a body, originally unmagnetized, disturbs the field in which it is
placed depends on its permeability. For strongly magnetic materials (ferro- and ferri-
magnetic) the disturbance is considerable; for weakly magnetic materials it is practically
negligible. Steel ships produce appreciable disturbance of the Earth’s magnetic field at a
considerable distance from the ship, and the magnetic mines used in warfare make use
of this fact. As the ship passes, the change in field at the position of the mine is sensed
by some kind of magnetometer which then actuates an electrical circuit to activate the mine.
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Fig. 2.24 Result of placing a magnetized body in an originally uniform field.

2.8 MAGNETIC SHIELDING

If a high-permeability ring or cylinder is placed in a field, it tends to shield the space
inside from the field, as suggested by Fig. 2.25a. The field lines tend to follow the
magnetic material around the perimeter and emerge from the other side. The difficulty
with this explanation of shielding is that it suggests that the part of the cylinder normal
to the field plays a primary role in diverting the flux. Actually, a field normal to the
center of a flat plate passes right through, undeviated, as shown in Fig. 2.25b. It is
the sides of the cylinder parallel to the applied field that have the greatest effect.
These become magnetized, with poles as shown in Fig. 2.25c, and they reduce the
field inside the ring by exactly the same mechanism as that by which the bar
magnet of Fig. 2.24 reduces the field in the region adjacent to its center. (The portions
of the cylinder normal to the field acquire little magnetization, because of their very
large demagnetizing factor. See below.) Two or more concentric thin cylinders, separ-
ated by air gaps, are more effective than one thick cylinder. Components of some elec-
tronic circuits and devices need to be shielded from external magnetic fields, and this is
done by enclosing them in one or more thin sheets of a high-permeability material,
usually a Ni—Fe alloy.
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Fig. 2.25 Magnetic shielding.

2.9 DEMAGNETIZING FACTORS

Returning to the bar magnets of Fig. 2.24, we might ascribe the nonuniformity of the induc-
tion inside the magnet to the fact that lines of B “leak out” of the sides. If we taper the
magnet toward each end to make up for this leakage, the induction can be made uniform
throughout. It may be shown, although not easily, that the correct taper to achieve this
result is that of an ellipsoid (Fig. 2.26). If an unmagnetized ellipsoid is placed in a
uniform magnetic field, it becomes magnetized uniformly throughout; the uniformity of
M and B are due to the uniformity of Hy throughout the volume. This uniformity can be
achieved only in an ellipsoid. (These statements require qualification for ferro- and

Fig. 2.26 The H field of an ellipsoidal magnet in zero applied field.
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ferrimagnetic materials, because they are made up of domains, or small regions magnetized
to saturation in different directions. Even an ellipsoidal specimen of such a material cannot
be uniformly magnetized, although a condition of uniform M is approached as the domain
size becomes small relative to the specimen size. (See Sections 4.1 and 7.2.)

The demagnetizing field Hy of a body is proportional to the magnetization which
creates it:

Hy = —N4M, 2.17)

where Ny is the demagnetizing factor or demagnetizing coefficient. The value of N, depends
mainly on the shape of the body, and has a single calculable value only for an ellipsoid. The
sum of the demagnetizing factors along the three orthogonal axes of an ellipsoid is a constant:

N, + Ny + N = 4 (cgs
a b c ( g ) (218)
N, + Ny, + N, =1 (SD).
For a sphere, the three demagnetizing factors must be equal, so

41 1
Nsphere = ?(Cgs) or Nsphere = g (SD.

The general ellipsoid has three unequal axes 2a, 2b, 2¢, and a section perpendicular to
any axis is an ellipse (Fig. 2.27). Of greater practical interest is the ellipsoid of revolution, or
spheroid. A prolate spheroid is formed by rotating an ellipse about its major axis 2c¢; then
a = b < ¢, and the resulting solid is cigar-shaped. Rotation about the minor axis 2a results
in the disk-shaped oblate spheroid, with a < b = c¢. Maxwell calls this the planetary sphe-
roid, which may be easier to remember.

General ellipsoid Prolate spheroid

Oblate spheroid

Fig. 2.27 Ellipsoids.
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Equations, tabular data, and graphs for the demagnetizing factors of general ellipsoids
are given by E. C. Stoner [Phil. Mag., 36 (1945) p. 803] and J. A. Osborn [Phys.
Rev., 67 (1945) p. 351]. The most important results are as follows [here C; = 47 (cgs);
Cs= 1 (SDI:

1. Prolate spheroid, or rod (cigar). a = b < c. Put ¢/a = m. Then,

__ G m 2
JW_WLJ)wﬁijm+vm H-1 2.19)
M:m:Q;M. (2.20)

When m is large (long, thin rod), then

c
Ne ~ —>(In@2m) — 1) (2.21)
m
C
M:M%§~ (2.22)

The approximation is in error by less than 0.5% for m > 20. N, approaches zero as
m becomes large. Example: For m = 10, N, = 0.255 and N, = N, = 6.156 (cgs);
N.=0.0203 and N, = N, = 0.490 (SI).

2. Oblate (planetary) spheroid, or disk. a < b =c, and ¢/a = m.

Cs 1 m? [ Vm?—1
Ne =Ny = 7(m2 -1 <\/nﬁ arcsin (T —1 (2.23)

N, =C3—2N, (2.24)

Ny and N, approach zero as m becomes large. Example: For m = 10, N, = N, =
0.875 and N, = 10.82 (cgs); N, = N, = 0.0696 and N, = 0.861 (SI). When m is
large (thin disk), then

T 1

= ~ _— 22

Ne =Ny C3<4m 2m2) (2.25)
1

Nam C3(1 - 4 — (2.26)
2m  m?

This approximation is in error by less than 0.5% for m > 20. For larger values of m,
the 1/m? terms can be dropped, giving

N. =Ny~ Cy—— (2.27)
4m
Mzciu—i) (2.28)
2m
Specimens often encountered in practice are a cylindrical rod magnetized along its axis

and a disk magnetized in its plane. Since these are not ellipsoids, the demagnetizing
factors calculated according to the previous formulas will be in error to some degree.
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Rods and disks are never uniformly magnetized except when completely saturated. The
demagnetizing field varies from one point to another in the specimen and so has no
single value. Two specific effective demagnetizing factors may be defined and used, dep-
ending on the way the magnetization is measured. The ballistic or fluxmetric demagnetizing
factor Ny is the ratio of the average demagnetizing field to the average magnetization, both
taken at the midplane of the sample. It is the appropriate factor to use when the magnetization
is measured with a small coil wound around the sample at its midpoint, using a ballistic
galvanometer (now obsolete) or a fluxmeter. The fluxmetric demagnetizing factor is
useful primarily for rod-shaped samples. The magnetometric demagnetizing factor Ny, is
the ratio of the average demagnetizing field to the average magnetization of the entire
sample. It is the appropriate factor to use when the total magnetic moment of the sample
is determined using a vibrating-sample, an alternating-gradient, or a SQUID magnetometer
(these instruments are described later). Note, however, that strictly speaking these devices
measure the total sample moment only when the sample is small enough (relative to the
pickup coil dimensions) to act as a point dipole. The samples used in these instruments
are commonly disks magnetized along a diameter, although they may also be rods or
rectangular prisms.

Values of the demagnetizing factor depend primarily on the geometry of the sample, but
also on the permeability or susceptibility of the material. Bozorth [R. M. Bozorth,
Ferromagnetism, Van Nostrand (1951); reprinted IEEE Press (1993)] gives a table and
graphs of demagnetizing factors for prolate and oblate (planetary) spheroids, and also of flux-
metric demagnetizing factors for cylindrical samples with various values of permeability.
Bozorth’s curves have been widely reprinted and used. They are shown here as Fig. 2.28.
The values for cylinders are based on a selection of early theoretical and experimental
results, and should not be regarded with reverence. Note particularly that the demagnetizing
factors for cylindrical (nonellipsoidal) samples given by Bozorth are fluxmetric values
(although Bozorth does not use this terminology) and are only appropriate for measure-
ments made with a short, centrally-positioned pickup coil around a cylindrical sample.

The values in Bozorth’s graph for disk samples magnetized along a diameter are
calculated for planetary (oblate) ellipsoids, and so do not distinguish between fluxmetric
and magnetometric values. It should also be noted that Bozorth plots and tabulates
values of N /41 (cgs), not N (cgs), presumably so that the values can be multiplied by B
to give demagnetizing fields Hy. This is strictly incorrect, but useful for soft magnetic
materials where H < B and so B ~ 47M. Since

N (cgs)

N (SD = P

(2.29)

Bozorth’s values are numerically correct in SI.

Better values for the demagnetizing factors of rods and disks (and other shapes, such as
rectangular prisms) can be determined by experiment, or by calculation. The calculations
generally assume a material of constant susceptibility y, which is in fact the differential sus-
ceptibility dM/dH measured at a point on the magnetization curve. Three specific values of
x are of special significance: y = —1, corresponding to a superconductor in the fully-
shielded state; y ~ 0, corresponding to a weakly magnetic material such as a para- or dia-
magnet, or to a fully-saturated ferro- or ferrimagnet; and y = oo, corresponding to very soft
magnetic material. The condition y = —1 requires that B = 0 everywhere in the samples.
The condition y =0 requires that the magnetization M be constant throughout the
sample, with Hy variable. Note that y = dM/dH = 0 does not require M = 0. The condition
X = oo requires that the demagnetizing field be constant throughout the samples, exactly
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Fig. 2.28 Demagnetizing factors for various samples. [R. M. Bozorth, Ferromagnmetism, Van
Nostrand (1952); reprinted IEEE (1993) pp. 846-847]. Values plotted are Ng/4, which are
numerically equal to Ng;.

equal and opposite to the applied field, with magnetization M varying from point to point.
Demagnetizing factors can be calculated for other values of y, both positive and negative,
but the assumption of constant and uniform y makes them of limited usefulness.

The values for y = oo should apply for soft magnetic materials far from saturation, and
values for y = 0 to materials at or approaching magnetic saturation. In practice, demagne-
tizing field corrections are most important at low fields, where values of permeability and
remanence are determined. Demagnetizing corrections are relatively unimportant (although
not small) as the sample approaches saturation. Values of the coercive field are generally not
much affected by demagnetizing effects, since they are determined when the magnetization
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Fig. 2.28 Continued.

is at or near zero. Permanent magnet materials, in which the values of susceptibility are low
and uncertain, are normally measured in closed magnetic circuits where the demagnetizing
fields are kept small.

A paper by D.-X. Chen, J. A. Brug, and R. B. Goldfarb [/[EEE Trans. Mag., 37 (1991)
p- 3601] reviews the history of demagnetizing factor calculations and derives new values of
N and N, for rod samples. A later paper [D.-X. Chen, E. Pardo, and A. Sanchez, J. Magn.
Mag. Matls., 306 (2006) p. 135] gives improved values for rod samples, and adds some
calculated values of N, for disk samples. Similar results for rectangular prisms are given
by the same authors [[EEE Trans. Mag., 41 (2005) p. 2077]. All three of these papers
include results for a range of values of susceptibility as well as for sample shape.
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Fig. 2.29 Calculated SI magnetometric demagnetizing factors for rod samples magnetized parallel
to the rod axis. Central dashed line is for a prolate ellipsoid. Dotted curves are for y = 00; solid curves
for y = 0. Upper dotted and solid curves are magnetometric factors N,,; lower curves are fluxmetric
factors Ny. Data in Figs. 2.29 and 2.30 from D.-X. Chen, E. Pardo, and A. Sanchez, J. Magn. Mag.
Mater., 306 (2006) p. 125.

The results are extensive and detailed, and not easy to summarize. Figure 2.29 shows
calculated values of Ny and Ny, for rod samples. The central dashed line is for prolate ellip-
soids, where Ny and N, are the same. The dotted lines are calculated values of N;and N, for
X = o, i.e., for very soft magnetic materials. At large values of m (long, thin rods) N, is
slightly above the ellipsoid line, and Ny is slightly below. Note that values of m less than
about 10 are largely of mathematical interest, since the measurement requires a central
coil whose length is small compared to the sample length. The upper solid line is Ny, for
x =0, and the lower solid line is N; for y = 0. For samples of low susceptibility, or for
samples approaching magnetic saturation, the demagnetizing factors can differ from
those of the ellipsoid (of the same m value) by a factor approaching 10 when m = 100.
For samples of high susceptibility, in low fields, the demagnetizing factor for an ellipsoid
of the same m value is generally a reasonable approximation, considering the various uncer-
tanties involved.

Figure 2.30 gives some results for the magnetometric demagnetizing factor N, for disk
samples magnetized along a diameter. Fluxmetric demagnetizing factors Ny are of little
interest for disk samples. The dashed curve is for oblate (planetary) ellipsoids; this is the
same curve given by Bozorth. The dotted curve is for y = oo (high permeability) and the
solid curve is for y =0 (uniform magnetization). In the m range of practical interest,
values of N, are always higher than for the ellipsoid of the same m value, and the difference
between the y = o0 and the y = 0 values is much less than for rod samples.

There are some relevant experimental measurements. Figure 2.31 shows data points from
vibrating-sample (VSM) measurements on a series of permalloy disks, together with the
calculated curves for y = o and y = 0 from Fig. 2.30. The experimental points generally
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Fig. 2.30 Calculated SI magnetometric demagnetizing factors for disk samples magnetized along a
diameter. Dashed line is for an oblate (planetary) ellipsoid. Dotted line is Ny, for y = oo; solid line is
for y=0.

fall between the two calculated curves. Note that it is not difficult to prepare samples with
values of m greater than the highest value for which calculations (other than for ellipsoids)
have been made; this is especially true if thin-film samples are measured.

The theoretical papers give demagnetizing factors for values of y between 0 and oo, and
also for y between 0 and — 1. The negative values apply to superconductors, and will be
treated in Chapter 16.

In the case of nonellipsoidal samples, it is no longer necessarily true that the sum of
the three orthogonal demagnetizing factors is a constant, so Equations 2.18 are not
exactly correct.

Diameter/thickness = m

10 100 1000
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Fig. 2.31 Magnetometric demagnetizing factors for disk samples. Data points measured on 80
permalloy disk samples using a vibrating-sample magnetometer [C. D. Graham and B. E. Lorenz,
IEEE Trans. Mag., 43 (2007) p. 2743]. Dotted and solid lines are copied from Fig. 2.30, for y = o
and y = 0.
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Clearly in experimental work it is advantageous to make the value of m large, to mini-
mize the demagnetizing correction. Ideally, the worst-case value of Hy should be compar-
able to the uncertainty in the measurement of the applied field; then uncertainty in the value
of N becomes unimportant.

Permanent magnet samples are usually made in the form of short cylinders or rectangu-
lar blocks, and they need to be measured in high fields, so the usual practice is to make the
sample part of a closed magnetic circuit. This largely eliminates the demagnetizing effect.
See the next section.

A common mathematical procedure to calculate the demagnetizing field is to make use
of the magnetic pole density on the sample surface, given by p, = M cos 6, where M is the
magnetization of the sample and 0 is the angle between M and the normal to the surface.
Note that M cos 6 is the component of the magnetization normal to the surface inside the
body, and that M is zero outside. Therefore, the pole density produced at a surface
equals the discontinuity in the normal component of M at that surface. If n is a unit
vector normal to the surface, then

Mcos6=M -fi = p,. (2.30)

Note that this agrees with one of the definitions of M as the pole strength per unit area of
cross section. The polarity of the surface is positive, or north, if the normal component of M
decreases as a surface is crossed in the direction of M. Free poles can also be produced at the
interface between two bodies magnetized by different amounts and/or in different direc-
tions. If M, and M, are the magnetizations of the two bodies, then the discontinuity in
the normal component is

M, f—M, f=p, (2.31)

This is an important principle, which we shall need later.
We also note that, at the interface between two bodies or between a body and the sur-
rounding air, certain rules govern the directions of H and B at the interface:

1. The tangential components of H on each side of the interface must be equal.
2. The normal components of B on each side of the interface must be equal.

These conditions govern the angles at which the B and H lines meet the air—body inter-
faces depicted in Fig. 2.24, for example.

Free poles may exist not only at the surface of a body, but also in the interior. For
example, on a gross scale, if a bar has a winding like that shown in Fig. 2.32a, south
poles will be produced at each end and a north pole in the center, for a current i in the direc-
tion indicated. On a somewhat finer scale, free poles exist inside a cylindrical bar magnet, as
very approximately indicated in Fig. 2.32b. The condition for the existence of interior poles
is nonuniform magnetization. An ellipsoidal body can be uniformly magnetized, and it has
free poles only on the surface, unless it contains domains. A body of any other shape, such
as a cylindrical bar, cannot be uniformly magnetized except at saturation, because the
demagnetizing field is not uniform, and so the body always has interior as well as
surface poles. Nonuniformity of magnetization means that there is a net outward flux of
M from a small volume element, i.e., the divergence of M is greater than zero. But if
there is a net outward flux of M, there must be free poles in the volume element to
supply this flux. Such a volume element is delineated by dashed lines in Fig. 2.32b, in
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Fig. 2.32 Internal poles in a magnetized body.

which lines of M have also been drawn, going from south to north poles. (For clarity, the
lines of M connecting surface poles on the ends have been omitted.) If p, is the volume pole
density (pole strength per unit volume), then

oM, oM, OM,
+ 2=

div M=V-M= — o
v v ox oy | oz Py

(2.32)

On the axis of a bar magnet, M decreases in magnitude from the center toward each end, as
indicated qualitatively by the density of flux lines in Fig. 2.32b. Suppose the axis of the
magnet is the x-axis, and we assume for simplicity that M is uniform over any cross
section. Then only the term OMy/Ox need be considered. Between the center of the
magnet and the north end, OMy/Ox becomes increasingly negative, which means that p,
is positive and that it increases in magnitude toward the end, as depicted in Fig. 2.32b.
Although the interior pole distributions in Fig. 2.32a and b differ in scale, both are
rather macroscopic; we shall see in Chapter 9 that interior poles can also be distributed
on a microscopic scale.

The general derivations of Equations. 2.31 and 2.32 may be found in any intermediate-
level text on electricity and magnetism.

In summary:

1. Lines of B are always continuous, never terminating.

2. a. If due to currents, lines of H are continuous.
b. If due to poles, lines of H begin on north poles and end on south poles.

3. At an interface,
a. the normal component of B is continuous,
b. the tangential component of H is continuous, and
c. the discontinuity in the normal component of M equals the surface pole density p;

at that interface.

4. The negative divergence of M at a point inside a body equals the volume pole density
at that point.

5. The magnetization of an ellipsoidal body is uniform, and free poles reside only on the
surface, unless the body contains domains. See Section 9.5.
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6. The magnetization of a nonellipsoidal body is nonuniform, and free poles exist on the
surface and in the interior. (The saturated state constitutes the only exception to this
statement. A saturated body of any shape is uniformly magnetized and has poles only
on its surface.)

2.10 MAGNETIC MEASUREMENTS IN OPEN CIRCUITS

Measurements of this type are usually made with a VSM or alternating gradient magnet-
ometer (AGM), a fluxmeter, or a SQUID magnetometer. In the case of the VSM, AGM,
or SQUID, the direct experimental result is a plot of the sample magnetic moment m vs
the applied field H,. In the case of the fluxmeter, the usual result is a plot of flux density
B vs applied field H,. The problem is to correct values of the applied field H, to
values of the true field H,, by subtracting the values of the demagnetizing field Hy. The
relationship is

H, = H, — Hq, (233)

where Hq = NgM and Ny is the demagnetizing factor. As discussed above, unless the
sample is in the shape of an ellipsoid, there is no single demagnetizing factor N4 that
applies for all parts of the sample at all levels of magnetization. A workable procedure is
to select a value of Ny or Ny, from Figs. 2.28—-2.31 that is appropriate for the dimensions
of the sample, the measurement technique, and the low-field permeability or susceptibility
of the sample. It is important to remember that the demagnetizing field is always directed
opposite to the direction of magnetization in the sample. If the experiment produces values
of M, the correction is straightforward: at each value of M, the demagnetizing field is cal-
culated from Equation 2.17, and the demagnetizing field is subtracted from the applied field
(Equation 2.33) to obtain the true field acting on the sample. The corrections are made at
fixed values of M, and move the measured M values parallel to the H axis. Since the
demagnetizing field is proportional to the magnetization, Hy can be represented by
the line OD in Fig. 2.33, and the demagnetizing correction can be visualized by rotating
the line OD counterclockwise about the origin O until it coincides with the y-axis, and

-Hy 0 Hy H

+H
Magnetic field )
(a)
Fig. 2.33  Graphical treatment of demagnetizing fields. (a) Plot of M versus H. (b) Plot of B versus H.
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simultaneously moving each of the experimental values of M parallel to the H-axis, keeping
the distance between the line OD and the value of M fixed. This is sometimes called the
shearing correction.

When the measurement gives values of flux density B rather then M, the correction
becomes more complicated. M and Hy are evaluated as follows:

B =Hy +47M = Hy — NgM + 47M (cgs)

B (2.34)
= — Hy+M = H, — NgM + M (SI).

Mo
Then
_B_Ha _(B/MO)_Ha
M= yP—— N (cgs) M = TN N, (S (2.35)
B—-H, B —H,

Two simplifications are often possible. First, if Ny is reasonably small compared to 4 (cgs)
or 1 (SI), the denominator in Egs. 2.35 and 2.36 may be replaced by 4 or 1. Remembering
that demagnetizing factors are not exact or well-defined except for ellipsoids, we may say
that if Ny is less than about 2% of its maximum value (47 or 1), it may be neglected here.
This would mean m greater than 10 for a prolate ellipsoid (cigar) or greater than 30 for an
oblate (planetary) ellipsoid (disk). This does not mean that the demagnetizing field is
negligible, just that Ngy may be neglected in this denominator. Second, in many cases of
measurement on soft magnetic materials, H, is small compared to B (cgs), or compared
to B/ o (SI). If both these conditions hold, Equation 2.33 reduces to

B B
Hy = Ng—(cgs) or Hyg = Ngq—(SI) 2.37)
4 Mo

How this works is illustrated by the experimental data in Table 2.2, obtained from a rod
of commercially pure iron in the cold-worked condition. The rod was 240 mm long and
6.9 mm in diameter and hence had a length/diameter ratio of 35. The measurements were
made with a search coil at the center of the rod, so the fluxmetric demagnetizing factor

TABLE 2.2 Magnetization of Iron Rod

H,, Oe B.G (B-H,),G M, emu/cm?® Hy, Oc H, Oe
8.1 1,080 1,070 85 2.1 6.0
16.2 3,850 3,830 305 7.7 8.5
26.9 7,910 7,880 627 15.8 11.1
35.0 10,080 10,040 799 20.1 14.9
43.0 12,420 12,380 985 24.8 18.2
53.9 14,860 14,810 1,180 29.6 24.3

80.7 18,220 18,140 1,450 36.3 44.4
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Fig. 2.34 Measured and corrected magnetization curves of cold-worked iron, from the data of
Table 2.2.

applies. The low-field permeability is unknown, but we may make the reasonable assump-
tion that it lies somewhere between 10? and oo. From Fig. 2.28 we read Nyg = 0.002 (SI) or
N4 = (0.002)(47) = 0.025 (cgs). Using Equation 2.37, this leads to the demagnetizing
fields Hy listed in the table (which is in cgs units), and we see that they form a very sub-
stantial fraction of the applied fields. The flux density is plotted in Fig. 2.34 as a function
of both applied and true fields. It is clear that the apparent permeability, given by B/H,, is
much less than the frue permeability, or B/H,,. If the two conditions noted above are met, it
may be shown that

b1 —&(cgs) L _ ! — Ny(SD). (2.38)

Mirye Mappa.rent 4 I‘Lr(true) M’r(appa.rent)

This suggests an experimental method to determine a value for the demagnetizing factor.
If a material has a high permeability pqye, say 5000 or higher, then 1/, is negligible
and Equation 2.38 gives:

4 1
Mapparent = E(Cgs) “’r(apparent) = Ivd (SI) (239)

A measurement of B vs H, on a sample of this material will give an initial straight line with
a slope

B 4 B 1
H, ~ Mapparent = (cgs) or gH,  Mrtappareny = ﬁd(SD

The reciprocal of the numerical value of this slope gives the experimental value of Ny. So a
sample of high-permeability material, such as Ni—Fe permalloy or high-purity annealed
iron or nickel, made in the same size and shape as the sample(s) to be measured, can be
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used to establish an experimental demagnetizing factor for all high-permeability samples of
the same size and shape, measured in the same apparatus.
If M is measured directly instead of B, then we can write

H H

a
—_—A_N 2.40
YA (2.40)
or, since susceptibility y = M/H,
H, 1
2 __=N. (2.41)
M X

The value of y at low field can be measured on a ring sample where N = 0. For soft mag-
netic materials, 1/y may be negligible. Then the reciprocal of the slope of the measured M
vs H, curve gives an experimental value for N. This is the method used to determine the
experimental points in Fig. 2.31.

When the field applied to a specimen on open circuit is reduced to zero, the induction
remaining is always less than in a ring specimen, because of the demagnetizing field. In
Fig. 2.33b the induction in a ring specimen would be B,, because Hy =0 and H, = H.
But in an open-circuit specimen, the remanent induction is given by the intersection of
the demagnetizing line OC or OC’ with the second quadrant of the hysteresis loop. If the
specimen is long and thin, this line (OC) will be steep and the residual induction By will
not differ much from that of the ring. If the specimen is short and thick, the line (OC’)
will be so nearly flat that the residual induction B, will be very small.

The demagnetizing effect can assume huge proportions in short specimens of magneti-
cally soft materials. For example, suppose a sample of iron can be brought to its saturation
value of M = 1700 emu/cm’ (1.7 x 10° A/m) by a field of 10 Oe (800 A/m) when it is in
the form of a ring. If it is in the form of a sphere, Hy at saturation will be
(47/3)(1700) = 7120 Oe ([1/3][1.7 x 10°] = 570 kA /m), and the applied field necessary
to saturate it will be 7120 + 10 = 7130 Oe or 570 + 0.8 =571 kA/m. The M, H, (or
B, H,) curve will be a straight line almost to saturation, with a slope determined by the
value of Ng4, and the details of the true curve, such as the initial permeability, will be
unobservable.

In open-circuit measurements on very soft magnetic materials, the Earth’s magnetic field
of ~0.5Oe or 40 A/m may be significant. This influence can be minimized by orienting
the long axis of the sample perpendicular to the Earth’s field, as determined by a magnetic
compass. It may be important to consider that the Earth’s field has a component normal to
the Earth’s surface, except near the equator.

We have seen three possible methods of calculating or eliminating the demagnetizing
field correction:

1. Make the specimen in the form of an ellipsoid. Then Hy4 can be exactly calculated, but
at the cost of laborious specimen preparation.

2. Use a rod or strip or thin film specimen of very large length—area ratio. The demag-
netizing factor is then so small that any error in it has little effect on the computed
value of the true field.

3. Apply a correction using a calculated or tabulated or measured demagnetizing factor.
The uncertainties in this approach have been noted above.
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A fourth approach, which is often used, is to make the specimen into part of a closed
magnetic circuit, so that the free poles causing the demagnetizing field are largely elimi-
nated. This is done by clamping the sample into some form of magnetic yoke; the resulting
device is known as a permeameter. It is described in more detail below.

If a large number of identical rod samples are to be tested using a fluxmeter, time will be
saved by slipping each rod into a single search coil, previously wound on a nonmagnetic
form. Since the cross-sectional area A, of the search coil will be larger than the area A
of the specimen, an air-flux correction must be made for the flux in air outside the specimen
but inside the search coil:

d)observed = (bspecimen + d)air’
BapparenlAs = BuueAs + H(A: — As) (CgS) = BuueAs — /-LOH(AC —Ay) (SI)

Ac - As
Bie = Bapparent —-H A

(2.42)

Ac - As
> (CgS) = Bapparent - I-L()H( 2 ) (SI).

S

2.11 INSTRUMENTS FOR MEASURING MAGNETIZATION

2.11.1 Extraction Method

This method is based on the flux change in a search coil when the specimen is removed
(extracted) from the coil, or when the specimen and search coil together are extracted
from the field. When the solenoid in Fig. 2.35 is producing a magnetic field, the total
flux through the search coil is

&, =BA =(H+47M)A = (H, — Hq + 47M)A = (H, — NgM + 47tM)A (cgs)
or

@) = BA = pg(H + M)A = p(H, — Hy + M)A = pro(H, — NeM + M)A (SD)  (2.43)

where A is the specimen or search-coil area. (The two are assumed equal here to simplify
the equations, i.e., the air-flux correction is omitted.) If the specimen is suddenly removed

Solenoid
[ ]
To fluxmeter
Search >
I y” Coil
Sample
—

Fig. 2.35 Arrangement for measuring a rod sample in a magnetizing solenoid. Two procedures are
possible: (1) solenoid current is varied continuously and fluxmeter output is recorded continuously;
(2) at a series of constant solenoid current values the sample (not the search coil) is moved to a pos-
ition of effectively zero field, and the fluxmeter reading is recorded. This is the extraction method.
Procedure 1 measures B vs H; procedure 2 measures M(4m — N) (cgs) or uoM(1 — N) (SI).
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from the search coil, the flux through the coil becomes
O, = H,A (cgs) Dy = uyH,A (SD). (2.44)
The fluxmeter will therefore record a value proportional to the flux change:
DO — Oy = (47— Ny)MA (cgs) or D — Dy = uy(l — Ng)MA (SI). (2.45)

This version of the extraction method therefore measures M directly, rather than B. Note that
M is measured at a particular field strength, rather than as a change in M due to a change in
field, and that the flux change in the search coil does not involve H. This fact results in
greater sensitivity when M is small compared to H, as it is for weakly magnetic substances.

A variation of this method involves two identical search coils, located symmetrically in
the solenoid. These are connected in “series opposition,” i.e., if one is wound clockwise,
viewed along their common axis, the other is wound counterclockwise. If the area-turns
of both coils are equal, then a change in H, will induce equal and opposite emfs in the
two coils, and the fluxmeter will show no deflection. Thus variations in the applied field
will not influence the results. When the specimen is moved out of one coil and into the
other, the measured signal is twice that obtained with a single coil. Similar reasoning con-
trols the design of pickup coils in the vibrating sample magnetometer (see next section).

The extraction method, with either a single or double coil, may be used with an electro-
magnet as a field source. In Fig. 2.36 the coil axes are parallel to the field but displaced from
one another; each coil is also split in two, so that the entire coil system resembles two
Helmbholtz pairs.

The extraction method does not allow continuous recording of H and M in a simple
way and is no longer widely used, except in the SQUID magnetometer. However, the
vibrating-sample method, which may be regarded as kind of partial extraction method, is
very common.

2.11.2 Vibrating-Sample Magnetometer

This instrument is credited to S. Foner [Rev. Sci. Instrum., 30 (1959) pp. 548—-557] and is
sometimes referred to as a Foner magnetometer. The idea was also published by G. W. Van
Oosterhout [Appl. Sci. Res., B6 (1956) p. 101], and by P. J. Flanders [IEEE Special
Publication T-91, Conference on Magnetism and Magnetic Materials, Boston (1956)
pp- 315-317]. It is based on the flux change in a coil when a magnetized sample is vibrated
near it. The sample, commonly a small disk, is attached to the end of a nonmagnetic rod, the
other end of which is fixed to a loudspeaker cone (Fig. 2.37) or to some other kind of

I
I

Fig. 2.36  Extraction method using two coils, in the air gap of an electromagnet.
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Fig. 2.37 Vibrating sample magnetometer or VSM (schematic).

mechanical vibrator. The oscillating magnetic field of the moving sample induces an
alternating emf in the detection coils, whose magnitude is proportional to the magnetic
moment of the sample. The (small) alternating emf is amplified, usually with a lock-in
amplifier which is sensitive only to signals at the vibration frequency. The lock-in amplifier
must be provided with a reference signal at the frequency of vibration, which can come from
an optical, magnetic, or capacitive sensor coupled to the driving system. The detection-coil
arrangement shown in Fig. 2.37 is only one of several possible ones described by Foner, all
of which involve balanced pairs of coils that cancel signals due to variation in the applied
field. The coil arrangement of Fig. 2.37 is very commonly used. The apparatus is calibrated
with a specimen of known magnetic moment, which must be of the same size and shape as
the sample to be measured, and should also be of similar permeability.

The driving system may be mechanical, through a cam or crank and a small synchronous
motor, or in a recent commercial instrument, with a linear motor. In this case the vibration
frequency is generally below 40 Hz, and the vibration amplitude is a few millimeters. The
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amplitude is fixed by the geometry of the mechanical system or by the drive signal to the
linear motor. Alternatively, the driving system may be based on a loudspeaker, as in
Fig. 2.37, in which case the frequency is generally about 100 Hz, and the amplitude is
near 0.1 mm. In this case, the amplitude may vary, depending on the mass of the sample
and its interaction with the magnetic field, so there must be some provision for monitoring
and/or controlling the amplitude as well as the frequency of vibration. One method is to
attach a small permanent magnet to the sample rod, outside the varying field region,
with a second set of sensing coils. Then the signal from these coils can be used in a feed-
back loop to maintain a constant amplitude of vibration. Alternatively, a portion of the
signal from the permanent magnet can be balanced against the signal from the unknown
sample, making the method a null method.

-a— Linear Motor

Pickup Coil

Thermometer

Fig. 2.38 VSM working in a superconducting solenoid. The oscillating sample motion is provided
by a linear motor. Courtesy of Quantum Design, Inc.
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Care is necessary to minimize vibration of the sensing coils in the field, and to keep the
measuring field from influencing other parts of the system. Note that the VSM measures the
magnetic moment m of the sample, and therefore the magnetization M, whereas the flux-
meter method ordinarily measures the flux density B.

The VSM is very versatile and sensitive. It may be used for both weakly and strongly
magnetic substances, and standard versions can detect a magnetic moment of about
107> emu = erg /Oe or 10~% A m?. This corresponds to the saturation magnetization of
about 0.04 ug of iron, which suggests the attention to cleanliness that is necessary when
measuring small or weakly magnetic samples. The VSM must be used with care in the
determination of the magnetization curves or hysteresis loops of magnetically soft
materials. The specimen has to be short, and the demagnetizing field may then be such a
large fraction of the applied field that the true field is uncertain. However, if the sample
is or can be made very thin, as is often the case in the computer and electronics industries,
the demagnetizing correction can be small or negligible. The demagnetizing correction is
also generally unimportant in the determination of saturation magnetization Mj.

The VSM can be adapted for measurements at high and low temperatures, since only the
sample and vibrating rod must be heated or cooled. (The organic insulation on magnet wire
does not suffer at low temperatures, but has limited high temperature endurance.) VSMs of
normal design are limited to small samples, generally less than 1 g.

Figure 2.10 shows a commercial VSM mounted to operate in an electromagnet,
and Fig. 2.38 shows a VSM driven by a linear motor, working in a superconducting
solenoid magnet. The arrangement in Fig. 2.38 can operate as a VSM or as an extraction
magnetometer.

2.11.3 Alternating (Field) Gradient Magnetometer— AFGM or AGM
(also called Vibrating Reed Magnetometer)

Sensitivities even higher than the VSM can be achieved by mounting the sample at the end
of a fiber, and subjecting it to a fixed dc field plus an alternating field gradient, produced by
an appropriate coil pair, as indicated in Fig. 2.39. The field gradient produces an alternating
force on the sample, which causes it to oscillate and flexes the fiber. If the frequency of
vibration is tuned to a resonant frequency of the system, the vibration amplitude increases
by a factor equal to the quality factor Q of the vibrating system, which can be of the order of
100. The first system of this kind used an optical microscope to observe the vibration ampli-
tude, but later versions [P. J. Flanders, J. Appl. Phys., 63 (1988) pp. 3940—1345] use a
piezoelectric crystal to generate a voltage proportional to the vibrational amplitude,
which in turn is proportional to the sample moment. The limiting sensitivity of the commer-
cial version is about 10~® emu or 10”2 Am?. At this level of sensitivity, sample cleanliness
and mounting methods become critical. The AGM, also called the resonant reed or vibrat-
ing reed magnetometer, is more limited than the VSM in the maximum mass of the sample
that can be measured, and tuning the vibration frequency to resonance complicates the
measurement. The necessary presence of a field gradient means the sample is never in a
completely uniform field, which is sometimes a limitation.

2.11.4 Image Effect

Open-circuit measurements made with an electromagnet may show errors due to the image
effect. Figure 2.40a shows the exterior field of a short magnetized specimen. If this
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Fig. 2.39 Alternating-gradient magnetometer or AGM (schematic).
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Fig. 2.40 Image effect. (a) field due to magnetized sample in empty space; (b) field due to magne-
tized sample placed between two soft iron pole pieces.
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H

Fig. 2.41 Magnetization curve showing image effect.

specimen is now placed in the gap of an unmagnetized electromagnet, the lines of force
from the specimen swing around to the positions indicated in Fig. 2.40b. These new pos-
itions are just those which would result if the lines of force were connected to the “magnetic
images” of the specimen in the pole pieces, as shown by the dashed lines. An analogous
effect occurs in electrostatics, when the lines of force from a point charge shift their position
when a conducting plate is placed nearby. The magnetic moment of the magnetic image
exactly equals that of the specimen when the permeability w of the pole caps is infinite,
decreases as u decreases, and vanishes when the pole caps become magnetically saturated
[m (cgs) or w, (SI) = 1]. The change in field distribution caused by this image effect gen-
erally increases the flux linkage with the search coil and therefore increases the fluxmeter or
VSM signal. This increased signal disappears as the material of the pole caps approaches
saturation, which results in an apparent magnetization curve like that in Fig. 2.41. The
image effect appears as a drop in signal at high fields, although physically it results from
an increase in signal at low fields. An analogous effect occurs in a superconducting
magnet, as magnetic flux can increasingly penetrate the coil windings at high field levels.

The image effect can be minimized by keeping the sample and sensing coils as far as
possible from the pole faces of the electromagnet, or by increasing the working gap of
the magnet. However, these are not usually practical methods, because they reduce either
the working space in the magnet or the maximum field that can be applied to the
sample. The best solution in principle is to measure a sample of known constant magneti-
zation, and of the same size and shape as the sample to be measured, over the full range of
fields available in the electromagnet, and use these data to establish a field-dependent cor-
rection factor. This requires a sample whose magnetic moment remains constant over a wide
range of applied fields. Such a sample can be achieved in the form of an artificial specimen,
consisting of a small coil of the same shape and size as the real specimen, in which a con-
stant current is maintained in order to produce a constant magnetic moment of known mag-
nitude. However, the total magnetic moment of such a coil will be much less than the
moment of a strongly magnetic sample of the same size. It is also difficult to make a
coil in any shape other than a cylinder. Another possibility is to use a sample of a
modern permanent magnet material, whose remanent moment is unaffected by a wide
range of applied fields, or a soft magnetic material that saturates in low fields and keeps
a constant saturated magnetization in high fields. In both these cases it is hard to be sure
that the sample magnetization is exactly constant over a wide range of fields, but the correc-
tion may be adequate for many purposes.

Precise measurements by any of the methods noted above require that the position of the
specimen be accurately reproducible, both with respect to the coils and, because of the
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image effect, with respect to the pole pieces. In addition, the standard specimen used to cali-
brate the apparatus must have the same size and shape as the unknown, and also have
similar susceptibility or permeability.

2.11.5 SQUID Magnetometer

The SQUID device described previously, when used as a magnetometer, acts as a very
high-sensitivity fluxmeter, in which the integration is performed by counting voltage
steps. It is of such high sensitivity that in a working instrument the magnetic field is
held exactly constant by a superconducting shield, and the sample is moved slowly
through a superconducting pickup coil coupled to the SQUID while flux quanta are
counted. Since the SQUID is a superconducting device, it is usually incorporated in a
system including a superconducting magnet. Measurements over a range of fields and temp-
eratures are time consuming, and the systems are normally operated unattended, under com-
puter control. The sensitivity of a SQUID magnetometer is generally about 10~ emu or
107 '° Am?, an order of magnitude more sensitive than the AGM.

2.11.6 Standard Samples

The U.S. National Institute of Standards and Technology (NIST) includes in its list of
Standard Reference Materials three different magnetic moment standards: one of yttrium
iron garnet (YIG) and two of nickel, and a magnetic susceptibility standard of platinum.
(Www.nist.gov /srm).

2.11.7 Background Fields

Any kind of work involving weak fields, such as the measurement of low-field properties of
materials, the measurement of magnetic fields produced by small current flows in the
human body, or the calibration of magnetometers for use in satellite systems, is likely to
be influenced by variations in the Earth’s magnetic field. In addition to short-term and
long-term variations in the Earth’s field itself, which are small but not zero, substantial
fields can be generated locally by electric power lines, large motors, transformers, and
the like. One solution is to build a laboratory in a remote location, avoiding the use of
any iron or steel construction materials (such as nails!). A more practical solution is to
control the field in an existing laboratory. This control can be achieved by building a mag-
netically shielded room and/or by generating compensating fields. The latter are produced
by an arrangement of three large Helmholtz-coil pairs on mutually perpendicular axes.
Three magnetometers (or a single three-axis magnetometer) at the center sense the fields
there and through appropriate circuits control the currents in the Helmholtz coils to
control the three field components. In this manner the field in the central region can be
made to have any required (low) value, including zero, regardless of field changes
outside the system.

2.12 MAGNETIC CIRCUITS AND PERMEAMETERS

A permeameter is a device for testing straight bars or rods in a closed magnetic circuit. To
understand this method requires a general knowledge of the magnetic circuit, which we will
now consider. The concept of a magnetic circuit is a very useful one, not merely with
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Fig. 2.42 Magnetic circuits. (a) closed, (b) open.

respect to materials testing, but also in the design of electric motors and generators and
devices containing permanent magnets.

Suppose an iron ring of permeability w. (SI), circumferential length I, and cross section
A is uniformly wound with n turns of wire carrying a current of i amperes (Fig. 2.42a). Then
the field and the flux are given by

10 1
® = BA = puHA Maxwell (cgs)  ® = BA = uHA = pouHA Wb (SD).  (2.47)

o .
H="""0c (cgs) H= % Am~!(ST) (2.46)

Combining these equations gives

47 ni 47 ni ni ni
= 0HTA T 01A = —A = py—— (SD. 2.4
1047 101//&A(Cg5) Hobe 2= Hogrpa 6D (248)

This should be compared with the equation for the current i in a wire of length [, cross
secton A, resistance R, resistivity p, and conductivity o = 1/p, when an electromotive
force e is acting:

e e

The similarity in form between Equations 2.48 and 2.49 suggests the various analogies
between electric and magnetic quantities listed in Table 2.3. The most important of these
are the magnetomotive force (mmf) = (47/10)ni (cgs), unit gilbert or oersted-centimeter;
mmyf = ni (SI), unit ampere; and the reluctance = 1/uA (cgs), = 1/ A (SI).

TABLE 2.3 Circuit Analogies

Electric Magnetic

Current = electromotive force/resistance Flux = magnetomotive force/reluctance

Current = i Flux = &

Electromotive force = e Magnetomotive force = ni (SI) or (47/10)ni (cgs)
Resistance = R = pl/A = 1/0A Reluctance = I/ u,A (SI) or I/ A (cgs)

Resistivity = p Reluctivity = 1/, (SI) or 1/ (cgs)

Conductance = 1/R Permeance = A/l (SI) or pA/I (cgs)

Conductivity = o= 1/p Permeability = w, (SI) or w (cgs)
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A magnetic circuit may consist of various substances, including air, in series. We
then add reluctances to find the total reluctance of the circuit, just as we add resistances
in series:

b — mmf
(/A D) + (b mAr) ...

(2.50)

where [, [, . .. are the lengths of the various portions of the circuit, w;, s, w3, ... their
permeabilities, and Aj, A,, ... their areas. [Linear dimensions are in centimeters for cgs,
m for SI; w (cgs) is replaced by w, (SI); and the right-hand side must be multiplied by
1o for SI.) Similarly, if the circuit elements are in parallel, the reciprocal of the total reluc-
tance is equal to the sum of the reciprocals of the individual reluctances.

The open magnetic circuit of Fig. 2.42b, consisting of an iron ring with an air gap, may
be regarded as a series circuit of iron and air. Because the permeability of air is so small
compared to that of iron, the presence of a gap of length [, greatly increases the reluctance
of the circuit. Thus

(-1 I
Reluctance with gap HA (DA Iy
= =1 = -1, 251
Reluctance without gap + / (w=1 @.51)

; =
MA
where w is replaced by w, for SI units.

A value for p or w, of 5000 is typical of iron near the knee of its magnetization curve. If
the ring has a mean diameter of 10 cm (circumference 31.4 cm) and a gap length of 1 cm,
then the reluctance of the gapped ring is 160 times that of the complete ring, although the
gap amounts to only 3% of the circumference. Even if the gap is only 0.05 mm
(2 x 1073 in), so that it is more in the nature of an imperfect joint than a gap, the reluctance
is 1.8 times that of a complete ring. Since the magnetomotive force is proportional to the
reluctance (for constant flux), the current in the winding would have to be 160 times as
large to produce the same flux in the ring with a 1 cm gap as in the complete ring, and
1.8 times as large for the 0.05 mm gap.

These results may be recast in different language. To say that the current in the winding
must be increased to overcome the reluctance of the gap is equivalent to saying that a
current increase is required to overcome the demagnetizing field Hy created by the poles
formed on either side of the gap. We can then regard the field due to the winding as the
applied field H,. If H, (and ¢) are clockwise, as in Fig. 2.42b, H,q will be counterclockwise.
This demagnetizing field can be expressed in terms of a demagnetizing coefficient N,
which we will find to be directly proportional to the gap width. If H,, is the true field,
then (using cgs units)

u _B_ ® mmf/reluctance _ 1 4mnil0
T pA pA (=l ks
[\ uA A
_ <477'm) [ 1 _ H,l ' (2.52a)
10 I+l(nw—=1)] [+ l(u—1)
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But u — 1 = 4@y = 4wM /Hy;, where y is the susceptibility. Substituting and rearranging,
we find

l
H,=H, — 47 7gM =H, — NgM = H, — Hy. (2.53a)

The demagnetizing coefficient is thus given by 4 (l/I). The field in the gap is H, = B,,
which, because of the continuity of lines of B, is equal to the flux density B in the iron,
provided that fringing (widening) of the flux in the gap can be neglected.

Repeating in SI units,

B/, d mmf /reluctance
H, = = =
Me oA Mo A

1 ni i 1

oA [Tl | g (=l o+ )
mA A

i 1 _ H,l

"ol L — 1) I+ Ly, — 1)

(2.52b)

but u, —1 = y = M/H, where y is the volume susceptibility. Substituting and rearranging,
we find

l
Htr = a TgM = Ha — NdM = Ha - Hd. (253b)

The demagnetizing coefficient is given by I,/I. The field in the gap is H, = B,/ o, Which,
because of the continuity of lines of B, is equal to the flux density B in the iron, provided
that fringing (widening) of the flux in the gap can be neglected.

Returning to the ungapped ring, we may write Equation 2.46 as

4
HI = % ni = mmf (cgs) or HI = ni = mmf (SD). (2.54)

Since / is the mean circumference of the ring, H! is the line integral of H around the circuit,
which we may take as another definition of magnetomotive force:

4
%Hdl = mmf = %ni = 1.257ni (cgs) or %Hdl = mmf = ni (SI). (2.55)

It is understood here that H is parallel to /, as is usually true. If not, we must write the
integral as § Hcos@ dl, where 6 is the angle between H and dl. Although we have extracted
Equation 2.55 from a particular case, it is quite generally true and is known as Ampere’s
law: the line integral of H around any closed curve equals 41/10 (cgs) or 1 (SI) times
the total current through the surface enclosed by the curve. Thus, if [ is the mean circum-
ference of the ring in Fig. 2.42a, the total current through this surface is ni, so that
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Hl = (47/10)ni (cgs) or HI = ni (SI). Ampere’s law often provides a simple means of
evaluating magnetic fields. For example, the value of § H dl around a wire carrying a
current i, and at a distance r from the wire, is simply (H)(27r); therefore,

4 20 i
2mrH = —i H=— ; 2mrH =i H=—(SI
s 10 i, or Tor (cgs); T i, or oy (SD),

in agreement with Equation 1.10.

Magnetomotive force may also be defined as the work required to take a unit magnetic
pole around the circuit. Since the force exerted by a field H on a unit pole is simply H, the
work done in moving it a distance d/ is H dl, and we again arrive at § H dl as the magne-
tomotive force in the circuit. Pursuing the analogy with electricity still further, we may
define the difference in magnetic potential V between two points as the work done in bring-
ing a unit magnetic pole from one point to the other against the field, or

2
V-V = —J Hdl. (2.56)
1

In a circuit, closed or open, composed of permanently magnetized material, flux exists even
though the magnetomotive force is zero. Discussion of such circuits will be deferred to
Chapter 14.

Although the analogy between magnetic and electric circuits is useful, it cannot be
pushed too far. The following differences exist:

1. There is no flow of anything in a magnetic circuit corresponding to the flow of charge
in an electric circuit.

2. No such thing as a magnetic insulator exists (except for some superconductors). Thus
flux tends to “leak out” of magnetized bodies instead of confining itself to well-
defined paths. This fact alone is responsible for the greater difficulty and lower accu-
racy of many magnetic measurements, compared to electrical.

3. Electrical resistance is independent of the current strength. But magnetic reluctance
depends on the flux density, because w or w, varies with flux density B.

2.12.1 Permeameter

In a permeameter a closed magnetic circuit is formed by attaching a yoke, or yokes, of soft
magnetic material to the specimen in order to provide a closed flux path. A magnetizing
winding is applied to the specimen or yoke, or both. A permeameter can be regarded as
an electromagnet in which the gap is closed by the specimen.

Many types of permeameters have been made and used, distinguished by the size and
shape of the sample, the relative arrangement of specimen, yoke, and magnetizing
winding, and by the means of sensing the field. As an example, we may consider the
Fahy Simplex permeameter shown in Fig. 2.43. The specimen, usually in the form of a
flat bar, is clamped between two soft iron blocks, A and A’, and a heavy U-shaped yoke.
The yoke is made of silicon steel (iron containing 2 or 3% Si), a common high-permeability
material, laminated to reduce eddy currents. Its cross section is made large relative to
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Magnetizing winding

Yoke

Specimen: i
A A’
Clamp Clamp
pressure pressure

Fig. 2.43 Fahy Simplex permeameter (sketch).

that of the specimen, so that its reluctance will be low. The lower the reluctance, the greater
will be the effect of a given number of ampere-turns on the yoke in producing a field
through the specimen.

A B-coil is wound on a hollow form into which the specimen can be easily slipped. If the
current through the magnetizing winding is changed, the field H acting on the specimen will
change. The resulting change in B in the specimen is measured by means of a fluxmeter
connected to the B-coil. The only problem then is the measurement of H, and the same
problem exists in any permeameter because none of them has a perfectly closed magnetic
circuit. In the Fahy permeameter the field in the specimen is not the same as the field
through the magnetizing coil because of leakage; therefore H cannot be calculated from
the magnetizing current. Instead, H is measured by means of the H-coil, which consists
of a large number of turns on a nonmagnetic cylinder placed near the specimen and
between the blocks A and A’. This H-coil is an example of the Chattock potentiometer
described on page 42. When the magnetizing current is changed, H is measured by
another fluxmeter connected to the H-coil. In effect, the assumptions are made that the mag-
netic potential difference between the ends of the specimen in contact with the blocks is the
same as that between the ends of the H-coil, and that the H-coil accurately measures this
difference. This is found to be not quite correct, and rather low accuracy results unless
the H-coil is calibrated by means of a specimen with known magnetic properties. All per-
meameters suffer from uncertainty in measuring the value of the field applied to the sample,
which results in part from the fact that the field is not uniform over the length of the sample.

Other permeameters are designed for various shapes and sizes of samples, and may use
other methods, such as a Hall probe, to measure the magnetic field. A related class of
devices are single-sheet testers, used to measure power loss in samples of transformer
and motor steels (see Chapter 13). A closed circuit can be made of interleaved strips of mag-
netic sheet; this is the basis of the Epstein frame test, which is also described in Chapter 13.

The properties of magnetically soft materials may be sensitive to strain, and this must be
kept in mind when clamping a specimen of such material in a permeameter. Too much
clamping pressure alters the properties of the specimen, and too little results in a magneti-
cally poor joint and greater leakage.
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2.12.2 Permanent Magnet Materials

Measurements on permanent magnet materials present some special problems. Ring-shaped
samples are generally not available, and in any case higher fields are needed than can be
applied to ring samples. Permanent magnet samples are often too heavy for a VSM or
other moving-sample instruments. The demagnetizing corrections are large and uncertain.

The usual solution is to use a special form of permeameter, in which the permanent
magnet sample is clamped between the (moveable) pole pieces of an electromagnet to
create a closed magnetic circuit. The flux density B is measured with a close-fitting coil
around the sample, connected to an integrating fluxmeter. The field H is determined by
means of a pair of concentric coils around the sample, of slightly different areas, wound
directly above the B coil or adjacent to it (see Fig. 2.44). Let A; be the area of the inner
H coil, A, the area of the outer H coil, and A the cross-sectional area of the sample.
Then the magnetic flux through the inner coil is

BA; = 4mMA, + HA; (cgs) or BA; = pyMA, + poHA; (SI) 2.57)

Outer H coil

% Inner H coil
 — B coil

Sample
Magnet Magnet
coil coil
Measuring
————— == coils ===
Adjustable
== pole
pieces
/*z -~
_____ I Sample I

Electromagnet

Fig. 2.44 Measurement of permanent magnet sample (schematic).
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and the magnetic flux through the outer coil is

BA, = 4mMA, + HA, (cgs) or BA, = pyMA + pyHA, (SI). (2.58)

If the coils are connected so that the difference between the two coil signals is measured, the
signal due to the sample magnetization disappears, and we are left with

BA, — BA; = HA, — HA; = H(Ao—A;) (cgs)

(2.59)
BA, — BA; = py(HA, — HAj) = puyH(Ao—Aj) (SD).

If A, and A; are known, integration of the difference signal gives a signal proportional to H.
Alternatively, the quantity (A, — A;) may be determined by calibration in a known field.
Equations 2.58 and 2.59 assume that each of the coils has the same number of turns. If
this is not true, the number of turns in each coil must be included explicitly to give the
area-turns product n,A, for each coil.

This method relies on that fact that the tangential component of field is the same just
inside and just outside the sample, and on the assumption that the field is independent of
radial position from the center of the sample out to the radius of the outer coil. The com-
ments about drift control, zero offsets, etc., noted above in connection with measurements
on ring samples apply here as well, with the added complication that both B and H signals
must be integrated.

In samples with length-to-diameter ratios less than about 2, a drop in signal like that
caused by the image effect (Fig. 2.41) appears. This is presumably due to non-uniform
saturation of the pole tips, with saturation occurring first in the region where the flux
from the sample enters the pole tips. This explanation is consistent with the observation
that the apparent drop in magnetization occurs at lower fields when the sample saturation
magnetization is high. The error fortunately does not influence measurements in the
second quadrant, which are of greatest importance for permanent magnets, and can be
eliminated by making the length-to-diameter ratio large enough.

Instead of using an analog electronic integrator and recording the integrated signal, it is
possible to record the unintegrated voltage signal, either amplified or not, and then carry out
the integration digitally in software. This is regularly done in the case of high-speed pulse
magnetization, where the short time intervals give large values of dB/dt, but not in the case
of slow measurements on bulk permanent magnet samples.

2.13 SUSCEPTIBILITY MEASUREMENTS

The chief property of interest in the case of weakly magnetic substances (dia-, para-, and
antiferromagnetic) is their susceptibility. The M vs H curve is linear except at very low
temperatures and very high fields, so that measurements at one or two values of H are
enough to fix the slope of the curve, which equals the susceptibility. Fields of the order
of several kOe or several hundred kA/m are usually necessary in order to produce an
easily measurable magnetization, and these fields are usually provided by an electromagnet.
Because M is small, the demagnetizing field Hy is small, even for short specimens, and
usually negligible relative to the large applied fields H, involved. If a demagnetizing
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correction is needed, the appropriate value of Ny, can be read from the curve for y = 0 in
Fig. 2.29 or 2.30.

The vibrating-sample magnetometer, the vibrating reed magnetometer (AGM), and the
SQUID magnetometer may all be used to measure susceptibility. In addition, another cate-
gory of techniques is available for susceptibility measurements. These methods are based
on measurement of the force acting on a body when it is placed in a nonuniform magnetic
field. An instrument designed for this purpose is usually called a magnetic balance or a
magnetic force balance.

A homogeneous non-spherical body placed in a uniform field will rotate until its long
axis is parallel to the field. The field then exerts equal and opposite forces on the two
poles so that there is no net force of translation. On the other hand, consider the nonuniform
field, increasing from left to right, of Fig. 2.45. In a body of positive x, such as a paramag-
netic, poles of strength p will be produced as shown. Because the field is stronger at the
north pole than at the south, there will be a net force to the right, given by

dH
F,= —pH+p(H+l—)
dx

dH dH dH
p dx " dx v dx
dH dH?
= xoH e =5 (2.60)

where m is the magnetic moment and v the volume of the body. Thus the body, if free to
do so, will move to the right, that is, into a region of greater field strength. (Note that the
body moves in such a way as to increase the number of lines through it, just as the same
body, if placed at rest in a previously uniform field, acts to concentrate lines within it as
shown in Fig. 2.24c.) If the body is diamagnetic (negative y), its polarity in the field
will be reversed and so will the force: It will move toward a region of lower field strength.
This statement should be contrasted with the ambiguous remark, sometimes made, that a
diamagnetic is “repelled by a field.”

The orientation of a para- or diamagnetic rod in a field depends on the shape of the field.
If the field is uniform, both rods will be parallel to the field. If the field is axially symmetri-
cal, with the field lines concave to the axis, as in Fig. 2.46, the paramagnetic rod will lie
parallel to the field (Greek para = beside, along) and the diamagnetic rod at right angles
(dia = through, across). These terms were originated by Faraday. A field of this shape
always exists between the tapered pole pieces of an electromagnet or between flat pole
pieces if they are widely separated.

H 4 p
—_— | _x»

Fig. 2.45 Magnetized body in a nonuniform field.
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Diamagnetic rod Paramagnetic rod

N

Fig. 2.46 Orientations of para- and diamagnetic rods in the field of an electromagnet.

If the field H has components H,, H,, H,, then H? = Hf + H§ + Hf, and the force on the
body in the x direction is

Fy =

o (OH | OHY | OH;
2\ Ox ox Oox

OH. OH, BHZ> 260

= xv| Hy—— ——~+H,
XU( Ox + Ay Ox + Ox

It is often necessary to correct for the effect of the medium, usually air, in which the body
exists, because the susceptibility y of the body may not be greatly different from the sus-
ceptibility xo of the medium. The force on the body then becomes

(2.62)

OH,  OH,  OH,
Ox Y Ox P ox )’

FX(XX())U<HX — 4+ H,

because motion of the body in the +x direction must be accompanied by motion of an equal
volume of the medium in the —x direction.

The two most important ways of measuring susceptibility are the Curie method (some-
times called the Faraday method) and the Gouy method.

In the Curie method the specimen is small enough so that it can be located in a region
where the field gradient is constant throughout the specimen volume. The pole pieces of an
electromagnet may be shaped or arranged in various ways to produce a small region of con-
stant field gradient. Figure 2.47 shows one example. Alternatively, a set of small current-
carrying coils can be placed in the gap of an ordinary electromagnet to produce a local
and controllable field gradient. The field is predominantly in the y direction and, in the
region occupied by the specimen, Hy and H, and their gradients with x are small. The
variation of H§ with x is shown by the curve superimposed on the diagram, and it is

seen that
2
Wy (o, 2y
dx Y dx
is approximately constant over the specimen length. Equation (2.62) therefore reduces to

dH
Fy= (X — xo)vHy (2.63)

-y
dx
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Fig. 2.47 Curie method for measurement of susceptibility.

Note that yvH is the magnetic moment m of the sample. Fy is measured by suspending the
specimen from one arm of a sensitive balance or other force-measuring device. If (y — xo) is
positive, there will be an apparent increase in mass Aw when the field is turned on. Then

Fy = gAw, (2.64)

where g is the acceleration due to gravity. The Curie method is difficult to use as an absolute
method because of the difficulty of determining the field and its gradient at the position of
the specimen. But it is capable of high precision and high sensitivity, and can be calibrated
by measurements on specimens of known susceptibility, determined, for example, by the
Gouy method.

The specimen in the Gouy method is in the form of a long rod (Fig. 2.48). It is suspended
so that one end is near the center of the gap between parallel magnet pole pieces, where the
field Hy is uniform and strong. The other end extends to a region where the field Hy is rela-
tively weak. The field gradient dH, /dx therefore produces a downward force on the speci-
men, if the net susceptibility (y — xo) of specimen and displaced medium is positive. The

Specimen

Fig. 2.48 Gouy method for measurement of susceptibility.
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force on a small length dx of the rod, of volume dv and cross-sectional area a, is

W - x , dH - x)  dH;
dF, = —~~dv—2> ="—""adx—=>. 2.65
2 Uik T (2.65)
The force on the whole rod is
x—xo ™ X — Xxo)
Fy = MQL a; = XX 12 13, (2.66)
yo

H, is typically about 10,000 Oe = 800kA/m, and Hy, is less than 100 Oe = 8 kA /m.
Hence H§0 is negligible compared to HZ, and

_ X — X0

Fx
2

aH;. (2.67)
The field gradient does not have to be determined in this method; all that is needed is a
measurement of the uniform field in the magnet gap. The only disadvantage of the
method is that a fairly large amount of specimen is required (about 10 cm®), since the speci-
men must be 10—15 cm long. Solid rods may be measured directly. Powdered materials or
liquids are enclosed in a glass tube, and the force on the empty tube is measured separately
to find the correction for the container.

A variation of the Gouy method uses a small sample, and measures the force acting on the
sample continuously as it is moved from a high field region to a region of effectively zero
field. The integral of this force over the distance moved is equivalent to Equation 2.66.

In this section, statements regarding paramagnetics apply to any material with positive y.
If the material is ferro- or ferrimagnetic, the forces involved will be quite large and the mag-
netization M is not a linear function of the field, so force methods are not usually used.
Force methods do have the advantage that no insulated wire is needed near the sample,
so measurements at high temperatures are relatively easy. For this reason they are sometimes
used for determination of Curie points.

As will become apparent in later chapters, susceptibility measurements made just at room
temperature are of limited value. Only by making measurements over an extended tempera-
ture range can we obtain information which will permit a description of the true magnetic
nature of the specimen. Thus furnaces and/or cryostats are needed, and these must be
narrow enough to fit in a magnet gap and yet enclose the specimen. Furnaces are usually
of the electrical resistance type, water-cooled on the outside. It should be noted that the
usual helically wound tube furnace constitutes a solenoid, and the heating current produces
an appreciable magnetic field. In magnetic experiments it may be important to suppress this
field. This can be done by winding the furnace “non-inductively,” as shown in Fig. 2.49. The
wire is simply doubled on itself before it is wound on the furnace core. Currents in adjacent
turns are then in opposite directions, and their magnetic fields cancel one another. Whether
wound inductively or not, furnaces exposed to strong magnetic fields should be powered
with direct, not alternating, current. Because of the force on a current-carrying conductor
in a magnetic field, windings carrying ac will vibrate at twice the frequency of the ac
voltage. This vibration can quickly loosen refractory cement and cause failure of the furnace.

The liquids in general use for cooling cryostats are liquid helium (normal boiling
point = 4.2K), liquid hydrogen (20.4K), and liquid nitrogen (77.3K). Liquid hydrogen is
not often used because of its flammability.
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Furnace core

Fig. 2.49 Noninductive, or bifilar, winding.

When measurements extend over a range of temperature, the mass susceptibility x, is a
more convenient property to deal with than the volume susceptibility ), because the
specimen mass does not change with temperature, whereas its volume does. Since y,v =
xvw = m/H = (magnetic moment produced by unit field), all that is necessary is to
replace x,v by x,w in equations like 2.59, where w is the mass of the specimen.

PROBLEMS

2.1

2.2

2.3

24

2.5

2.6

A solenoid 50 cm long and 2.5 cm in diameter is uniformly wound with insulated copper
wire of American Wire Gage (AWG) size 22, which has copper diameter 0.02535 inch
or 0.0644 cm and resistance at 20°C of 16.14 ohm/1000 feet or 53 ohm/1000 meter.
The coil carries a current of 2.75 A. Find the voltage required to produce this current,
the power dissipated, and the magnitude of the field at the center of the solenoid.

For the solenoid of the previous problem, plot the field on the axis as a function of
position, from the center to the end. Consider the middle half of the solenoid (that is,
the section extending +1/4 of the total length, measured from the center). What is
the ratio of the field at the center of the solenoid to the field at the end of center half?
What is the ratio of the field at the center of the solenoid to the field at the end of the
solenoid?

A given power source can deliver a maximum of 4.0 A at a voltage of 20 V. A sole-
noid of length 30 cm and diameter 2.0 cm is to be wound with a single layer of
copper wire of diameter d. Copper has a room-temperature resistivity of 1.7 x
10~ ® ohm cm. Find the optimum wire diameter to produce a maximum field of
100 oersted. Neglect the thickness of the electrical insulation on the wire, and
assume the winding diameter is the same as the solenoid diameter.

If the wire diameter in the previous problem is increased by 50%, what is the effect
on the maximum field and the maximum power?

Compare the field at the center of a Helmholtz coil pair and at the center of a
solenoid, if both use the same total length of wire and carry the same current.
Take the solenoid length equal to the spacing between the Helmholtz coils, and
let the solenoid diameter be 0.1 of its length.

A nickel-iron ring with cross-sectional area 0.85 cm? is expected to be driven to its satur-
ation magnetization of 1.1 T in a field of 800 A/m. The flux density will be measured
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2.7

2.8

2.9

2.10

2.11
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by an electronic flux integrator with input resistance of 1kOhm and an integrating
capacitor of 10 wF. How many turns should be would on the secondary (flux-measuring)
coil to give an output signal of +5V as the ring sample is driven to +1.1 T?

A magnet is placed in a uniform field H, directed opposite to its magnetization. As in
Fig. 2.21, sketch the vector relationships inside the magnet and the B field inside and
outside the magnet under the following conditions:

a. H, is large enough to reduce B in the magnet to zero (the coercive field).
b. H, is large enough to reduce M in the magnet to zero (the intrinsic coercive field).

A field of 7500e is applied perpendicular to the surface of a large iron plate (the
surface area may be taken to be infinite). The permeability of the iron is 1200
(cgs units). What is the flux density B in the iron?

An unmagnetized body in the shape of a prolate ellipsoid with relative permeability
5000 (SI) is placed in a uniform magnetic field parallel to the long axis. Find the ratio
of the flux density in the body to the flux density in the original field when the axial
ratio of the ellipsoid is (a) 1 (a sphere); (b) 5; (c) 100; and (d) oco.

The following values of H (Oe) and M (emu/ cm®) were measured on a ring speci-
men of annealed nickel.

H M

4.04 49.1
5.38 91.9
8.08 196
13.44 298
17.48 330
21.5 349
26.9 365
339 379
40.4 388

a. Plot the M versus H curve for the material.
b. Compute and plot the M versus H, curve for the same material in the form of a sphere.

c. What is the reciprocal slope of the initial linear part of the curve of question b?
Express this number as a multiple of .

d. Show thatif the permeability is large, a plot of M versus H, has an initial slope of 1 /N.

A cylinder of silver measures 15.00 cm long and 1.00 cm in diameter, and has a density
of 10.48 g/cm’. The susceptibility of silver is —0.181 x 10~ ° emu/cm’ - Oe (cgs) and
the susceptibility of air can be taken as 0.027 x 10~ ° in the same units. The cylinder is
suspended in a Gouy susceptibility apparatus, initially with zero applied field.

a. What is the weight of the silver sample?

b. When a field of 8500 Oe is turned on, by how much does the measured weight
change?

c. If the price of silver is $450/kg, how much is the sample worth?



CHAPTER 3

DIAMAGNETISM AND PARAMAGNETISM

3.1 INTRODUCTION

By appropriate methods we can measure the bulk magnetic properties of any substance and
classify that substance as diamagnetic, paramagnetic, or ferromagnetic, etc. We will now
proceed, in Chapters 3—6, to examine the internal mechanisms responsible for the observed
magnetic behavior of various substances. In these chapters we will be interested only in
two structure-insensitive properties, the susceptibility of weakly magnetic substances and
the saturation magnetization of strongly magnetic ones. These properties are said to be
structure-insensitive meaning they do not depend on details of structural elements
such as grain size, crystal orientation, strain, lattice imperfections, or small amounts of
impurities. We will also pay particular attention to the variation of these properties with
temperature, because this variation provides an important clue to the magnetic nature of
the substance.

The magnetic properties in which we are interested are due entirely to the electrons of the
atom, which have a magnetic moment by virtue of their motion. The nucleus also has a
small magnetic moment, but it is insignificant compared to that of the electrons, and it
does not affect the gross magnetic properties.

3.2 MAGNETIC MOMENTS OF ELECTRONS

There are two kinds of electron motion, orbital and spin, and each has a magnetic moment
associated with it. The orbital motion of an electron around the nucleus may be likened to a
current in a loop of wire having no resistance; both are equivalent to a circulation of charge.
The magnetic moment of an electron, due to this motion, may be calculated by an equation

Introduction to Magnetic Materials, Second Edition. By B. D. Cullity and C. D. Graham
Copyright © 2009 the Institute of Electrical and Electronics Engineers, Inc.
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similar to Equation 1.12, namely,
n = (area of loop)(current) 3.1

(Use of the symbol u for both permeability and for an electronic or atomic moment is
common and ordinarily does not lead to any ambiguity.) To evaluate u we must know
the size and shape of the orbit and the electron velocity. In the original (1913) Bohr
theory of the atom, the electron moved with velocity v in a circular orbit of radius r. In
cgs units e is the charge on the electron in esu and c the velocity of light, so ¢/c is the
charge in emu. In SI units, the charge of the electron is measured in coulombs. The
current, or charge passing a given point per unit time, is then (e/c)(v/27r) (cgs) or ev/
27rr (SI). Therefore,

. ey evr evr evr
w(orbit) = ( zm> =T (g or = m? (ﬁ) o G )

An additional postulate of the theory was that the angular momentum of the electron must
be an integral multiple of 4/2, where & is Planck’s constant. Therefore,

=n— , 3.3
muvr n277 3.3)

where m is the mass of the electron. Combining these relations, we have

eh
d7tmce

m(orbit) = (cgs) or = i (SI) 3.4
dmm

for the magnetic moment of the electron in the first (n = 1) Bohr orbit.

The spin of the electron was postulated in 1925 in order to explain certain features of the
optical spectra of hot gases, particularly gases subjected to a magnetic field (Zeeman
effect), and it later found theoretical confirmation in wave mechanics. Spin is a universal
property of electrons in all states of matter at all temperatures. The electron behaves as if
it were in some sense spinning about its own axis, and associated with this spin are definite
amounts of magnetic moment and angular momentum. It is found experimentally and
theoretically that the magnetic moment due to electron spin is equal to

eh
damce

~ (4.80 x 1070 esu)(6.62 x 10~ *erg sec)
~ 47(9.11 x 10-28 2)(3.00 x 10'°cm/sec)

=0.927 x 1072 erg/Oe or emu.

ju(spin) = (cgs)

(cgs)

tspin) = 2 (s
aTm

~ (1.60 x 1071 C)(6.62 x 1073* Js)
B 47(9.11 x 10-3! kg)

=9.27 x 1072 J/T or Am”. (3.5)

(8D
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Fig. 3.1 Visualization of electron spin.

Thus the magnetic moment due to spin and that due to motion in the first Bohr orbit are
exactly equal. Because it is such a fundamental quantity, this amount of magnetic
moment is given a special symbol ug and a special name, the Bohr magneton. Thus,

up = Bohr magneton = eh/4mme = 0.927 x 1072 erg/Oe (cgs)
= eh/4mm = 9.27 x 107** A - m?* (SI)
= poeh/4mm = 1.17 x 107 Wb - m (SI). (3.6)

It is a natural unit of magnetic moment, just as the electronic charge e is a natural unit of
electric charge.

How can the magnetic moment due to spin be understood physically? We may, if we like,
imagine an electron as a sphere with its charge distributed over its surface. Rotation of this
charge produces an array of tiny current loops (Fig. 3.1), each of which has a magnetic
moment directed along the rotation axis. But if we calculate the resultant moment of all
these loops, we obtain the wrong answer, (5/6)up instead of ug. Nor does the right answer
result from the assumption that the charge is uniformly distributed through the volume of
the sphere. Such calculations are fruitless, because we do not know the shape of the electron
or the way in which charge is distributed on or in it. The spin of the electron, and its associated
magnetic moment, has to be accepted as a fact, consistent with wave mechanics and with a
large number of experiments of various kinds, but with no basis in classical physics. The
model of Fig. 3.1 is therefore only an aid to visualization; it has no quantitative significance.

3.3 MAGNETIC MOMENTS OF ATOMS

Atoms contain many electrons, each spinning about its own axis and moving in its own orbit.
The magnetic moment associated with each kind of motion is a vector quantity, parallel to the
axis of spin and normal to the plane of the orbit, respectively. The magnetic moment of the
atom is the vector sum of all its electronic moments, and two possibilities arise:

1. The magnetic moments of all the electrons are so oriented that they cancel one
another out, and the atom as a whole has no net magnetic moment. This condition
leads to diamagnetism.
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2. The cancellation of electronic moments is only partial and the atom is left with a net
magnetic moment. Such an atom is often referred to, for brevity, as a magnetic
atom. Substances composed of atoms of this kind are para-, ferro-, antiferro-, or
ferrimagnetic.

To calculate the vector sum of the magnetic moments of all the electrons in any particular
atom is a rather complex problem which is treated in any book on atomic physics. However,
this problem is not particularly relevant here because the result applies only to the free
atom, such as the atoms in a monatomic gas. The calculation from first principles of the
net magnetic moment of an atom in a solid is, in general, not yet possible, and the net
moment must be determined experimentally. This knowledge of atomic moments, obtained
experimentally, is of great importance in the continued development of solid-state physics,
entirely aside from its relevance to commercially important magnetic materials.

3.4 THEORY OF DIAMAGNETISM

A diamagnetic is a substance that exhibits, so to speak, negative magnetism. Even though it
is composed of atoms which have no net magnetic moment, it reacts in a particular way to
an applied field. The classical (nonquantum-mechanical) theory of this effect was first
worked out by the French physicist Paul Langevin (1872—1946) in a noted paper published
in 1905 [P. Langevin, Ann. Chemie et Physique, S (1905) p. 70—127]. He refined and made
quantitative some ideas which had been earlier advanced by Ampére and by the German
physicist Wilhelm Weber (1804—-1891).

The theory considers that the effect of an applied field on a single electron orbit is to
reduce the effective current of the orbit, and so to produce a magnetic moment opposing
the applied field. This effect is summed over all the electrons in the atom, and each atom
is regarded as acting independently of the others. The values of diamagnetic susceptibility
calculated in this way generally agree with experimental values to better than a factor of 10,
which suggests that the model is at least qualitatively correct. Nothing in the model suggests
a strong temperature dependence of susceptibility, and this also agrees with the experiment.

3.5 DIAMAGNETIC SUBSTANCES

Electrons which constitute a closed shell in an atom usually have their spin and orbital
moments oriented so that the atom as a whole has no net moment. Thus the monoatomic
rare gases He, Ne, A, etc., which have closed-shell electronic structures, are all diamagnetic.
So are most polyatomic gases, such as Hj, Ny, etc., because the process of molecule
formation usually leads to filled electron shells and no net magnetic moment per molecule.

The same argument explains the diamagnetism of ionic solids like NaCl. The process of
bonding in this substance involves the transfer of an electron from each Na atom to each Cl
atom; the resulting ions, Nat and C17, then have closed shells and are both diamagnetic.
Covalent bonding by the sharing of electrons also leads to closed shells, and elements
like C (diamond), Si, and Ge are diamagnetic. Most organic compounds are diamagnetic,
and magnetic measurements have furnished much useful information about the size and
shape of organic molecules.
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But not all gases are diamagnetic, nor are all ionic or covalent solids. Generalizations in
this area are dangerous. The reader interested in further details should consult books on
magnetochemistry such as A. F. Orchard, Magnetochemistry, Oxford University Press,
(2003), which is a subject devoted to the relation between magnetic properties and the
chemical bond. The behavior of the metals is particularly complex; most are paramagnetic,
but some diamagnetic; they are discussed in Section 3.8.

Superconductors under some conditions are perfect diamagnets. They are treated in
Chapter 16.

3.6 CLASSICAL THEORY OF PARAMAGNETISM

The first systematic measurements of the susceptibility of a large number of substances over
an extended range of temperature were made by Pierre Curie' and reported by him in 1895.
He found that the mass susceptibility x;, was independent of temperature for diamagnetics,
but that it varied inversely with the absolute temperature for paramagnetics:

Xm =C/T. (3.7)

This relation is called the Curie law, and C is the Curie constant per gram. It was later
shown that the Curie law is only a special case of a more general law,

Xm = C/(T — 0), (3.8)

called the Curie—Weiss law. Here 6 is a constant, with the dimensions of temperature, for
any one substance, and equal to zero for those substances which obey Curie’s law. Some
authors write the denominator of Equation 3.8 as (7+6).

Curie’s measurements on paramagnetics went without theoretical explanation for 10
years, until Langevin in 1905 took up the problem in the same paper in which he presented
his theory of diamagnetism. Qualitatively, his theory of paramagnetism is simple. He
assumed a paramagnetic to consist of atoms, or molecules, each of which has the same
net magnetic moment u, because all the spin and orbital moments of the electrons do
not cancel out. In the absence of an applied field, these atomic moments point at random
and cancel one another, so that the magnetization of the specimen is zero. When a field
is applied, there is a tendency for each atomic moment to turn toward the direction of
the field; if no opposing force acts, complete alignment of the atomic moments would be
produced and the specimen as a whole would acquire a very large moment in the direction
of the field. But thermal agitation of the atoms opposes this tendency and tends to keep
the atomic moments pointed at random. The result is only partial alignment in the
field direction, and therefore a small positive susceptibility. The effect of an increase in
temperature is to increase the randomizing effect of thermal agitation and therefore to
decrease the susceptibility.

We will now consider the quantitative aspects of the theory in some detail, because the
theory of paramagnetism leads naturally into the theory of ferro and ferrimagnetism.

We consider a unit volume of material containing n atoms, each having a magnetic
moment w. Let the direction of each moment be represented by a vector, and let all the

'Pierre Curie (1859—1906) was a French physicist. He and his wife, Marie (Sklodowska) Curie (1867—1934), later
became famous for their research on radioactivity.
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Fig. 3.2 Effect of field on orbital moment.

vectors be drawn through the center of a sphere of unit radius. We wish to find the number
dn of moments inclined at an angle between 6 and 6+d6 to the field H. In the absence of a
field the number of w vectors passing through unit area of the sphere surface is the same at
any point on the sphere surface, and dn is proportional simply to the area dA, which is
given, as in Fig. 3.2, by 2msinf d6 for a sphere of unit radius. But when a field is
applied, the w vectors all shift toward the direction of the field. Each atomic moment
then has a certain potential energy E, in the field, given by Equation 1.5, so that

E, = —uH cos 6. 3.9

In a state of thermal equilibrium at temperature 7, the probability of an atom having an
energy E, is proportional to the Boltzmann factor e /KT where k is the Boltzmann
constant. The number of moments between 6 and 6-+d6 will now be proportional to dA,
multiplied by the Boltzmann factor, or

dn = K dA e E/FT = 207 K s O/KT in 9 40, (3.10)

where K is a proportionality factor, determined by the fact that

Ja’n:n.
0

For brevity we put a = wH/kT. We then have

T

277KJ e“%sin 0 do = n. (3.11)
0

The total magnetic moment in the direction of the field acquired by the unit volume under
consideration, that is, the magnetization M, is given by multiplying the number of atoms dn
by the contribution ucos# of each atom and integrating over the total number:

n
M:J pcos 6 dn.
0
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Substituting Equations 3.10 and 3.11 into this expression, we have

M = 27TKMJ ¢ %sin fcos Hdb
0

_ npJy e sin Bcos 0d6O
Jo e ?sin 66

To evaluate these integrals, we put x = cosf and dx = —sinfd6. Then

_nu J"fl xe™ dx
ffl e dx

a —da 1 1
:nﬂ(i——) :n;J,(cotha——). (.12)
et —e % a a
But nu is the maximum possible moment which the material can have. It corresponds to

perfect alignment of all the atomic magnets parallel to the field, which is a state of complete
saturation. Calling this quantity M, we have

M

M 1
— =cotha ——. 3.13)
M() a

The expression on the right is called the Langevin function, usually abbreviated to L(a).
Expressed as a series, it is
a o 2a°
La)=z——+—<—-- 3.14
@ =317 513 (3.14)

which is valid only for a < 1. L(a) as a function of a is plotted in Fig. 3.3. At large a, L(a)
tends to 1; and for a less than about 0.5, it is practically a straight line with a slope of 1,
as seen in Equation 3.14.

M/M,y = L(a)
1.0 ~
/
L(a)=a/3 /
/
/
/ L(a)

0.8

02

Fig. 3.3 Langevin function.
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The Langevin theory leads to two conclusions:

1. Saturation will occur if a (=uH/kT) is large enough. This makes good physical
sense, because large H or low 7, or both, is necessary if the aligning tendency of
the field is going to overcome the disordering effect of thermal agitation.

2. At small a, the magnetization M varies linearly with H. As we shall see presently, a is
small under “normal” conditions, and linear M, H curves are observed, like that of
Fig. 1.13b.

The Langevin theory also leads to the Curie law. For small a, L(a) = a/3, and Equation
3.12 becomes

2
nua nuH
M=-"""_ . 3.15
3 3kT ( )
Therefore,
M nu?
Xv =% = 3
H 3kT
5 (3.16)
Xm p 3pkT’

where p is density. But n, the number of atoms per unit volume, is equal to Np/A where N is
atoms/mol (Avogadro’s number), p is density, and A is atomic weight. Therefore,

N2 C Am®
o = 3A,L]:T " Cnigno (cgs) or Wnrlrrl[dimensionless](SI)
and
Ny? C em Am’ m’
_C _Aam I gp 3.17
X = KT~ oT —g Oe( gs) or ke Am| kg( ) ( )

which is Curie’s law, with the Curie constant given by

Nu?

The net magnetic moment w per atom may be calculated from experimental data by means
of Equation 3.17. Consider oxygen, for example. It is one of the few gases which is
paramagnetic; it obeys the Curie law and has a mass susceptibility of

' = 1.08 x 10_ (cgs)

J/T Am’® ’
Xm = 1.36 x 107° / — or = — or (8D
kg Am kg Am kg
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at 20°C. Therefore, writing M’ (molecular weight) instead of A (atomic weight) in Equation
3.17 because the constituents of oxygen are molecules, we have

(3M’kTX> 12
M =

N

_ [(3)(32 g/mole)(1.38 x 10716 erg /K)(293K)(1.08 x 10~* emu/g Oe)] / 2(C 9
N 6.02 x 102 molecules/mole g

B {(3)(0.032 kg /mole)(1.38 x 10-23 J/K)(293 K)(1.36 x 10-°(J/T)/(kg Am™" )] 172 -
B (6.02 x 1023 molecules/mole)(47 x 107 T/Am™")

=2.64 x 107%° erg/Oe per molecule (cgs)
=2.64 x 107 Am* /molecule or J/T per molecule (SI)

and dividing by the value of the Bohr magneton ugp.

_264x107% or 2.64 x 10723
~0.927 x 10720 0.927 x 10-23

= 2.85 ug per molecule.

This value of u is typical. Even in heavy atoms or molecules containing many electrons,
each with orbital and spin moments, most of the moments cancel out and leave a net
magnetic moment of only a few Bohr magnetons.

We can now calculate a and justify our assumption that it is small. Typically, H is
about 10,000 Oe or 1T or 800 kA/m in susceptibility measurements. Therefore, at room
temperature,

L HH (264 x 102 erg/Oe)(10*Oe)
kT (1.38 x 10716 erg/K)(293K)
= 0.0065,

which is a value small enough so that the Langevin function L(a) can be replaced by a/3.

The effect of even very strong fields in aligning the atomic moments of a paramag-
netic is very feeble compared to the disordering effect of thermal energy at room tempera-
ture. For example, there are N/32 oxygen molecules per gram, each with a moment of
2.64 x 1072 emu. If complete alignment could be achieved, the specific magneti-
zation o of oxygen would be (6.02 x 10%/32)(2.64 x 10-%), or 497 emu/g (cgs),
(6.02 x 107%2/0.032)(2.64 x 10~ ) = 497 Am?/kg (SI). This value is more than double that
of saturated iron. But the magnetization acquired in a field as strong as 100,000 Oe or 10 T or
8 MA/m at room temperature is only o= yH = (1.08 x 1074(10%) = 10.8 emu/g (cgs) =
(1.36 x 10%)(8 x 10° = 10.9 Am?/kg (SI), about 2% of the saturation value.

There is nothing in our previous discussion of the diamagnetic effect to indicate that it
was restricted to atoms with no net magnetic moment. In fact, it is not; the diamagnetic
effect occurs in all atoms, whether or not they have a net moment. A calculation of the sus-
ceptibility of a paramagnetic should therefore be corrected by subtracting the diamagnetic
contribution from the value given by Equation 3.17. This correction is usually small (of the
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order of —0.5 x 10~®emu/g Oe) and can often be neglected in comparison to the
paramagnetic term.

The Langevin theory of paramagnetism, which leads to the Curie law, is based on the
assumption that the individual carriers of magnetic moment (atoms or molecules) do not
interact with one another, but are acted on only by the applied field and thermal agitation.
Many paramagnetics, however, do not obey this law; they obey instead the more general
Curie—Weiss law,

_ C
S (T-0)

Xin (3.19)

In 1907 Weiss® in the J. de Physique 6 (1907) pp. 66—690 pointed out that this behavior
could be understood by postulating that the elementary moments do interact with one
another. He suggested that this interaction could be expressed in terms of a fictitious internal
field which he called the “molecular field” H,, and which acted in addition to the applied
field H. The molecular field was thought to be in some way caused by the magnetization of
the surrounding material. (If Weiss had advanced his hypothesis some 10 years later, he
would probably have called H,, the “atomic” field. X-ray diffraction was first observed
in 1912, and by about 1917 diffraction experiments had shown that all metals and
simple inorganic solids were composed of atoms, not molecules.)

Weiss assumed that the intensity of the molecular field was directly proportional to the
magnetization:

Hy = YM, (3.20)

where vy is called the molecular field constant. Therefore, the total field acting on the
material is

Hi=H+ Hy,. (3.21)
Curie’s law may be written
M _C
Xm = pH - T N

H in this expression must now be replaced by H,:

M C

pH+yM) T
Solving for M, we find
p CH

TT-pCy

%Pierre Weiss (1865—1940), French physicist deserves to be called the “Father of Modern Magnetism™ because
almost the whole theory of ferromagnetism is due to him, and his ideas also permeate the theory of ferrimagnetism.
Most of his work was done at the University of Strasbourg.
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Curie law

i R Paramagnetic
Curie-Weiss law

~~ Diamagnetic

Fig. 3.4 Variation of mass susceptibility with absolute temperature for para- and diamagnetics.

Therefore,

M C _ C
pH T—pCy T-6

Xm (3.22)

Therefore, § (= pCy) is a measure of the strength of the interaction because it is proportional
to the molecular field constant . For substances that obey Curie’s law, 8 = y = 0.

Figure 3.4 shows how y varies with T for para- and diamagnetics. If we plot 1/ versus T
for a paramagnetic, a straight line will result; this line will pass through the origin (Curie
behavior) or intercept the temperature axis at 7= 6 (Curie—Weiss behavior). Data for
two paramagnetics which obey the Curie—Weiss law are plotted in this way in Fig. 3.5,
and we note that both positive and negative values of 0 are observed, positive for MnCl,
and negative for FeSO,. Many paramagnetics obey the Curie—Weiss law with small
values of 6, of the order of 10K or less. A positive value of 0, as illustrated in Fig. 3.5,
indicates that the molecular field is aiding the applied field and therefore tending to
make the elementary magnetic moments parallel to one another and to the applied field.
Other things being equal, the susceptibility is then larger than it would be if the molecular
field were absent. If 6 is negative, the molecular field opposes the applied field and tends to
decrease the susceptibility.

It is important to note that the molecular field is in no sense a real field, it is rather a force,
which tends to align or disalign the atomic or molecular moments. The strength of this force
depends on the amount of alignment already attained, because the molecular field is pro-
portional to the magnetization. Further discussion of the molecular field will be deferred
to the next chapter.

Early in this section it was stated that the effect of an applied field on the atomic or
molecular “magnets” was to turn them toward the direction of the field. This statement
requires qualification, because the effect of the field is not just a simple rotation, like that
of a compass needle exposed to a field not along its axis. Instead, there is a precession
of the atomic moments about the applied field, because each atom possesses a certain
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Fig. 3.5 Reciprocal mass susceptibilities of one diamagnetic and two paramagnetic compounds.
Note change of vertical scale at the origin.

amount of angular momentum as well as a magnetic moment. This behavior is analogous to
that of a spinning top. If the top in Fig. 3.6a is not spinning, it will simply fall over because
of the torque exerted by the force of gravity F about its point of support A. But if the top is
spinning about its axis, it has a certain angular momentum about that axis; the resultant of
the gravitational torque and the angular momentum is a precession of the axis of spin about
the vertical, with no change in the angle of inclination 6. In an atom, each electron has

A

(a) (b)

Fig. 3.6 Precession of (a) a spinning top in a gravitational field, and (b) a magnetic atom in a mag-
netic field.
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angular momentum by virtue of its spin and its orbital motion, and these momenta combine
vectorially to give the atom as a whole a definite angular momentum. We might then
roughly visualize a magnetic atom as a spinning sphere, as in Fig. 3.6b, with its magnetic
moment vector and angular momentum vector both directed along the axis of spin. A
magnetic field H exerts a torque on the atom because of the atom’s magnetic moment,
and the resultant of this torque and the angular momentum is a precession about H. If
the atom were isolated, the only effect of an increase in H would be an increase in the
rate of precession, but no change in 6. However, in a specimen containing many atoms,
all subjected to thermal agitation, there is an exchange of energy among atoms. When a
field is applied, this exchange of energy disturbs the precessional motion enough so that
the value of 6 for each atom decreases slightly, until the distribution of 6 values
becomes appropriate to the existing values of field and temperature.

3.7 QUANTUM THEORY OF PARAMAGNETISM

The main conclusions of the classical theory are modified by quantum mechanics, but
not radically so. We will find that quantum theory greatly improves the quantitative
agreement between theory and experiment without changing the qualitative features of
the classical theory.

The central postulate of quantum mechanics is that the energy of a system is not contin-
uously variable. When it changes, it must change by discrete amounts, called quanta, of
energy. If the energy of a system is a function of an angle, then that angle can undergo
only discontinuous stepwise changes. This is precisely the case in a paramagnetic sub-
stance, where the potential energy of each atomic moment w in a field H is given by
— wH cos 6. In the classical theory, the energy, and hence 6, is regarded as a continuous
variable, and w can lie at any angle to the field. In quantum theory, 6 is restricted to
certain definite values 6;, 6, ..., and intermediate values are not allowed. This restriction
is called space quantization, and is illustrated schematically in Fig. 3.7, where the arrows
indicate atomic moments. The classical case is shown in Fig. 3.7a, where the moments
can have any direction in the shaded area; Figs. 3.7b and c illustrate two quantum possibi-
lities, in which the moments are restricted to two and five directions, respectively. The
meaning of J is given later.

The rules governing space quantization are usually expressed in terms of angular
momentum rather than magnetic moment. We must therefore consider the relation

" J=3 H J=2

(a) (b) (c)

Fig. 3.7 Space quantization: (a) classical, (b) and (c), two quantum possibilities.
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between the two, first for orbital and then for spin moments. The orbital magnetic moment
for an electron in the first Bohr orbit is, from Equation 3.4,

__¢h _ e (h (cgs)
orbie = e ™ 2me \20) 5

eh e (h
Hooit = 4 mm = 2m (277) (SD)
If we write the corresponding angular momentum //27r as p, we have

e e
Morit = 5 (Porvit) (cgs) or 5 (Porbic)(S1) (3.23)

The angular momentum due to spin is si/27 where s is a quantum number equal to %
Therefore, from Equation 3.5,

_i_i i _i( in) (cgs)
Pspin = e~ me \am) — me Do) (8%

T
" P (3.24)
e e e
spin = 7= <477) = %(pspin) (ST

Therefore the ratio of magnetic moment to angular momentum for spin is twice as great as it
is for orbital motion. The last two equations can be combined into one general relation
between magnetic moment u and angular momentum p by introducing a quantity g:

n = g(e/2me)(p) (cgs)
m = gle/2m)(p) (SD (3.25)

where g = 1 for orbital motion and g = 2 for spin. The factor g is called (for historical
reasons) the spectroscopic splitting factor, or g factor.

In an atom composed of many electrons the angular momenta of the variously oriented
orbits combine vectorially to give the resultant orbital angular momentum of the atom,
which is characterized by the quantum number L. Similarly, the individual electron spin
momenta combine to give the resultant spin momentum, described by the quantum
number S. Finally, the orbital and spin momenta of the atom combine to give the total
angular momentum of the atom, described by the quantum number J. Then the net magnetic
moment of the atom, usually called the effective moment w4, is given in terms of g and J,
as we might expect by analogy with Equation 3.25. The relation is

h
Mett = & (—4;%) VI + 1) erg/Oe, (cgs)
h J
Mer = & (ﬁ) VIU+T1) T or Am® (SD (3.26)

Mot = &V I + Dug.
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The moment may be said to consist of an effective number n.¢ of Bohr magnetons:
et = g/ J(J + D).

Because of spatial quantization the effective moment can point only at certain discrete
angles 0y, 6, ... to the field. Rather than specify these angles, we specify instead the
possible values of uy, the component of w.; in the direction of the applied field H.
These possible values are

My = gMypg, (3.27)

where M} is a quantum number associated with J. For an atom with a total angular momen-
tum J, the allowed values of M; are

J,J-1,J-2,..., -(J=2), -(J-1), —J,

and there are (2J 4 1) numbers in this set. For example, if /=2 for a certain atom, the
effective moment has five possible directions, and the component py in the field direction
must have one of the following five values:

2gug, gup, 0, —gup, —2gMug.

This is the case illustrated in Fig. 3.7c.
The maximum value of uy is

My = 8J up, (3.28)

and the symbol uy, if not otherwise qualified, is assumed to stand for this maximum value.
[The moments given by Equations 3.23—-3.25 are uy values.] The relation between uy and
Megr 18 shown in Fig. 3.8.

The value of J for an atom may be an integer or a half-integer, and the possible values
range from J = % to J = oo. These extreme values have the following meanings:

1. J :%. This corresponds to pure spin, with no orbital contribution (L =0,

J=S= %), so that g = 2. Since the permissible values of M, decrease from +J to
—J in steps of unity, these values are simply +% and —% for this case. The

Mesf

=gVIU+ Dug

Fig. 3.8 Relationship between effective moment and its component in the field direction.
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corresponding resolved moments wy are then ug and — ug, parallel and antiparallel
to the field, as illustrated in Fig. 3.7b.

2. J = oo. Here there are an infinite number of J values, corresponding to an infinite
number of moment orientations. This is equivalent to the classical distribution of
Fig. 3.7a.

To compute uy or ue; we must know g, as well as J, for the atom in question. The g
factor is given by the Landé equation:

L JUADASSH D) —LLA+ 1)
g=1+ 200+ 1) ' 629

If there is no net orbital contribution to the moment, L = 0 and J = S. Then Equation 3.29
gives g = 2 whatever the value of J. On the other hand, if the spins cancel out, then S = 0,
J=L, and g = 1. The g factors of most atoms lie between 1 and 2, but values outside this
range are sometimes encountered.

At this point the calculation of the net magnetic moment of an atom would seem straight-
forward, simply by a combination of Equations 3.29 and 3.28. However, the values of J, L,
and S are known only for isolated atoms; it is, in general, impossible to calculate w for the
atoms of a solid, unless certain simplifying assumptions are made. One such assumption,
valid for many substances, is that there is no orbital contribution to the moment, so that
J = §. The orbital moment is, in such cases, said to be quenched. This condition results
from the action on the atom or ion considered of the electric field, called the crystalline
or crystal field, produced by the surrounding atoms or ions in the solid. This field has
the symmetry of the crystal involved. Thus the electron orbits in a particular isolated
atom might be circular, but when that atom forms part of a cubic crystal, the orbits
might become elongated along three mutually perpendicular axes because of the electric
fields created by the adjoining atoms located on these axes. In any case, the orbits are in
a sense bound, or “coupled,” rather strongly to the crystal lattice. The spins, on the other
hand, are only loosely coupled to the orbits. Thus, when a magnetic field is applied
along some arbitrary direction in the crystal, the strong orbit—lattice coupling often prevents
the orbits, and their associated orbital magnetic moments, from turning toward the field
direction, whereas the spins are free to turn because of the relatively weak spin—orbit
coupling. The result is that only the spins contribute to the magnetization process and
the resultant magnetic moment of the specimen; the orbital moments act as though they
were not there. Quenching may be complete or partial.

Fortunately, it is possible to measure g for the atoms of a solid, and such measurements
tell us what fraction of the total moment, which is also measurable, is contributed by spin
and what fraction by orbital motion. Experimental g factors will be given later.

3.7.1 Gyromagnetic Effect

Two entirely different kinds of experiments are available for the determination of g. The
first involves the gyromagnetic effect, which depends on the fact that magnetic moments
and angular momenta are coupled together; whatever is done to change the direction of
one will change the direction of the other. From the magnitude of the observed effect a
quantity g, called the magnetomechanical factor or g’ factor, can be calculated. The g
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factor can then be found from the relation

! + l, =1. (3.30)
8§ 8
If the magnetic moment is due entirely to spin, then g = g’ = 2. If there is a small orbital
contribution, g is somewhat larger than 2 and g’ somewhat smaller.
Two methods of measuring the gyromagnetic effect, and thus the value of g’, have been
successful:

1. Einstein—de Haas Method. A rod of the material to be investigated is suspended ver-
tically by a fine wire and surrounded by a magnetizing solenoid. If a field is suddenly
applied along the axis of the rod, the atomic moments will turn toward the axis. But
this will also turn the angular momentum vectors toward the axis. Since angular
momentum cannot be created except by external torques, this increase in the axial
component of momentum of the atoms must be balanced by an increase, in the oppo-
site direction, of the momentum of the bar as a whole. The result is a rotation of the
bar through a very small angle, from which the value of g’ can be computed. The
experiment is extremely difficult with a ferromagnetic rod, and even more so with
a paramagnetic, because the size of the observed effect depends mainly on the mag-
netization that can be produced in the specimen.

2. Barnett Method. The specimen, again in the form of a rod, is very rapidly rotated
about its axis. The angular momentum vectors therefore turn slightly toward the
axis of rotation and cause the magnetic moments to do the same. The rod therefore
acquires a very slight magnetization along its axis, from which g’ can be calculated.

The two methods may be described as “rotation by magnetization” and “magnetization by
rotation.” Detailed accounts of both are given by L. F. Bates in Modern Magnetism,
Cambridge University Press (1961). These are difficult experiments, and the results of
various authors do not always agree. The available values were almost all published
before 1950.

3.7.2 Magnetic Resonance

The second kind of experiment is magnetic resonance, which measures g directly. The
specimen is placed in the strong field H, of an electromagnet, acting along the z-axis. It
is also subjected to a weak field H, acting at right angles, along the x-axis; H, is a high-
frequency alternating field generally in the microwave region near 10 GHz. The atomic
moments precess around H, at a rate dependent on g and H,. Energy is absorbed by the
specimen from the alternating field H,, and, if the intensity of H, or the frequency v of
H, is slowly varied, a point will be found at which the energy absorption rises to a sharp
maximum. In this resonant state the frequency v equals the frequency of precession, and
both are proportional to the product gH,, from which g may be calculated.

Assuming that g and J are known for the atoms involved, we can proceed to calculate the
total magnetization of a specimen as a function of the field and temperature. The procedure
is the same as that followed in deriving the classical (Langevin) law, except that:

1. The quantized component of magnetic moment in the field direction wy(= gM;ug)
replaces the classical term w cos 6.
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2. A summation over discrete moment orientations replaces an integration over a
continuous range of orientations.

The potential energy of each moment in the field H is
E, = —gM;ugH, (3.31)

which is the counterpart of Equation 3.9. According to Boltzmann statistics, the probability
of an atom having an energy E,, is proportional to

o B KT eMypH /KT

If there are n atoms per unit volume, the magnetization M is given by the product of n and
the average magnetic moment resolved in the direction of the field, or

> My pgesMimsti/iT
=n

M
S esMipH/KT

(3.32)

where the summations are over M; and extend from —J to +J. After considerable manipu-
lation, this reduces to

2+ 1 2 +1 1 /
M_ngJ,uB[ 2; coth( 24; >a’—§coth§—J], (3.33)

where

d = gJugH o mgH

kT kT

But ngJug = npuy, which is the product of the number of atoms per unit volume and
the maximum moment of each atom in the direction of the field. Therefore nuy; = M,
the saturation magnetization, and

M 2J+1 <2J—|—1>, 1 a
=——— coth
2J

Ty a —— coth—. (3.34)

The expression on the right is called the Brillouin function and was first obtained in 1927. It
is abbreviated B(J,a').

When J = oo, the classical distribution, the Brillouin function reduces to the Langevin
function:

M 1
— =cothd — (—) (3.35)
MO a’

When J =1

2 so that the magnetic moment consists of one spin per atom, the Brillouin
function reduces to

M /
My~ tanh (a') (3.36)
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Fig. 3.9 Vector relations for J = %
A direct derivation of this last equation may clarify some of the physics involved. When
J= %, the effective moment, given by Equation 3.26, is

Q@ = v

The component of this in the field direction is, according to Equation 3.28, 2(%) Mg O Ug.
Note that J is always less than /J(J + 1), so that uy is always less than peg. This means
that the moment is never parallel to the field direction, even when J is large, and that draw-
ings like Figs. 3.7b and c, which show such parallelism, are, strictly speaking, incorrect.
The true situation is shown in Fig. 3.9, for J = %, where 6= 54.7°. Nevertheless, a
drawing like Fig. 3.7b is a conventional description, and so is loose language like “spins
parallel and antiparallel to the field,” or, more briefly, “spins up and spins down.”

Let n, and n_ equal the numbers of atoms (per unit volume) with spins parallel and
antiparallel to the field. The corresponding potential energies are —ugH and + ugH. Then

n, = bet /M and  p_ = pe Mt/ (3.37)

where b is a proportionality constant. Thus, at constant temperature, the number of atoms
with spin-up increases as the field increases, and the number of atoms with spin-down
decreases. We say loosely that the field has caused some of the spins to “flip over.” The
total number of atoms per unit volume is

n=rn,+n_ = b(e“BH/kT n e*“B”/kT). (3.38)

The average magnetic moment in the field direction is

gy = 172 J;n’(_“ B) (3.39)




106 DIAMAGNETISM AND PARAMAGNETISM
Combining the previous equations yields the magnetization

M = n(/*“'l-[)av B

olsH/KT _ p—pgH/KT

M = npyg ers /KT 1 g mpH/KT °
i (3.40)
M = M, tanh Mp s
kT
M
— —tanhd.

0

which reproduces Equation 3.36.

The Brillouin function, like the Langevin, is zero for @’ equal to zero and tends to unity
as a’ becomes large. However, the shape of the curve in between depends on the value of
J for the atom involved. Moreover, the quantity a in the classical theory differs from the
corresponding quantity @' in the quantum theory:

(classical) a = uH/kT, (3.41)
(quantum) @ = uyH/kT. (3.42)

In the classical theory, w is the net magnetic moment of the atom. The quantity which corre-
sponds to this in quantum theory is the effective moment ¢, and not its component py on the
field direction. The parameters a and o’ therefore have distinctly different physical meanings.

When H is large enough and T low enough, a paramagnetic can be saturated, and we can
then compare the experimental results with the predictions of classical and quantum theory.
For example, W. E. Henry [Phys. Rev., 88 (1952) p. 559] measured the magnetization of
potassium chromium alum, KCr(SO,), -12 H,0, at fields up to 50,000 Oe and at tempera-
tures of 4.2 K (liquid helium) and below. The only magnetic atom, or rather ion, in this
compound is the Cr’" ion. The quantum numbers for this ion in the free state are
J =3, L=3, S$=3, which lead to g =2, as the reader can verify from Equation 3.30.
The magnetic moment per molecule, or per chromium ion, is then given by Equation 3.31:

M/n = gIB(J, d)ug. (3.43)

Figure 3.10 shows the experimental data as a function of H/T. The curve through the exper-
imental points is a plot of Equation 3.43, with g = 2 (not 32) andJ = % The lower curve is a
similar plot with g = % The excellent agreement between theory and experiment for g = 2
shows that the magnetic moment of the chromium ion in this compound is entirely due to
spin; in the solid, L = 0 rather than 3, and the orbital component has been entirely
quenched. The maximum moment of the chromium ion in the field direction is
(2)(%);1,3, or 3ug, and its effective moment is

Metr = &V I + Dug

=2/() ) ms

= V15 ug = 3.87 ug. (3.44)
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Fig. 3.10 Magnetic moment of potassium chromium alum as a function of H/T. Data from W. E.
Henry, Phys. Rev., 88 (1952) p. 550.

If this value is set equal to w in the classical equations 3.41 and 3.14, the upper curve of
Fig. 3.10 results. It is asymptotic to 3.87up per ion, whereas the experimental and
quantum curves are asymptotic to 3.00. The wide disparity between classical theory and
experiment, when H/T is large, is clearly evident.

The fields required, at room and liquid-helium temperatures, to produce the values of H/
T shown in Fig. 3.10, are indicated on the two H scales at the bottom. At room temperature,
enormous fields, of the order of 10 million oersteds or 1000 tesla would be required to
achieve saturation.

While measurements at very low temperatures and high fields are necessary in order to
obtain the saturation effects which allow magnetic theories to be tested, most measurements
on paramagnetics are confined to “normal” temperatures and “moderate” fields (5000—
10,000 Oe or 0.5 to 1T), i.e., to the region near the origin of Fig. 3.10, where the magne-
tization curves are linear. We therefore need a quantum-theory expression for the suscepti-
bility. When y is small, coth y can be replaced by (1/x + x/3). With this substitution, the
Brillouin function, for small @', reduces to

_dU+ D)

B(J, d) i

(3.45)
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and

M = ngJpgBUJ, d)

gJugH\ (J +1
e 3J

_ ngtJJ + DujH

3kT
2
ke
= et 3.46
3kT (3.46)
The mass susceptibility is then
XN _M nugG  Nudy (3.47)

X =T OH  3pkT  3AKT

This is the quantum analog of the classical Equation 3.23. Similarly, the Curie constant per
gram is given by
N
C= Ak (3.48)
where N is Avogadro’s number and A, the atomic weight, is to be replaced by M’, the
molecular weight, if p.g refers to a molecule rather than an atom.

As mentioned earlier, the quantum numbers J, L, and S are normally not known for an
atom or molecule in a solid. Under these circumstances it is customary to compute the mag-
netic moment from the susceptibility measurements, on the assumption that the moment is
due only to the spin component; then L = 0,J = S, and g = 2. The result is called the “spin-
only” moment. The value of J(= S) is computed from the experimental value of C by a
combination of Equations 3.26 and 3.48, and the moment wy is then given by
gJug = 2Jupg = 2Suy. Reporting the results of susceptibility measurements in terms of
a spin-only moment is merely a convention and does not imply that the orbital contribution
is really absent. Other kinds of information are usually necessary to decide this point.

As an example of this kind of calculation, we can consider the data on potassium chro-
mium alum. This substance follows the Curie law exactly, with a molecular Curie constant
Cyy of 1.85. (Cyy is the Curie constant per mole.) Therefore, Equation 3.48 becomes

2
N pge

Cy=CM =
M 3k

3kCy\ /2
Meegr = T

[3(1.38 x 10716)(1.85)] /*
N 6.02 x 1023

=3.57 x 107 erg/Oe

357 x 107
T 0.927 x 10-0 1B

and

= 3.85 ug.
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For pure spin, Equation 3.26 becomes

(Some authors write S instead of J in this equation to emphasize that only spin moments
are involved.) The solution of Equation 3.49 is J = 1.49, which compares well with J = 2,
the value assumed in drawing the central curve of Fig. 3.10. (In this case, the good fit of the
magnetization data to the curve, over the whole range of H/T, is conclusive evidence that
the moment of the chromium ion in this compound is due only to spin.) We can also
calculate the maximum component of the moment in the field direction, namely,

py = &J pg = 2(1.49pug = 2.98 pg.

Writers of technical papers sometimes cause confusion by not being sufficiently specific
when reporting their results. For example, the statement that “the susceptibility measure-
ments lead to a spin-only moment of x Bohr magnetons” is ambiguous. Does the author
mean Wy Or Wer? Usually, py is meant, but one can never be sure unless the value of
the Curie constant C is also given. This should always be done, because the value of
either moment can be calculated from C.

Equation 3.47 for the susceptibility applies to a substance which obeys the Curie law. A
quantum relation for Curie—Weiss behavior can be obtained, just as in the classical case, by
introducing a molecular field H,,,(= yM ), which adds to the applied field H. We then have,
according to Equation 3.21,

Xm = C/(T - 9)’

where C, the Curie constant per gram, is now given by Equation 3.48. Therefore,

Npge _ Ng*JU + Dpg

= = , 3.50
Xn Z3AK(T — ) 3AKT — 6) 5:20)
where 6, as before, is a measure of the molecular field constant vy and is given by
N Ng>J(J + D

3 Ak 3 Ak

Before concluding these sections on the theory of dia- and paramagnetism, it is only fair to
point out the range of validity of some of the arguments advanced. On a basic level, the
theory of any kind of magnetism must be an atomic theory or, more exactly, an electronic
theory. But the electrons in atoms do not behave in a classical way, and to understand their
behavior we must abandon the relative simplicity and “reasonableness” of classical physics
for the complexity and abstractions of quantum mechanics. Classical explanations are
simply not valid on the atomic level, even when they lead to the right answer. For
example, Equation 3.22, which states that the ratio of the magnetic moment to the
angular momentum is e/2mc (cgs) for an electron moving in a circular orbit, is true in
quantum mechanics. But the way in which this result was derived in this chapter is entirely
classical. This classical treatment, and similar treatments of other basic magnetic phenom-
ena, should be regarded more as aids to visualization than as valid analyses of the problem.
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3.8 PARAMAGNETIC SUBSTANCES

These are substances composed of atoms or ions which have a net magnetic moment
because of noncancellation of the spin and orbital components. Closed electron shells
usually exhibit no net magnetic moment and lead to diamagnetism. Incomplete outer
shells, as in metals like sodium or copper, lead to complex behavior, discussed below.
However, incomplete inner shells, such as those of the transition metal ions and rare
earth ions, can have a large net moment, and compounds of these elements are strongly
paramagnetic.

3.8.1 Salts of the Transition Elements

These show the simplest behavior. The only magnetic ions in such compounds are the tran-
sition metal ions, and the magnetic moments of these are due almost entirely to spin, the
orbital components being largely quenched. This is shown by the fact that the susceptibility
calculated on a spin-only basis agrees well with the measured value, and we have already
seen an example of that in potassium chromium alum, KCr(SOy), - 12H,0. Even more
direct evidence is given by experimental values of the g factor, which are close to 2. The
transition-metal salts usually obey the Curie law, or the Curie—Weiss with a small value
of 60, as shown in Fig. 3.6. [This behavior is rather surprising. The Langevin theory or
its quantum-mechanical counterpart, which leads to the Curie law, was originally derived
for a gas, on the assumption that there is no interaction between the individual carriers
of magnetic moment, be they atoms or molecules. There is no a priori reason why this
theory should also apply to solids, in which the atoms are packed close together. But in
fact it often does apply, and we find that it applies more exactly the more “magnetically
dilute” the substance is. Thus, if a compound contains a lot of water of crystallization, as
KCr(S04),-12 H,0O does, the magnetic ions, in this case Cr’*, will be so far separated
from each other that any interaction between them will be negligible, and the Curie law
will be closely obeyed.]

3.8.2 Salts and Oxides of the Rare Earths

These compounds are very strongly paramagnetic. (The effective magnetic moment varies
in a regular way with atomic number and reaches a value as large as 10.6 Bohr magnetons
for the trivalent ion of dysprosium.) In these substances both susceptibility and g-factor
measurements show that orbital motion contributes a large part of the observed moment.
In effect, the electrons in the unfilled shell responsible for the magnetic moment (the 4f
shell in these substances) lie so deep in the ion that the outer electron shells shield them
from the crystalline field of the other ions, and the orbital moments remain unquenched.

3.8.3 Rare-Earth Elements

These are also strongly paramagnetic. The magnetic moments per ion are so large that there
is considerable interaction between adjacent ions, even though the moments are deep-
seated, and these elements obey the Curie—Weiss law with rather large values of 6,
rather than the simple Curie law. Many of the rare earths become ferromagnetic at low
temperature, although gadolinium becomes ferromagnetic at just below room temperature.
They are discussed further in Section 5.4.
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3.8.4 Metals

The magnetic behavior of metals is complex. Three are ferromagnetic at room temperature
(Fe, Co, and Ni); two are antiferromagnetic (Cr and Mn), and the rest are para- or diamag-
netic. The transition metals are ferro-, antiferro-, or paramagnetic. (All ferromagnetic sub-
stances become paramagnetic above their Curie temperatures, and the paramagnetism of Fe,
Co, and Ni above their Curie points will be dealt with in the next chapter.) The suscepti-
bility of the para- and diamagnetic metals is made up of three parts:

1. Diamagnetism of the core electrons. A metal is made up of positive ions and free
electrons. These ions usually consist of closed shells which contribute a diamagnetic
term to the susceptibility, just as they do in any substance.

2. Diamagnetism of the conduction electrons. When a magnetic field is present, the con-
duction electrons must move in curved paths. This results in an additional diamag-
netic effect, for much the same reason that electron motion in an orbit causes a
diamagnetic reaction when a field is applied.

3. Paramagnetism of the conduction electrons, also called Pauli paramagnetism or weak
spin paramagnetism. The conduction electrons, present to the extent of one or more
per atom, depending on the valence, each have a spin magnetic moment of one Bohr
magneton. One would therefore expect them to make a sizable paramagnetic contri-
bution. This does not happen, however, because the conduction electrons of a metal
occupy energy levels in such a way that an applied field can reorient the spins of only
a very small fraction of the total number of electrons. The resulting paramagnetism,
which will be more fully explained in Section 4.4, is very weak and does not vary
much with temperature.

The sum of these three effects, all of them small, is the observed susceptibility of the metal.
If the first two are stronger, the metal is diamagnetic, like copper; if the third outweighs the
other two, it is paramagnetic, like aluminum. If the net effect is paramagnetic, the resultant
paramagnetism is very weak (i.e., at room temperature the susceptibility per atom of manga-
nese in metallic manganese is less than 4% of the susceptibility per atom of manganese in
MnCl,). Moreover, the susceptibility of such a paramagnetic does not obey the Curie or
Curie—Weiss law; because effects (1) and (2) are independent, and (3) is almost indepen-
dent of temperature. The resulting susceptibility can decrease as the temperature increases,
remain constant, or even increase.

3.8.5 General

When a solid solution is formed between paramagnetic or diamagnetic metals, or between a
para- and a diamagnetic, the variation of the susceptibility with composition is, in general,
unpredictable. One effect is clear, however: If a para- and a diamagnetic form a continuous
series of solid solutions, the susceptibility must pass through zero at some intermediate
composition. A substance having this composition will be completely unaffected by an
applied magnetic field and forms an exception to the general statement that all substances
are magnetic. However, this zero value of the susceptibility will be retained only at one
temperature, because the susceptibility of the paramagnetic constituent will generally
change with temperature. An example of such a material occurs in the Cu—Ni system.
The phase diagram is shown in Fig. 3.11a, where the dashed line indicates the Curie
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Fig. 3.11 (a) Phase diagram of the Cu—Ni system. (b) Mass susceptibility of Cu—Ni alloys at room
temperature.

temperatures of the ferromagnetic, Ni-rich alloys. Below about 65% Ni, the alloys become
paramagnetic at room temperature. Figure 3.11b shows the room temperature susceptibility
of the Cu-rich alloys; it passes through zero at 3.7 wt% Ni. Below room temperature this
alloy becomes slightly diamagnetic but, at any temperature between room temperature
and 2K, its susceptibility is less than one-tenth that of pure copper. It is therefore a suitable
material for specimen holders, and other parts of equipment designed for delicate magnetic
measurements, which must have a susceptibility as near zero as possible.

Although the terms “weak” and “strong” paramagnetism have been used in this section,
it must be remembered that they are only relative and the susceptibility of any paramagnetic
is minute in comparison with that of a ferromagnetic. This means that a small amount of a
ferromagnetic impurity in a para- or diamagnetic can mask the true behavior of the material.
If the impurity is present in solid solution, the observed M, H curve will be linear from the
origin, but the slope, and hence the susceptibility, will depend on the concentration of the
impurity. If the impurity is present as a ferromagnetic second phase, the M, H curve will be
curved initially as the second phase becomes increasingly saturated. Figure 3.12 shows this
effect. A specimen of copper containing 0.1 wt% iron gave curve A, which can be regarded
as the sum of curves B and C. There is enough iron present in solid solution to change the
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Fig. 3.12 Magnetization curve of copper containing 0.1 wt% iron (curve A). See text for meaning of
curves B and C.

normally diamagnetic “copper” to a paramagnetic, and B is the M, H curve of this solid sol-
ution. The rest of the iron is present as a ferromagnetic second phase, consisting of particles
of an iron-rich iron—copper solid solution. C is the magnetization curve of this phase, which
is saturated at a field of about 6 kOe. The susceptibility of the solid solution is given by the
slope of the straight-line portion of A, which has the same slope as B. The applied field at
which the second-phase particles saturate can depend markedly on the shape and orientation
of these particles. The demagnetizing field associated with each particle will be much larger
if it is spherical than if it is, for example, in the shape of a rod parallel to the applied field.

PROBLEMS

3.1 Assume that an electron is a solid sphere rotating about an axis through its center. Its
rotational velocity is determined by the fact that the angular momentum due to spin is
sh/2r, where s = 2 and 4 is Planck’s constant. Calculate the magnetic moment due to
spin, in units of Bohr magnetons, on the assumption that the total charge of the
electron is (a) distributed uniformly over its surface and (b) distributed uniformly
throughout its volume.

3.2 For a paramagnet that obeys the Curie—Weiss law, show that:

a. The effective number of Bohr magnetons per molecule is given by nep=
2.83,/Cn, where Cy; is the Curie constant per molecule.

b. The molecular field is given by
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3.3

34

3.5

3.6

3.7

DIAMAGNETISM AND PARAMAGNETISM

The susceptibility of FeCl, obeys the Curie—Weiss law over the temperature range
90 K to room temperature, with § = 48K. Its molecular susceptibility at room temp-
erature is 1.475 x 10~ 2 emu/Oe/(g mol).

a. What is the effective magnetic moment in Bohr magnetons?

b. What are the spin-only values of J and wy (max)?

c. At an applied field of 8000 Oe, what is the value of the molecular field at 0°C and
at 100°C?

Show that the Brillouin function B(J, a’) reduces to Equation 3.35 for J = oo, to
Equation 3.40 for J = %, and to Equation 3.45 when &’ is small.

Plot the relation between M/M, and H, according to quantum theory, for a material

with g =2 and J = % for fields up to 10 T and temperatures of 20°C and 2K.

a. What is the effective moment?

b. What is the atomic susceptibility at 20°C?

c¢. What percentage of the saturation magnetization is attained at a field of 10 T at
20°C?

d. What field is needed to produce 85% of saturation at 2K?

Repeat the plots of Problem , according to classical theory.

a. What is the atomic susceptibility at 20°C?

b. What percentage of the saturation magnetization is attained at a field of 10 T at
20°C?

¢. How can the susceptibilities be the same (for classical and quantum theories) but
the saturation percentages be different?

The susceptibility of a-Mn is

2 3

A -
M 766 x 1052 4t 20°C.
kg

766 x 1070 —————
X A-m~!- kg
The susceptibility of MnCl, obeys the Curie—Weiss law, with # = 3.0K and an effec-
tive moment of 5.7 ug per molecule. Calculate the susceptibility per atom of Mn in
a-Mn as a percentage of the susceptibility per atom of Mn in MnCl,.



CHAPTER 4

FERROMAGNETISM

4.1 INTRODUCTION

Magnetization curves of iron, cobalt, and nickel are shown in Fig. 4.1. These curves are
partly schematic. The experimental values of the saturation magnetization M, are given
for each metal, but no field values are shown on the abscissa. This is done to emphasize
the fact that the shape of the curve from M = 0 to M = M; and the strength of the field
at which saturation is attained, are structure-sensitive properties, whereas the magnitude
of Mj is not. The problems presented by the magnetization curve of a ferromagnet are there-
fore rather sharply divisible into two categories: the magnitude of the saturation value, and
the way in which this value is reached from the demagnetized state. We shall now consider
the first problem and leave the details of the second to later chapters.

A single crystal of pure iron, properly oriented, can be brought to near saturation in a
field of less than 50 Oe or 4 kA/m. Each cubic centimeter then has a magnetic moment
of about 1700 emu, or each cubic meter a moment of about 1.7 MA m? or MJ JT. At
the same field a typical paramagnet will have a magnetization of about 10> emu / cm® or
1 A/m. Ferromagnetism therefore involves an effect which is at least a million times as
strong as any we have yet considered.

No real progress in understanding ferromagnetism was made until Pierre Weiss in 1906
advanced his hypothesis of the molecular field [P. Weiss, Compt. Rend. 143 (1906)
p- 1136—1139]. We have seen in the previous chapter how this hypothesis leads to the
Curie—Weiss law, y = C/(T — 6), which many paramagnetic materials obey. We saw
also that 6 is directly related to the molecular field H,,,, because 8 = pyC and H,, = yM,
where vy is the molecular field coefficient. If 0 is positive, so is 7y, which means that
H,, and M are in the same direction or that the molecular field aids the applied field in
magnetizing the substance.

Introduction to Magnetic Materials, Second Edition. By B. D. Cullity and C. D. Graham
Copyright © 2009 the Institute of Electrical and Electronics Engineers, Inc.
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Fig. 4.1 Magnetization curves of iron, cobalt, and nickel at room temperature (H-axis schematic).
The SI values for saturation magnetization in A/m are 10> times the cgs values in emu/cm”.

Above its Curie temperature 7T, a ferromagnet becomes paramagnetic, and its suscepti-
bility then follows the Curie—Weiss law, with a value of 6 approximately equal to 7.
The value of 6 is therefore large and positive (over 1000K for iron), and so is the molecu-
lar field coefficient. This fact led Weiss to make the bold and brilliant assumption that a
molecular field acts in a ferromagnetic substance below its Curie temperature as well as
above, and that this field is so strong that it can magnetize the substance to saturation
even in the absence of an applied field. The substance is then self-saturating, or “spon-
taneously magnetized.” Before we consider how this can come about, we must note at
once that the theory is, at this stage, incomplete. For if iron, for example, is self-saturating,
how can we explain the fact that it is quite easy to obtain a piece of iron in the unmagne-
tized condition?

Weiss answered this objection by making a second assumption: a ferromagnet in the
demagnetized state is divided into a number of small regions called domains. Each
domain is spontaneously magnetized to the saturation value M, but the directions of
magnetization of the various domains are such that the specimen as a whole has no net
magnetization. The process of magnetization is then one of converting the specimen from
a multi-domain state into one in which it is a single domain magnetized in the same direction
as the applied field. This process is illustrated schematically in Fig. 4.2. The dashed line in
Fig. 4.2a encloses a portion of a crystal in which there are parts of two domains; the boundary
separating them is called a domain wall. The two domains are spontaneously magnetized in
opposite directions, so that the net magnetization of this part of the crystal is zero. In Fig. 4.2b
afield H has been applied, causing the upper domain to grow at the expense of the lower one
by downward motion of the domain wall, until in Fig. 4.2c the wall has moved right out of the
region considered. Finally, at still higher applied fields, the magnetization rotates into
parallelism with the applied field and the material is saturated, as in Fig. 4.2d. During this
entire process there has been no change in the magnitude of the magnetization of any
region, only in the direction of magnetization.

The Weiss theory therefore contains two essential postulates: (1) spontaneous magneti-
zation; and (2) division into domains. Later developments have shown that both of these
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Fig. 4.2 The magnetization process in a ferromagnet.

postulates are correct. It is a tribute to Weiss’s creative imagination that a century of sub-
sequent research has served, in a sense, only to elaborate these two basic ideas.

4.2 MOLECULAR FIELD THEORY

Consider a substance in which each atom has a net magnetic moment. Assume that the mag-
netization of this substance increases with field, at constant temperature, according to curve
1 of Fig. 4.3, as though the substance were paramagnetic. Assume also that the only field
acting on the material is a molecular field H,, proportional to the magnetization:

Hy = yM. @.1)

Line 2 in Fig. 4.3 is a plot of this equation, with the slope of the line equal to 1/7. The
magnetization which the molecular field will produce in the material is given by the

0 H, m

Fig. 4.3 Spontaneous magnetization by the molecular field.
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intersection of the two curves. There are actually two intersections, one at the origin and one
at the point P. However, the one at the origin represents an unstable state. If M is zero and
the slightest applied field, the Earth’s field for example, acts even momentarily on the
material, it will be magnetized to the point A, say. But if M = A, then line 2 states that
H,, is B. But a field of this strength would produce a magnetization of C. Thus M would
go through the values 0, A, C, E, . . ., and arrive at P. We know that P is a point of stability,
because the same argument will show that a magnetization greater than P will
spontaneously revert to P, in the absence of an applied field. The substance has therefore
become spontaneously magnetized to the level of P, which is the value of M, for the
temperature in question. It is, in short, ferromagnetic. We may therefore regard a ferromag-
net as a paramagnet subject to a very large molecular field. The size of this field will be
calculated later.

We now inquire how this behavior is affected by changes in temperature. How will M,
vary with temperature, and at what temperature will the material become paramagnetic? To
answer these questions, we replot Fig. 4.3 with a as a variable rather than H,,, where
a = pH/KT is the variable which appears in the theory of paramagnetism. Following
Weiss, we will suppose that the relative magnetization is given by the Langevin function:

% = L(a) = coth(a) — é 4.2)

(Later we will replace this with the correct quantum-mechanical relation, namely, the
Brillouin function.) When the applied field is zero, we have

pHn _ pyM _ pyM Mo

R Y A T VA “.3)
M_( kT )a. (4.4)
My myMy

M /M, is therefore a linear function of a with a slope proportional to the absolute tempera-
ture. In Fig. 4.4, curve 1 is the Langevin function and line 2 is a plot of Equation 4.4 for a
temperature 75. Their intersection at P gives the spontaneous magnetization achieved at this
temperature, expressed as a fraction M/ M, of the saturation magnetization My. An increase
in temperature above 75 has the effect of rotating line 2 counterclockwise about the origin.
This rotation causes P and the corresponding magnetization to move lower and lower on the
Langevin curve. The spontaneous magnetization vanishes at temperature 75 when the line is
in position 3, tangent to the Langevin curve at the origin. T35 is therefore equal to the Curie
temperature 7. At any higher temperature, such as T,, the substance is paramagnetic,
because it is not spontaneously magnetized.

The Curie temperature can be evaluated from the fact that the slope of line 3 is the same
as the slope of the Langevin curve at the origin, which is % Replacing T with T, we have

kT, 1
mwyMo 3
o

" 4.5)
YMo

T. = .

¢ 3k
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a=uH/kT

Fig. 4.4 Effect of temperature on the value of spontaneous magnetization. Curve 1 is the Langevin
function.

Therefore the slope of the straight line representing the molecular field is, at any
temperature,

kT T
= 4.6
mwyMo  3T¢ *0)

But the slope of the line determines the point of intersection P with the Langevin curve and
hence the value of M;/M,. Therefore M/M, is determined solely by the ratio T/T,. This
means that all ferromagnetic materials, which naturally have different values of M, and T,
have the same value of M,/M, for any particular value of T/ T,. This is sometimes called the
law of corresponding states.

This statement of the law is very nearly, but not exactly, correct. In arriving at the
Langevin law in Equation 3.13, we considered the number n of atoms per unit volume
and set nuw = My. But n changes with temperature because of thermal expansion.
Therefore, values of M /M at different temperatures are not strictly comparable, because
they refer to different numbers of atoms. When dealing with magnetization as a function
of temperature, a more natural quantity to use is the specific magnetization o, which is
the magnetic moment per unit mass, because then thermal expansion does not affect
the result.

If ng is the number of atoms per gram and f the average component of magnetic moment
in the direction of the field, then we can write Equation 3.13 as

T 1
Tl _ 9 _ cotha—-. @.7)
Nt 0 a

If we then define, for a ferromagnetic material, o and oy as the saturation magnetizations at
TK and OK, respectively, an exact statement of the law of corresponding states is that all
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materials have the same value of o/ oy, for the same value of T/T,. The relation between the
o and M values is

os _ Mi/p; _ Mspy (4.8)

o0 Mo/py  Mop,’

where ps and p, are the densities at 7K and OK, respectively. A change from M to o also
involves a change in the molecular field constant vy:

Hyn = yM = yp(M/p) = (yp)o. 4.9)

Thus (yp) becomes the molecular field constant, and Equations 4.5 and 4.6 become

nypoo
T. = , 4.10
Ty (4.10)
and
kT T
=—. 4.11)
wypoy 3T

Equation 4.4 therefore becomes

T T
= o)~ (e
o) wYpoy 3T

when the magnetization is expressed in terms of o.

Experimental data on the variation of the saturation magnetization oy of Fe, Co, and Ni
with temperature are shown in Fig. 4.5. The temperature scales shown in Fig. 4.6 give the
Curie points and the temperatures of phase changes and recrystallization for the three
metals. The recrystallization temperatures are the approximate minimum temperatures at

300

200

100

Saturation magnetization o, (emu/g)

I
0 500 1000 1500

Temperature (K)

Fig. 4.5 Saturation magnetization of iron, cobalt, and nickel as a function of temperature.
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Fig. 4.6 Curie points (7,), recrystallization temperatures [R], and phase changes in Fe, Co, and Ni.
BCC = body-centered cubic; FCC = face-centered cubic; HCP = hexagonal close packed. Ni is FCC
at all temperatures.

which heavily cold-worked specimens will recrystallize; thus iron and cobalt can be recrys-
tallized while still ferromagnetic, but nickel cannot. The three curves of Fig. 4.5 have
similar shapes and, when the data are replotted in the form of o,/0y vs T/T,. as in
Fig. 4.7, the points conform rather closely to a single curve. Thus Weiss prediction of
a law of corresponding states is verified. However, the shape of the curve of o,/ay vs
T/T, predicted by the Weiss—Langevin theory does not agree with experiment. We can
see this by finding graphically the points of intersection of the curve of Equation 4.7 and
the lines of Equation 4.12 for various values of T/T,. The result is shown by the curve
labeled “classical, J = o in Fig. 4.7. This disagreement is not surprising, inasmuch as
we have already seen in Chapter 3 that the classical Langevin theory, which was the
only theory available for Weiss to test in this manner, does not conform to experiment.
The Weiss theory may be modernized by supposing that the molecular field acts on a
substance having a relative magnetization determined by a quantum-mechanical Brillouin
function B(J, '), as discussed in Chapter 3. In terms of specific magnetization, we have

(o)) 2J

— coth 4.1
57 )4 cot (4.13)

o 2J+1 (2J+ 1) , 1 a
= ———coth

where @’ = pyH/kt from Equation 3.40. The straight line representing the molecular field is
given by

g _ <L) d. (4.14)

o] MuYPO0
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Fig. 4.7 Relative saturation magnetization of iron, cobalt, and nickel as a function of relative temp-
erature. Calculated curves are shown for three values of J.

The slope of the Brillouin function at the origin is (J + 1)/3J, from Equation 3.45.
Therefore, the Curie temperature is

_ (uYpoo\ (J+1
T, = ( , ) <3J ) 4.15)
_ g + 13)]::'“B7P0'0 - (4.16)

The equation of the molecular-field line can then be written

o (J+1\/T\,
5 G @

Values of the relative spontaneous magnetization o,/ oy as a function of 7/, can be found
graphically from the intersections of the curve of Equation 4.13 and the lines of Equation
4.17. A different relation will be found for each value of J. The particular value J = % is of
special interest. Equations 4.13 and 4.17 then become

2 _ tanh o' (4.18)
o9
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and
o T\ ,
—=|=]a. 4.19
7~ (1) @19
These can be combined to give
%5 _ tanh T/ 7). (4.20)
00 (T/Tc)

which can be solved for o,/ 0y as a function of T/T,. The theoretical curves for J = % and
J =1 are plotted in Fig. 4.7. Either one is in fairly good agreement with experiment, with
the curve for J = % perhaps slightly better.

If J equals %, the magnetic moment is due entirely to spin, the g factor is 2, and there is no
orbital contribution. That this condition is closely approximated by ferromagnetic sub-
stances is also suggested by experimental values of g. Table 4.1 lists observed g factors
for Fe, Co, Ni, and several ferromagnetic alloys, and they are all seen to be close to 2.
We may therefore conclude that ferromagnetism in transition metals is due essentially to
electron spin, with little or no contribution from the orbital motion of the electrons. At
OK the spins on all the atoms in any one domain are parallel and, let us say, “up.” At
some higher temperature, a certain fraction of the total, determined by the value of the
Brillouin function at that temperature, flips over into the “down” position; the value of
that fraction determines the value of o.

Up to this point we have put the applied field equal to zero and considered only the effect
of the molecular field. If a field H is applied, the total field acting on the substance is (H +
H,,), where by H we mean the applied field corrected for any demagnetizing effects.
Therefore,

J = pu(H + Hin) _ pu(H + ypo)

T T 4.21)

TABLE 4.1 Values of the g Factor

Material g

Fe 2.10
Co 2.21
Ni 221
FeNi 2.12
CoNi 2.18
Supermalloy (79 Ni, 5 Mo, 16 Fe) 2.10
Cu,MnAl 2.01
MnSb 2.10
NiF6204 2.19

S. Chikazumi, Physics of Ferromagnetism, 2nd ed. Oxford
University Press (1997), p. 69.
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which may be written

kT H
fi::( >a’— . 4.22)
o\ ypoo Ypoy

This is a straight line parallel to the line of Equation 4.14 but displaced downward by an
amount H/ypay, proportional to the applied field. In Fig. 4.8, lines 2 and 4 represent
the molecular field alone, while the dashed lines 2’ and 4’ represent the molecular and
applied fields.

Above the Curie point, at 7= 1.2 T, for example, the effect of the applied field is to
move the point of intersection of the field line and the magnetization curve from the
origin to the point B, and from this change in magnetization the susceptibility can be cal-
culated. Inasmuch as we are interested only in the region near the origin, the Brillouin func-
tion can be approximated by the straight line

o J+1) ,
—= . 4.2
(5 423

Eliminating &' from Equations 4.22 and 4.23, we obtain

o paoo + 1)/3kJ

o , 424
H T —[pgypoo( + 1)/3kJ] (424

X

0.8

0.6
o
%

0.4

0.2
u f°%
POy

a'=py H/KT

Fig. 4.8 Effects of temperature and applied field on magnetization. Curve 1 is the Brillouin function
for J=1.
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which has the form of the Curie—Weiss law y = C/(T — 6), provided that

sgoo + 1)

Signd: kA 4.25

¢ 3kJ ’ (4.25)
1

o — pyypoo(J + 1) 4.26)

3kJ

Since Equations 4.15 and 4.26 are identical, it follows from molecular-field theory that T,
the temperature at which the spontaneous magnetization becomes zero, and 6, the tempera-
ture at which the susceptibility becomes infinite, are identical. It is left as an exercise to
show that the Curie constant per gram given by Equation 4.25 is the same as that given
by Equation 3.46.

At temperatures well below the Curie temperature, for example at room temperature in
most ferromagnets, even a very strong applied field produces only a small increase in the
spontaneous magnetization oy or M, already produced by the molecular field. Thus, for
T=0.5T,, line 2 in Fig. 4.8 shifts to position 2’ when a field is applied, but the increase
in relative magnetization, from P to P, is very slight, because the magnetization curve is
so nearly flat in this region. To increase the magnetization of a ferromagnetic specimen
from zero to o or M usually requires, at room temperature, applied fields less than 1000
oersted or 80 kA /m. In this chapter “applied field” means the true field acting inside the
specimen. It is the difference between the actual applied field and any demagnetizing
field that may be present. The magnetization of the specimen is then the same as that of
each domain in the demagnetized state, and the specimen is sometimes said to be in a
state of “technical saturation” or simply ‘“‘saturation.” To produce any appreciable increase
in magnetization beyond this point requires fields 100 times stronger, and such an increase
is called forced magnetization. It represents an increase in the magnetization of the domain
itself. At any temperature above OK an infinite field is required to produce absolute satur-
ation, for which o, = o or M, = M. At OK this condition can be reached with fields of
10>-10° Oe, or 8—80kA/m. (At OK the obstacles to absolute saturation no longer
include thermal agitation, because oy equals oy in each domain of the demagnetized
state. The obstacles are then only the “ordinary” ones inherent in domain wall motion
and domain rotation; these processes are discussed in Chapters 7-9.)

Forced magnetization beyond the value of the spontaneous magnetization is called the
para-process by Russian authors. It is represented, at temperature 7', by points lying
along the line AB of Fig. 4.9. The increase in magnetization beyond o caused by a
given increase in field is larger the closer T} is to the Curie temperature; this and other
phenomena occurring near 7, have been described in detail by K. P. Belov [Magnetic
Transitions, Consultants Bureau (1961), translated from Russian], L. F. Bates [Modern
Magnetis, 4th ed., Cambridge University Press (1961)], and R. M. Bozorth
[Ferromagnetism, Van Nostrand (1951); reprinted by IEEE Press (1993)].

Figure 4.9 summarizes the results of molecular-field theory. The temperature 6 at which
the susceptibility y becomes infinite, and 1/ becomes zero, is the same as the temperature
T. at which the spontaneous magnetization appears. Careful measurements have shown
that the situation near the Curie point is not that simple. Two deviations from the theory,
illustrated in Fig. 4.10, are observed:

1. The curve of 1/x vs T is a straight line at high temperatures but becomes concave
upward near the Curie point. The extrapolation of the straight-line portion cuts the
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Fig. 4.9 Magnetization and susceptibility curves below and above the Curie temperature. The small
sketches at the top represent the distribution of classical spin directions, in zero applied field within a
single domain (below T.), and in a group of atoms (above T.).

temperature axis at 6, which is called the paramagnetic Curie point. It is therefore
equal to the 0 of the Curie—Weiss law.

2. The curve of the spontaneous magnetization o,/ 0q vs T does not cut the temperature
axis at a large angle but bends over to form a small “tail.” The temperature 6; defined
by the extrapolation of the main part of the curve is called the ferromagnetic Curie
point.

It is usual to refer to the Curie point as T, (or 6) except when dealing with phenomena in the
immediate neighborhood of this “point.” It is then necessary to distinguish between the two
Curie points ¢ and 6,. The difference between the two is generally 10—-30K. This behavior
shows that the transition from the ferromagnetic to the paramagnetic state is not sharp, but

1/x

o,/ag

7

6 6p
7T—

Fig. 4.10 Magnetic behavior near the Curie point.
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blurred. The fuzziness of the transition is attributed to spin clusters. These are small groups
of atoms in which the spins remain parallel to one another over a small temperature range
above 6,; as such they constitute a kind of magnetic short-range order. These clusters of
local spin order exist within a matrix of the spin disorder which constitutes a true paramag-
netic material, and they gradually disappear as the temperature is raised. Conversely, below
0; there is a long-range order of spins even in the absence of an applied field; this is pre-
cisely what spontaneous magnetization means.

There is an extensive literature on the behavior of ferromagnets in the temperature region
near the Curie point, which is generally categorized under the topic critical indices. The
book by Chikazumi (see Table 4.1) treats this subject in some detail.

Another and perhaps more serious disagreement between molecular-field theory and
experiment involves the magnitudes of the magnetic moment per atom below and above
the Curie point. At absolute zero, where complete saturation is attained, the specific mag-
netization oy is given by the maximum magnetic moment per atom in the direction of the
field multiplied by the number of atoms per gram, or

N
00 =ty (4.27)

where N is Avogadro’s number and A the atomic weight. For iron, substituting the value of
oy from Appendix 2, we have

 (221.9)(55.85)

P =602 % 105
2,06 x 102
©0.927 x 10720

=2.06 x 1072 erg/Oe

=222 g

Similar calculations for cobalt and nickel yield the values listed in the second column of
Table 4.2. According to molecular-field theory, these elements should exhibit the same
atomic moments above the Curie point, but this is not found to be true. From the observed
Curie constants in the paramagnetic region we can calculate the effective moments per
atom; these appear in the third column. Values of wy; can then be calculated from observed
values of p.¢ for any assumed value of J; two such values of uy are shown for each metal in
the last two columns. From Equations 3.26 and 3.28, it follows that for any value of g,
M = Megr/+/3 When J = %, and pp = Merr/+/2 when J = 1. Neither for J :% nor for

TABLE 4.2 Atomic Moments of Iron, Cobalt, and Nickel

Ferromagnetic Paramagnetic

Calculated py

0y emu/g or

Am’/kg MH Metf J=1 J=1
Fe 21.9 2.22 s 3.15 s 1.82 s 2.3 g
Co 162.5 1.72 3.13 1.81 2.21

Ni 57.50 0.60 1.61 0.93 1.14
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J =1 is there agreement for all three metals with the values of uy in the ferromagnetic
region. These differences are generally attributed to and explained on the basis of the
band theory of magnetism.

Certain aspects of the uy values in the ferromagnetic region should be noted.

1. They are nonintegral. This fact will be discussed in Section 4.4

2. They are not what one would expect from the relation uy = g/ug (Equation 3.28)

and reasonable values of g and J. If g=2 and J = %, as seems most likely, uy
should be one Bohr magneton or one spin per atom. But the observed value, for
iron, is 2.2 ug. Suppose we ignore the fractional part and assume exactly two spins
per atom. How can this value be reconciled with J = % and the tanh o' variation of
o,/ 0o (Equation 4.18), which is experimentally observed? The answer is that the
two spins on any one atom are not coupled together. Figure 4.11 shows atoms rep-
resented by circles and spin moments by arrows, and Fig. 4.11a—c shows the possible
arrangements of two spins per atom on three atoms, for J = % Because one spin is
able to flip over, in response to a change in temperature, for example, without
causing the other spin on the same atom to flip, these arrangements are equivalent
to the possible arrangements of one spin per atom on six atoms, and the statistics
of this situation lead to the tanh &’ relation. On the other hand, if J=1 and g = 2,
the possible values of uy are +2, 0, and —2 Bohr magnetons. But here the two
spins per atom are coupled; if one flips, the other must, too, as in Fig. 4.11d—f,
and the tanh «’ relation is not followed. Complete spin reversal, from Fig. 4.11d to
f, is a common transition when J = 1, but the same change, from Fig. 4.11a to c,
is quite unlikely when J = %, because it would require the simultaneous reversal of
two independent spins.

3. The uy values in the ferromagnetic region are of the same order of magnitude as the
my values for paramagnetic substances generally. The huge difference between a
ferromagnet and a paramagnet is therefore due to the degree of alignment achieved
and not to any large difference in the size of the moment per atom.

(a) (b) ©)
(d (e) )

Fig. 4.11 Possible spin arrangements for coupled and uncoupled spins.



4.3 EXCHANGE FORCES 129

We will conclude this section on the molecular field by calculating its magnitude. From
Equation 4.26 for J = %, we have for the molecular field coefficient:

ko
Yo = (4.28)

MHO0
For iron, this becomes

(138 % 10719)(1043)
YP=12.06 x 10-20)(221.9)

—3.15 x 10* Oe—2—.
cmu

Therefore, the molecular field in iron at room temperature is
Hy = (yp)o, = (3.15 x 10%)(218.0) = 6.9 x 10° Oe = 550 x 10° A/m

The corresponding values for cobalt and nickel are 11.9 and 14.7 x 10° oersteds (950 and
1200 x 10° A /m), respectively. These fields are very much larger than any continuous field
yet produced in the laboratory, and some 10* times larger than the fields normally needed to
achieve technical saturation. It is therefore not surprising to find that the application of even
quite large fields produces only a slight increase in the spontaneous magnetization already
produced by the molecular field. Finally, it should be stressed again that the molecular field
is not a real field, but rather a force or torque tending to make adjacent atomic moments
parallel to one another; it is called a field, and measured in field units, because it has the
same kind of effect as a real field.

4.3 EXCHANGE FORCES

The Weiss theory of the molecular field says nothing about the physical origin of this field.
However, the hypothesis that H,, is proportional to the existing magnetization implies that
the phenomenon involved is a cooperative one. Thus, the greater the degree of spin align-
ment in a particular region of a crystal, the greater is the force tending to align any one spin
in that region. The cooperative nature of the phenomenon is clearly shown by the way in
which oy decreases with increasing temperature (Fig. 4.7). Near absolute zero the decrease
is slight, but, as the temperature is raised, thermal energy is able to reverse more and more
spins, thus reducing the aligning force on those spins which are still aligned. The result is a
more and more rapid breakdown in alignment, culminating in almost complete disorder at
the Curie point.

In seeking for a physical origin of the molecular field, we might at first wonder if it could
be entirely magnetic. Figure 4.12a, for example, shows a set of atoms, represented by small
circles, each having a net magnetic moment. The directions of these moments, considered
as classically free to point in any direction, are indicated by the arrows. Each atom, con-
sidered as a magnetic dipole, produces an external field like that of Fig. 1.6, and the sum
of the fields of all the dipoles at the point P would be a field from left to right, tending
to increase the alignment of the moment on an atom placed at that point. The calculation
of this field at P would involve a summation over all the dipoles in the specimen. The cal-
culation becomes easier if we replace the set of dipoles with a continuous medium of
average magnetization M, as in Fig. 4.12b and ask: What is the field at P in the center of
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Fig. 4.12 Field at an interior point due to surrounding magnetized material.

a spherical hole in the material? This field, called the Lorentz field, is due to the north and
south poles produced on the sides of the hole and is exactly equal in magnitude to the
demagnetizing field of a solid magnetized sphere in empty space. We have already calcu-
lated this field in Section 2.6 and found it to be 47r/3M (cgs) or 1/3M (SI). For saturated
iron at room temperature this is equal to 477/3 (1714) or about 7200 Oe (cgs) or 575 kA/m
(SD). So purely magnetostatic forces are too small by about a factor of 1000 to account for
the molecular field.

The physical origin of the molecular field was not understood until 1928, when
Heisenberg showed that it was caused by quantum-mechanical exchange forces. About
a year earlier the new wave mechanics had been applied to the problem of the hydrogen
molecule, i.e., the problem of explaining why two hydrogen atoms come together to form
a stable molecule. Each of these atoms consists of a single electron moving about the
simplest kind of nucleus, a single proton. For a particular pair of atoms, situated at a
certain distance apart, there are certain electrostatic attractive forces (between the elec-
trons and protons) and repulsive forces (between the two electrons and between the
two protons) which can be calculated by Coulomb’s law. But there is still another
force, entirely nonclassical, which depends on the relative orientation of the spins of
the two electrons. This is the exchange force. If the spins are antiparallel, the sum of
all the forces is attractive and a stable molecule is formed; the total energy of the
atoms is then less for a particular distance of separation than it is for smaller or larger
distances. If the spins are parallel, the two atoms repel one another. The exchange
force is a consequence of the Pauli exclusion principle, applied to the two atoms as a
whole. This principle states that two electrons can have the same energy only if they
have opposite spins. Thus two hydrogen atoms can come so close together that their
two electrons can have the same velocity and occupy very nearly the same small
region of space, i.e., have the same energy, provided these electrons have opposite
spin. If their spins are parallel, the two electrons will tend to stay far apart. The ordinary
(Coulomb) electrostatic energy is therefore modified by the spin orientations, which
means that the exchange force is fundamentally electrostatic in origin.
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The term “exchange” arises in the following way. When the two atoms are adjacent, we
can consider electron 1 moving about proton 1, and electron 2 moving about proton 2. But
electrons are indistinguishable, and we must also consider the possibility that the two elec-
trons exchange places, so that electron 1 moves about proton 2 and electron 2 about proton
1. This consideration introduces an additional term, the exchange energy, into the
expression for the total energy of the two atoms. This interchange of electrons takes
place at a very high frequency, about 10'® times per second in the hydrogen molecule.

The exchange energy forms an important part of the total energy of many molecules and
of the covalent bond in many solids. Heisenberg showed that it also plays a decisive role in
ferromagnetism. If two atoms i and j have spin angular momentum S;i/27r and S;h /2,
respectively, then the exchange energy between them is given by

Eey = —2JxSiSj = —2J S;S; cos ¢ (4.29)

where J. is a particular integral, called the exchange integral, which occurs in the calcu-
lation of the exchange effect, and ¢ is the angle between the spins. If J., is positive, E. is a
minimum when the spins are parallel (cos ¢ = 1) and a maximum when they are antipar-
allel (cos ¢ = —1). If J. is negative, the lowest energy state results from antiparallel spins.
As we have already seen, ferromagnetism is due to the alignment of spin moments on adja-
cent atoms. A positive value of the exchange integral is therefore a necessary condition for
ferromagnetism to occur. This is also a rare condition, because J., is commonly negative, as
in the hydrogen molecule.

According to the Weiss theory, ferromagnetism is caused by a powerful “molecular
field” which aligns the atomic moments. In modern language we say that “exchange
forces” cause the spins to be parallel. However, it would be unrealistic to conclude from
this change in terminology that all the mystery has been removed from ferromagnetism.
The step from a hydrogen molecule to a crystal of iron is a giant one, and the problem
of calculating the exchange energy of iron is so formidable that it has not yet been
solved. Expressions like Equation 4.29, which is itself something of a simplification and
which applies only to two atoms, have to be summed over all the atom pairs in the
crystal. Exchange forces decrease rapidly with distance, so that some simplification is poss-
ible by restricting the summation to nearest-neighbor pairs. But even this added simplifica-
tion does not lead to an exact solution of the problem. In the present state of knowledge, it is
impossible to predict from first principles that iron is ferromagnetic, i.e., merely from the
knowledge that it is element 26 in the periodic table.

Nevertheless, knowledge that exchange forces are responsible for ferromagnetism and,
as we shall see later, for antiferro- and ferrimagnetism, has led to many conclusions of
great value. For example, it allows us to rationalize the appearance of ferromagnetism in
some metals and not in others. The curve of Fig. 4.13, usually called the Bethe—Slater
curve, shows the postulated variation of the exchange integral with the ratio r,/r34
where r, is the radius of an atom and r3, the radius of its 3d shell of electrons. (It is the
spin alignment of some of the 3d electrons which is the immediate cause of ferromagnetism
in Fe, Co, and Ni.) The atom diameter is 2r, and this is also the distance apart of the atom
centers, since the atoms of a solid are regarded as being in contact with one another. If two
atoms of the same kind are brought closer and closer together but without any change in the
radius r3, of their 3d shells, the ratio r,/r3; will decrease. When this ratio is large, Jo, is
small and positive. As the ratio decreases and the 3d electrons approach one another
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Fig. 4.13 Bethe—Slater curve (schematic).

more closely, the positive exchange interaction, favoring parallel spins, becomes stronger
and then decreases to zero. A further decrease in the interatomic distance brings the 3d elec-
trons so close together that their spins must become antiparallel (negative J.). This con-
dition is called antiferromagnetism.

The curve of Fig. 4.13 can be applied to a series of different elements if we compute
ra/r3q from their known atom diameters and shell radii. The points so found lie on the
curve as shown, and the curve correctly separates Fe, Co, and Ni from Mn and the
next lighter elements in the first transition series. (Mn is antiferromagnetic below 95K,
and Cr, the next lighter element, is antiferromagnetic below 37°C; above these temp-
eratures they are both paramagnetic.) When J, is positive, its magnitude is proportional
to the Curie temperature (see below), because spins which are held parallel to each other
by strong exchange forces can be disordered only by large amounts of thermal energy.
The positions of Fe, Co, and Ni on the curve agree with the fact that Co has the
highest, and Ni the lowest, Curie temperature of the three.

Although the theory behind the Bethe—Slater curve has received much criticism, the
curve does suggest an explanation of some otherwise puzzling facts. Thus ferromagnetic
alloys can be made of elements which are not in themselves ferromagnetic; examples of
these are MnBi and the Heusler alloys, which have approximate compositions Cu,
MnSn and Cu,MnAl. Because the manganese atoms are farther apart in these alloys than
in pure manganese, r,/r3; becomes large enough to make the exchange interaction positive.

Inasmuch as the molecular field and the exchange interaction are equivalent, there must
be a relation between them. We can find an approximate form of this relation as follows. Let
z be the coordination number of the crystal structure involved, i.e., let each atom have z
nearest neighbors, and assume that the exchange forces are effective only between
nearest neighbors. Then, if all atoms have the same spin S, the exchange energy between
one atom and all the surrounding atoms is

Eex = 2(—2JeS%),

when all the spins are parallel. But this is equivalent to the potential energy of the atom
considered in the molecular field H,,. If the atom has a magnetic moment of uy in the direc-
tion of the field, this energy is

Ep()l = 7"LHHm'
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Equating these two expressions for the energy, we have

22JexS?
H,, = (yp)oy = ——. (4.30)
My
But the molecular field coefficient (yp) is related to the Curie temperature 6 by Equation
4.26. When J = S (pure spin), this substitution gives

3k0

Jor = 2:8(5+ 1)’ @30
which shows that the exchange integral is proportional to the Curie temperature, as men-
tioned above. For a body-centered cubic structure like that of iron, for which z = 8, and
for S= % Equation 4.31 gives Jex = 0.25 k6. A more rigorous calculation gives
Jex = 0.34 k0 for this case.

Exchange forces depend mainly on interatomic distances and not on any geometrical
regularity of atom position. Crystallinity is therefore not a requirement for ferromagnetism.
The first discovery of an amorphous ferromagnet was reported in 1965 by S. Mader and
A. S. Nowick [Appl. Phys. Lett., 7 (1965) p. 57]. They made amorphous thin films of
cobalt-gold alloys by co-depositing the two metals from the vapor on a substrate main-
tained, not at room or elevated temperatures, but at 77K. These alloys were both ferromag-
netic and amorphous, as judged from electron-diffraction photographs, and they retained
their amorphous condition when heated to room temperature. Many ferromagnetic amor-
phous alloys have since been made, and several are produced commercially. See
Chapter 13.

4.4 BAND THEORY

The band theory is a broad theory of the electronic structure of solids. It is applicable not
only to metals, but also to semiconductors and insulators. It leads to conclusions about a
variety of physical properties, e.g. cohesive, elastic, thermal, electrical, and magnetic.
When the band theory is applied specifically to magnetic problems, it is sometimes
called the collective-electron theory. This application of band theory was first made in
1933-1936 by E. C. Stoner and N. F. Mott in the United Kingdom and by J. C. Slater
in the United States. Our task in this section is to apply it to Fe, Co, and Ni in an
attempt to explain the wy values of these metals at OK, namely, 2.22, 1.72, and
0.60 Bohr magnetons per atom, respectively (Table 4.2). These are important numbers,
and any satisfactory theory of magnetism has to account for them.

We will begin by reviewing the electronic structure of free atoms, i.e., atoms located at
large distances from one another, as in a monatomic gas. The electrons in such atoms
occupy sharply defined energy levels in accordance with the Pauli exclusion principle.
This principle states that no two electrons in the atom can have the same set of four
quantum numbers. Three of these numbers define the level (“shell”) or sublevel involved,
while the fourth defines the spin state of the electron (spin up or spin down). The Pauli prin-
ciple can therefore be alternatively stated: Each energy level in an atom can contain a
maximum of two electrons, and they must have opposite spin. Table 4.3 lists the various
energy levels and the number of electrons each can hold, in terms of X-ray notation
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TABLE 4.3 Atomic Energy Levels

Shell K L M N
Subshell s 2s 2p 3s 3p 3d 4s
Capacity 2 2 6 2 6 10 2

(K, L, ...) and quantum-mechanical notation (s, 2s, ...). The 2p subshell is actually com-
posed of three sub-subshells of almost the same energy, each capable of holding two elec-
trons; the 3d subshell has a similar kind of substructure, and its total capacity is 10 electrons.

The filling up of levels proceeds regularly in the elements from hydrogen to argon,
which has 18 electrons. At this point all levels up to and including the 3p are filled. As
we go to heavier elements, however, we find irregularities in the way that the 3d and 4s
levels are filled, because these two have nearly the same energy and they shift their relative
positions almost from atom to atom. Observations of optical spectra disclose the electron
distributions listed in Table 4.4. The transition elements, those in which an incomplete
3d shell is being filled, are the ones of most interest to us because they include the three
ferromagnetic metals. It must be emphasized that the electron distributions in Table 4.4
apply only to free atoms, because of the way in which these distributions were observed.
The optical spectrum of an element is obtained by placing it in an electric arc, and the temp-
erature of the arc is high enough to convert any element into a monatomic gas.

When atoms are brought close together to form a solid, the positions of the energy levels
are profoundly modified. Suppose that two atoms of iron approach each other from a large
distance. When they are well separated, their 1s levels, each containing two electrons, have
exactly the same energy. When they approach so closely that their electron clouds begin to
overlap, the Pauli principle now applies to the two atoms as a unit and prevents them from
having a single 1s level containing four electrons; instead, the 1s level must split into two
levels with two electrons in each. Similarly, when N atoms come together to form a solid,
each level of the free atom must split into N levels, because the Pauli principle now applies
to the whole group of N atoms. However, the extent of the splitting is different for different
levels, as indicated in Fig. 4.14. In the transition elements, the outermost electrons are the
3d and 4s; these electron clouds are the first to overlap as the atoms are brought together,
and the corresponding levels are the first to split. When the interatomic distance d has
decreased to dj, the equilibrium value for the atoms in the crystal, the 3d levels are
spread into a band extending from B to C, and the 4s levels are spread into a much
wider band, extending from A to D, because the 4s electrons are farther from the
nucleus. At the same atom spacing, however, the inner core electrons (1s and 2s) are too
far apart to have much effect on one another, and the corresponding energy levels show

TABLE 4.4 Electron Distributions in Free Atoms

Transition Elements

Number of ElectronsinShell K Ca Sc| Ti V Cr Mn Fe Co Ni| Cu Zn
3d 0 0 1 2 3 5 5 6 7 8| 10 10
4s 1 2 2 2 2 1 2 2 2 2 1 2
3d + 4s 1 2 3 4 5 6 7 8 9 10 | 11 12
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Fig. 4.14 Splitting of electron energy levels as the interatomic distance decreases.

a negligible amount of splitting. If the atoms could be forced together to distances much
smaller than d,, the 1s and 2s levels would presumably broaden considerably, as indicated
in the drawing. Experimental evidence for the above statements is afforded by the X-ray
emission spectra of solid metals. When electron transitions occur between two inner
shells, radiation of a single wavelength is emitted, namely, the sharp K, L, etc. X-ray
lines. The levels involved must therefore have sharply defined energies. On the other
hand, when the transition is between an outer and an inner shell, the emitted radiation con-
sists of a broad range of wavelengths.

There are a great many energy levels in a band, even for a small bit of crystal.
For example, 55.85g of iron (the gram atomic weight) contain 6.02 x 10* atoms
(Avogadro’s number). Thus 1 mg of iron contains about 10'® atoms, and the Pauli principle
therefore requires that each separate energy level in the free atom split into about 10" levels
in a 1 mg crystal. This means that the levels in a band are so closely spaced as to constitute
almost a continuum of allowed energy. Nevertheless, we will still be interested in the energy
difference between levels or, to put it in other terms, in the density of levels in the band.
This density is often written as N(E) to emphasize the fact that it is not constant but a func-
tion of the energy E itself. The product of the density N(E) and any given energy range
gives the number of levels in that range; thus N(E)dE is the number of levels lying
between the energies E and E + dE, and 1/N(E) is the average energy separation of adja-
cent levels in that range.

An important and difficult problem of the band theory is to calculate the “shape” of
energy bands, i.e., the form of the N(E) vs E curve for the band. The result of one such
calculation, for the 3d band of nickel, is shown in Fig. 4.15. More recent calculations for
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Fig. 4.15 One calculation of the density of levels as a function of energy in the 3d band of nickel.

nickel and other metals are given in the text by Chikazumi. All 3d band calculations show
that the variation of N(E) with E is quite irregular. However, the exact shape of the band
does not affect the general arguments to be advanced later.

Since the 3d and 4s bands overlap in energy (Fig. 4.14), it is convenient to draw the cor-
responding density curves side by side, as in Fig. 4.16. Here the density of 3d levels
increases outward to the left, and that of 4s levels outward to the right; the letters A, B,
C, and D refer to the same energies as in Fig. 4.14; and a simplified form, of schematic
significance only, has been adopted for the shape of the 3d band. Note that the density
of 3d levels is far greater than that of 4s levels, because there are five 3d levels per
atom, with a capacity of 10 electrons, whereas there is only one 4s level, with a capacity

E
DX-—- Zn
3d 4s
24 I =
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——Fe
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Fig. 4.16 Density of levels in the 3d and 4s bands (schematic).
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of two electrons, as noted in Table 4.3. The area under each N(E) vs E curve is equal to the
total number of levels in the band.

We will now use the curves of Fig. 4.16 as a basis for discussing the electronic structure
of the elements Mn through Zn; i.e., we will make the first-approximation assumption that
the shape of these bands does not change much from one element to another in this range.
This is called the rigid-band model. Note that the N(E) curves show the density of available
levels. The extent to which these levels are occupied by electrons depends on the number of
(3d + 4s) electrons in the atom. The 3d band can hold a total of 10 electrons per atom, but in
the transition elements it is never completely full. The extent to which it is filled in several
metals is shown by dashed lines in Fig. 4.16. The topmost filled level for any metal is called
the Fermi level. These lines also show the extent to which the 4s band, which can hold only
two electrons per atom, is filled. As long as both bands are partly full, they must be filled to
the same height, just as water in two interconnected tanks must reach the same level.

Nickel has a total of 10 (3d + 4s) electrons, in the solid or the free atom, and magnetic
evidence, described below, indicates that 9.4 are in the 3d band and 0.6 in the 4s. (The cor-
responding distribution in the free atom is 8 and 2, respectively.) The Fermi level for nickel
is therefore drawn just below the top of the 3d zone. Copper has one more electron, and its
3d zone is therefore completely full and its 4s zone half full. In zinc both zones are full.

Filled energy levels cannot contribute a magnetic moment, because the two electrons in
each level have opposite spin and thus cancel each other out. This situation is depicted in
Fig. 4.17a, where a band of levels, imagined to consist of two half bands, contains an equal
number of spin-up and spin-down electrons. The band shown corresponds to a highly sim-
plified, very unreal example: Suppose an atom has just one electron in a particular energy
level, when the atom is free, and then suppose that 10 such atoms are brought together to
form a “crystal.” Then the single level in the free atom will split into 10 levels, and the lower
five will each contain two electrons. If one electron reverses its spin, as in Fig. 4.17b, then a
spin unbalance of 2 is created, and the magnetic moment, or value of uy, is2/10 or 0/.2up
per atom. The force creating this spin unbalance in a ferromagnet is just the exchange force.
Returning to the water-in-a-tank analogy, we might say that the exchange force is like a dam
holding water in one half of a tank at a higher level than in the other half. To create a spin
unbalance requires that one or more electrons be raised to higher energy levels; evidently
these levels must not be too widely spaced or the exchange force will not be strong
enough to effect a transfer.

The ferromagnetism of Fe, Co, and Ni is due to spin unbalance in the 3d band. The 4s
electrons are assumed to make no contribution. The density of levels in the 4s band is low,

Spin up Spin down Spin up Spin down
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Fig. 4.17 Energy bands with (a) balanced and (b) unbalanced spins.
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which means that the levels themselves are widely spaced. Since the 3d band can hold five
electrons with spin up and five with spin down, the maximum unbalance, i.e., the saturation
magnetization, is achieved when one half-band is full of five electrons. Suppose we let

n = number of (3d + 4s) electrons per atom
x = number of 4s electrons per atom
n — x = number of 3d electrons per atom

At saturation, five 3d electrons have spin up and (n — x — 5) have spin down. The magnetic
moment per atom is therefore

iy =[5 — (n — x — 5)lug = [10 — (1 — X)] . (4.32)

This equation also shows that the maximum spin unbalance is equal to the number of
unfilled electron states in the 3d band. For nickel, n is 10 and the experimental value of
g is 0.60 up. Inserting these values in Equation 4.32, we find x = 0.60. This number is
proportional to the area enclosed by the lower part of the 4s N(E) curve in Fig. 4.16 and
the dashed line marked “Ni.” It is therefore only a slight approximation to assume that
the number of 4s electrons is constant at 0.60 for elements near nickel. We then have

iy = (10.6 — n)pg. (4.33)

The magnetic moments per atom predicted by this equation are compared with experiment
in Fig. 4.18 and Table 4.5. Note that theory and experiment have been made to agree for
nickel and that the predicted negative moment for copper has no physical meaning, since
the 3d band of copper is full.

Figure 4.18 shows fairly good agreement between theory and experiment for Fe, Co, and
Ni, and, as we shall see in the next section, for certain alloys. However, the theory predicts
that manganese and the next lighter elements would be more magnetic than iron, whereas
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Fig. 4.18 Observed and calculated dependence of the saturation magnetization on the number n of
(3d and 4s) electrons per atom.
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TABLE 4.5 Saturation Magnetization

Mn Fe Co Ni Cu
n 7 8 9 10 11
uy (observed) (up/atom) 0 2.22 1.72 0.60 0
py (calculated) (up/atom) 3.60 2.60 1.60 0.60 —0.40

they are, in fact, not ferromagnetic at all. In iron we have assumed 5.00 electrons with spin
up and 2.40 with spin down, leading to a spin unbalance of 2.60. Since the observed spin
unbalance in iron is some 20% less than this predicted value, and in manganese actually
zero, it appears that the exchange force cannot keep one half-band full of electrons if the
other half-band is less than about half full.

The fact that the observed values of wy are nonintegral follows quite naturally from the
band theory as soon as it is assumed that the 4s electrons contribute nothing to the magne-
tism. For then the division of an integral number of (3d + 4s) electrons between the two
bands must lead, more often than not, to a nonintegral number of electrons in the 3d
band. However, the difficulty of the appropriate value to assign to J, mentioned in
Section 4.3, still remains. “Experimental” values of J can be obtained by putting the experi-
mental value of uy and g = 2 into the relation wy = gJug. This leads to J values of 1.11,
0.86, and 0.30 for Fe, Co, and Ni, respectively. Inasmuch as these numbers are not integral
multiples of 1, it is not at all clear what physical significance should be attached to them.

To summarize the results of the last two sections we can write down certain criteria for
the existence of ferromagnetism in a metal:

1. The electrons responsible must lie in partially filled bands in order that there may be
vacant energy levels available for electrons with unpaired spins to move into.

2. The density of levels in the band must be high, so that the increase in energy caused
by spin alignment will be small.

3. The atoms must be the right distance apart so that the exchange force can cause the
d-electron spins in one atom to align the spins in a neighboring atom.

Requirement (1) rules out inner core electrons, and (2) rules out valence electrons, because
the density of levels in the valence band is low. But the transition elements, which include
the rare-earth metals, have incompletely filled inner shells with a high density of levels,
so these elements are possible candidates for ferromagnetism. However, of all the transition
elements, only Fe, Co, and Ni meet requirement (3). Many of the rare earths are ferromag-
netic below room temperature, as shown in Appendix 3; their spontaneous magnetization is
due to spin unbalance in their 4f bands.

Note that all of the above criteria are the result of hindsight. They are a blend of exper-
iment and theory, and were not predicted from first principles.

The band theory affords a ready explanation of the Pauli paramagnetism (weak spin
paramagnetism) mentioned in Section 3.8. Electrons in a partially filled band of a metal
occupy the available levels in accordance with the Fermi—Dirac distribution law. At 0K
this distribution is such that all levels up to the Fermi level are full and all higher levels
completely empty, as shown in Fig. 4.19a, where the heavy lines indicate the density
of occupied levels and the light lines the density of available levels. At any higher tempera-
ture, as in Fig. 4.19b, thermal energy excites some electrons into higher levels; the
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Fig. 4.19 Electron distributions at (a) OK and (b) at a high temperature. Eg. is the Fermi level.

density of occupied levels above the former Fermi level therefore increases from zero
to some finite value, and the density of occupied levels just below the former Fermi
level decreases.

To understand the effect of an applied field, imagine the band divided into two half-
bands, containing electrons of opposite spin. In zero applied field, each half-band contains
the same number of electrons, and the crystal as a whole has no net moment. When a field is
applied at OK, it can reverse the spins only of those electrons which lie at and just below the
Fermi level, and these constitute only a tiny fraction of the total number of electrons. The
spins of those which lie in levels deep below Er cannot be changed, because there are no
empty levels immediately above. The result is a weak paramagnetism. Note that here the
field creates a moment on each atom, in sharp contrast to a normal paramagnetic material,
in which each atom has a net moment before the field is applied. The effect of an increase in
temperature is merely to excite the uppermost electrons in the band to higher levels, but this
effect takes place to about the same extent in both half-bands and does not change the spin
unbalance created by the field. The susceptibility is therefore essentially independent of
temperature.

Figure 4.19 is drawn to suggest the high, narrow 3d band characteristic of a transition
metal like manganese, which has a high density of 3d levels. In a metal like potassium,
however, the Pauli paramagnetism will be even weaker, because the outermost electrons
are now 4s electrons. The density of 4s levels is low, which means that the spacing of
levels is large. The effect of a given applied field in producing spin unbalance is therefore
less than for a metal with closely spaced levels.

We can now see that the phenomena of ferromagnetism and Pauli paramagnetism are
very much alike, except for one vital factor: the magnitude of the force creating spin unba-
lance. The band sketched in Fig. 4.19 might well indicate, in a schematic way, the 3d band
of both manganese (paramagnetic at room temperature) and iron (ferromagnetic). The only
difference would be that the Fermi level of manganese would be somewhat lower than that
of iron, because manganese has one less electron. In manganese, spin unbalance can be
created only by an applied field; the amount of unbalance is small, and it disappears
when the field is removed. In iron, on the other hand, a very powerful molecular field
(exchange force) spontaneously and permanently creates a large spin unbalance in every
atom and forces the net spins of all the atoms in a single domain to be parallel to
one another.
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4.5 FERROMAGNETIC ALLOYS

Ferromagnetism is found in the binary and ternary alloys of Fe, Co, and Ni with one
another, in alloys of Fe, Co, and Ni with other elements, and in a relatively few alloys
which do not contain any ferromagnetic elements. The ferromagnetism of alloys is therefore
a very wide subject, and we can examine here only the more important trends.

Certain distinctions can be made at the beginning. In terms of binary alloys, these are:

1. When two elements form a mutual solid solution, the variation of the saturation
magnetization oy and the Curie temperature 7, with composition is, in general,
unpredictable.

2. When an alloy consists of two phases, a change in overall composition changes only
the relative amounts of the two phases, but the composition of each phase remains
constant. Therefore, if one phase is ferromagnetic, the saturation magnetization o
of the alloy will vary linearly with the weight percent of the added element in the
alloy, and T, will remain constant.

These two kinds of behavior are illustrated in Fig. 4.20. Element A is assumed to be ferro-
magnetic, and B, together with the B-rich solid solution f3, is assumed to be paramagnetic.
When B is added to A to form the « solid solution, both o and T, are expected to decrease,
but the shape of the curve of oy (or T;) vs composition is unpredictable. In the two-phase
(a + B) region, the a phase is saturated and does not change its composition, but the
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Fig. 4.20 (a) Hypothetical phase diagram of A—B alloys. Element A is ferromagnetic, B is para-
magnetic. (b) Variation of oy and 7, with composition.
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amount of « decreases as B is added. Therefore o decreases linearly to zero at the edge of
the two-phase field, and T, remains constant.

Iron-cobalt alloys illustrate these effects. Figure 4.21a shows the phase diagram; there is
a very wide range of solid solubility at room temperature, extending to about 75% Co. The
50% Co alloy undergoes long-range ordering, and ¢’ is the ordered form of a. The Curie
temperature, shown by dotted lines, follows the boundaries of the (a4 7y) region
from about 15 to 73% Co, a range over which these boundaries are almost coincident; 7.
is then constant, but not shown on the diagram, over the two-phase region from 73 to
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Fig. 421 (a) Fe—Co binary phase diagram. (b) Variation of oy at room temperature with
composition.
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Fig. 4.22 Slater—Pauling curve: dependence of saturation magnetization of alloys on the number of
(3d + 4s) electrons per atom. [S. Chikazumi, Physics of Ferromagnetism, Oxford University Press,
(1997).]

76% Co, and then rises to the value for pure Co. Figure 4.21b shows the variation of o with
composition. The addition of cobalt, which is less magnetic than iron, increases the mag-
netization, and the 30% Co alloy has a higher value of o at room temperature than any
other known material. The cobalt-rich alloys are not spaced closely enough in composition
to clearly show the expected variation of oy in the two-phase (o + ) and (y + €) regions,
but the marked change in slope of the curve at about 75% Co, the edge of the « region, is
apparent. The dashed line corresponds to the (e + ) field, but the phase diagram and the
magnetic data are not in full accord in the Co-rich region.

In the remainder of this section we will consider only single-phase solid solutions.
According to the band theory, the saturation magnetization of elements near nickel
should depend only on the number n of (3d + 4s) electrons per atom in accordance with
Equation 4.33. By alloying we can make n take on nonintegral values and, in this way,
test the theory over those ranges of n in which solid solutions exist. The results are
shown in Fig. 4.22, generally called the Slater—Pauling curve. We note the following
points:

1. When n is greater than about 8.3, theory and experiment are in good agreement. Both
the theoretical and experimental values of uy go to zero in a Ni—Cu alloy containing
60% Cu (n = 10.6); this composition is such that the 3d band is just filled. In general,
however, good agreement is obtained only when a particular value of # is arrived at
by alloying adjacent elements.

2. For n greater than 8.3, most of the data are in marked disagreement with theory for
alloys of nonadjacent elements. For example, Co containing 50% Ni has n = 9.5 and
lies on the main curve, but Mn containing 83% Ni, for which z is also 9.5, has a value
of uy much lower than the theoretical. There appears to be no general agreement on
the reason for such deviations. (See also Section 5.5.)

3. When n is less than 8.3, there is no agreement whatever between theory and experi-
ment, and the magnetization decreases as n decreases.
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When a nontransition element (e.g., Cu, Zn, Al, Si, etc.) is dissolved in Fe, Co, or Ni, the
magnetization decreases, but the rate of decrease per added atom is not the same for
all solutes.

* Ni-base Alloys. Here the magnetization decreases at a rate proportional to the valence
of the solute. Thus 60 atom% of Cu (valence 1) is needed to reduce the magnetization
to zero, but only 30 atom% of Zn (valence 2). The solute atom appears to contribute
all its valence electrons to the 3d band of the alloy; the larger the valence, the more
rapidly the band fills up, and hence the more rapid is the decrease in magnetization.
This behavior is in good agreement with the band theory.

e Fe- and Co-rich Alloys. Here the rate of decrease of magnetization, at least initially, is
much the same, whatever the added atom. The solute atom appears to act as a simple
diluent, i.e., the magnetization decreases as though iron atoms, for example, of
moment 2.22up were being replaced by atoms of zero moment. This behavior is
inexplicable in terms of the simple band theory.

Even more complex problems are presented to the theorist by binary alloys of Fe, Co, or Ni
and one of the transition metals immediately below them in the periodic table (Ru, Rh, Pd,
Os, Ir, and Pt). The magnetization usually decreases as one of the latter is added, but at a
rate which is greater than, equal to, or less than the rate corresponding to simple dilution.
And in some of the alloys the magnetization actually increases at first, before it begins
to decrease.

At low temperatures, surprisingly small amounts of Fe, Co, or Ni, when alloyed with
elements like Pt or Pd, can serve to make the alloy ferromagnetic. Thus ferromagnetism
has been observed in Pd containing only 10 atom% Fe at temperatures below about
260K. And ferromagnetism still persists when the Fe content is as low as 0.15 atom%,
although the Curie temperature is then about 3K. In such a dilute alloy the iron atoms
are so far apart, some 8—10 interatomic distances, that exchange forces could not possibly
keep the spins of nearest-neighbor iron atoms parallel to one another. The intervening pal-
ladium atoms must take part in the long-range coupling between iron atoms.

All of the above remarks on alloys apply to disordered (random) solid solutions, in
which the constituent atoms, A and B, occupy the available lattice sites at random. In
many alloys this disordered state is stable only at relatively high temperatures; below a
certain critical temperature, long-range ordering sets in. A atoms then occupy a particular
set of lattice sites and B atoms occupy another set. In the disordered state, like atoms are
often adjacent to each other (AA or BB pairs), whereas ordering commonly makes all
nearest neighbors unlike (AB pairs). Because the nature of the nearest neighbors in a par-
ticular alloy can influence its electronic nature, ordering usually changes the magnetic prop-
erties, sometimes dramatically.

In Fe—Co alloys, at and near the composition of FeCo, ordering takes place below a criti-
cal temperature of about 730°C, as shown in Fig. 4.21a. In the disordered « phase the atoms
are arranged at random on the corners and at the center of a cubic unit cell. The ordered o’
phase has the CsCl structure, in which iron atoms occupy only corner sites and cobalt atoms
only the cube-center sites. Ordering produces a slight increase in the saturation magnetiza-
tion. The same small effect is found in FeNiz;. Here the disordered phase is face-centered
cubic, while the ordered structure is one in which iron atoms occupy only the cube
corners and nickel atoms only the centers of the cube faces (see Fig. 4.5). But in MnNis,
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which orders like FeNis, ordering has a profound effect: the disordered alloy is paramag-
netic, the ordered one ferromagnetic.

Many binary alloys of a transition metal and a rare earth element are ferromagnetic. For
example, alloys of the composition RCos, where R =Y, Ce, Pr, Nd, or Sm, are ferromag-
netic and some of them are good permanent magnets; see Chapter 14.

Finally, we will consider ferromagnetism in alloys made of nonferromagnetic elements.
Most of these contain manganese or chromium. The Heusler alloys Cu,MnSn and
Cu,MnAl, which have been known since 1898, have already been mentioned in Section
4.3 Like MnNis, they are paramagnetic when disordered and ferromagnetic when ordered.
Presumably, in all three alloys, ordering makes the Mn—Mn distance large enough for the
exchange interaction to become positive. MnBi and MnAl are ferromagnetic, and
their coercivities are high enough to make them of interest as possible permanent-magnet
materials. Some other ferromagnetic manganese alloys are AgsMnAl, Mn;ZnC,
AuyMn, MnSb, MnCrSb, and PtzMn. Ferromagnetic chromium alloys or compounds
include CrS, CrTe, and CrBr;. One would not expect to find ferromagnetism in the Zr—Zn
system, but the compound ZrZn, is ferromagnetic; however, its Curie temperature is
only 35K.

Ferromagnetism is rare in ionic compounds, in general, and even rarer in oxides. Only
two examples of the latter are known, CrO, and EuO. The Curie point of EuO is 77K, but
CrO, is ferromagnetic at room temperature (7, = 127°C). The crystal structure of CrO; is
that of the mineral rutile; it is shown in Fig. 5.12. The Cr*" ions are located at the cell center
and the cell corners, and the spins on these ions are all parallel, unlike the spin structure
illustrated there. The properties of CrO, make it suitable for magnetic recording tape
(see Section 15.3).

4.6 THERMAL EFFECTS

Ferromagnetic substances exhibit two unusual thermal effects. These effects are of interest
to solid-state physicists because of the light they can throw on the electronic nature of a
solid, and may have some practical applications in refrigeration systems. They are:

Specific Heat. The specific heat of a ferromagnet is greater than that of a nonferromagnet
and goes through a maximum at the Curie temperature. When heat is added to any metal,
part of it increases the amplitude of thermal vibration of the atoms (lattice specific heat) and
the remainder increases the kinetic energy of the valence electrons (electronic specific heat).
If the metal is ferromagnetic, additional heat is required to disorder the spins (magnetic
specific heat). The number of spins disordered per degree rise in temperature increases
with the temperature in accordance with the appropriate Brillouin function, and becomes
very large just below the Curie temperature, where the magnetization is decreasing precipi-
tously. The fact that the specific heat is still abnormally high just above the Curie tempera-
ture is further evidence for the spin clusters mentioned in Section 4.2.

Magnetocaloric Effect. When heat is absorbed by a ferromagnet, part of the heat
causes a decrease in the degree of spin order. Conversely, if the spin order is increased,
by the application of a large field, heat will be released. If the field is applied suddenly,
the process will be essentially adiabatic and the temperature of the specimen will rise.



146 FERROMAGNETISM

This is the magnetocaloric effect. The increase in temperature amounts to 1 or 2°C for fields
of the order of 10-20kOe (1-2 T).

The magnetocaloric effect is not to be confused with a much smaller heating effect
which occurs at room temperature during a change of magnetization from zero to the
state of technical saturation, i.e., during the conversion of the specimen from the multi-
domain to the single-domain state. The magnetocaloric effect is caused by the change in
spin order accompanying forced magnetization, in which a high field causes an increase
in magnetization of the domain itself. This increase in magnetization above oy, for a
given applied field, is greatest at the Curie temperature and decreases as the temperature
decreases below T.. A relatively large increase in magnetization per unit of applied field
can also be produced just above the Curie temperature because there the susceptibility of
the paramagnetic state has its maximum value. As a result the temperature increase pro-
duced by this effect goes through a maximum at 7.

4.7 THEORIES OF FERROMAGNETISM

The critical reader must by now have come to the conclusion, correctly, that the theory of
ferromagnetism is in a far from satisfactory state. In this section we shall briefly examine the
theory in the light of the main experimental facts. Actually, there is not a single theory, but
at least two rather divergent viewpoints: (1) the localized moment theory, and (2) the band
theory.

According to the localized moment theory, the electrons responsible for ferromagnetism
are attached to the atoms and cannot move about in the crystal. These electrons contribute a
certain magnetic moment to each atom and that moment is localized at each atom. This view
is implicit in the molecular field theory, either in the original form given by Weiss or in the
quantum-mechanical form obtained by substituting the Brillouin function for the Langevin.
As we have seen, this theory accounts satisfactorily for the variation of the saturation mag-
netization o with temperature and for the fact that a Curie—Weiss law is obeyed, at least
approximately, above T.. But it cannot explain the fact that the observed moments per
atom uy are nonintegral for metals; since the moment is due almost entirely to spin, as
shown by g factor measurements, the moment per atom, if due to localized electrons,
should be an integer. Other defects of the theory are that uy and the molecular-field con-
stant yp are different above and below the Curie temperature.

The Heisenberg approach is also based on the assumption of localized moments,
because the expression for the exchange energy (Equation 4.29) explicitly localizes a
certain spin magnetic moment on each atom. A substance which does behave as though
its moments were localized, and there are a few, like EuO, is called a Heisenberg ferromag-
net. Thus the assumption of localized moments is built into the molecular field theory,
whether we call the force causing parallel spin alignment a molecular field or an
exchange force.

In the band theory, on the other hand, all attempts at localizing the outer electrons of the
atom are abandoned. As mentioned earlier, the band theory is sometimes called the
collective-electron theory, when applied to magnetic properties. Another name is the
itinerant-electron theory. These alternative names emphasize the fact that the electrons
responsible for ferromagnetism are considered to belong to the crystal as a whole and to
be capable of moving from one atom to another, rather than localized at the positions of
the atoms. This theory accounts quite naturally for the nonintegral values of the moment
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per atom. It also explains fairly well the relative magnitudes of wy in iron, cobalt, and
nickel, and the value of the average magnetic moment per atom in certain alloys. These
are important accomplishments of the theory. However, the band theory, at least in its
simple form, cannot account for those alloys which depart from the main curve of Fig. 4.22.

It seems clear that the molecular field theory, with its attendant assumption of localized
moments, is simply not valid for metals. Instead, band theory is a more useful approach.
Steady progress has been and is being made in this subject, but the details are largely
unnecessary for the remainder of this book. Summaries of the current status of the
fields can be found in the books by Soshin Chikazumi [Physics of Ferromagnetism,
Oxford University Press (1997)] and Robert C. O’Handley [Modern Magnetic Materials,
Principles and Applications, Wiley (2000)].

4.8 MAGNETIC ANALYSIS

We turn now to a very practical subject. Magnetic analysis, in the widest sense of the term,
embraces any determination of chemical composition or physical structure by means of
magnetic measurements. It therefore includes the following:

1. Measurement of the susceptibility y of weakly magnetic substances. If the relation
between y and the chemical composition of a solid solution is known, either from
the literature or from calibration experiments, a measurement of y will give the com-
position. (An example was mentioned in the previous chapter, in the discussion of
Fig. 3.11.) Determination of the M, H curve will disclose the presence of a small
amount of a ferromagnetic second phase, as described in the discussion of Fig. 3.12.

2. Measurement of the structure-sensitive properties, such as the initial permeability wo
and the coercivity H., of ferro- and ferrimagnetics. The interpretation of such
measurements, although difficult, can yield information about the physical structure
of the material, e.g. preferred crystal orientation, residual stress, and the presence of
inclusions. These topics will be taken up in later portions of the book.

3. Measurement of the structure-insensitive properties of ferro- and ferrimagnetics.
These are considered below.

The structure-insensitive properties are the saturation magnetization o and the Curie temp-
erature T.. As we saw in Fig. 4.20, the value of oy for a two-phase alloy is simply the
weighted average of the magnetizations of the two phases:

(& (3110}’) = WqOsq + WgOs = WaOsq + (1 - Wa)o'sB (434)

where w,, and wg are the weight fractions of the o and B phases. This equation holds
whether the B phase is ferromagnetic (0,5 > 0) or paramagnetic (o5 = 0). If 0y, and
05 are known, a measurement of oy (alloy) will give the amount of each phase present.
At least two applications of such measurements have been made:

1. Determination of Retained Austenite in Hardened Steel. At a sufficiently high temp-
erature, steel is wholly austenitic. Austenite is a paramagnetic solid solution of carbon
and possibly other elements, in face-centered cubic y-iron. When the steel is
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quenched (rapidly cooled), the austenite transforms wholly or partially to martensite,
which is a ferromagnetic, supersaturated solid solution of carbon in a-iron, with a
body-centered tetragonal unit cell. Any untransformed austenite is called retained
austenite, and is generally undesirable; it can be present in amounts ranging from
0 to about 20% in many steels.

2. Determination of Martensite in Stainless Steel. Many stainless steels are wholly aus-
tenitic, and paramagnetic, at room temperature; an example is the popular “18-8”
variety, which contains about 18% Cr and 8% Ni. However, a substantial amount
of ferromagnetic martensite may be formed if the steel is deformed at room tempera-
ture or merely cooled to a temperature far below room temperature.

Although the application of Equation 4.34 to these determinations might seem easy, there is
a certain experimental difficulty in determining o (alloy). The approach to magnetic satur-
ation, as the applied field is increased, is gradual, and it is sometimes difficult to know
whether or not saturation has actually been reached (see Section 9.15). This means in
turn that greater accuracy can be achieved in determining a small amount of a ferromagnet
dispersed in a paramagnetic matrix (e.g. martensite in stainless steel) than in determining,
by difference, a small amount of a paramagnet dispersed in a ferromagnet (e.g. retained aus-
tenite in hardened steel).

Measurements of g can be helpful in determining phase diagrams. Measurement of the
solid solubility of B in A is illustrated in Fig. 4.23, in which, as before, « is assumed to be
ferromagnetic and 3 paramagnetic. If the alloys are very slowly cooled to room temperature
Ty, so that they are in equilibrium at that temperature, then o will vary with composition
along the curve abe. But if the alloys are brought to equilibrium at 7, and then quenched to
room temperature, o will vary along abcd. The intersections of the straight line portions
with the curve abc, which shows the variation of o with composition in the « region,
gives the solid solubilities, namely, x and y% B at temperatures 7; and 75, respectively.

Temperature

Weight percent B

Fig. 4.23 Variation of saturation magnetization o with composition in alloys equilibrated at temp-
eratures T and 7>.
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Fig. 4.24 Variation of o with temperature in an alloy of two ferromagnetic phases.

Although magnetic analysis can be of considerable value in the study of some alloy
systems, it should be supplemented with the more common techniques of microscopic
examination and X-ray diffraction.

In all the above examples, the measurement of oy is made at room temperature. Another
method, called magnetothermal analysis, involves measurement of o as a function of
temperature, leading to a curve like that of Fig. 4.24. This curve would apply to a two-
phase alloy in which both phases are ferromagnetic. In principle, at least, the composition
of each phase can be found from the observed Curie points, T, and T,g, and their relative
amounts from oy, and o,g. One difficulty with this method is that both Curie points must be
well below the temperature of rapid diffusion, or alternatively, the solid—solubility limits of
each phase must not change with temperature; if these conditions are not met, the mere act
of heating the specimen to the measurement temperatures will change the composition of
one or both phases and make quantitative interpretation of the o, T curve impossible.

Magnetic measurements have also been used to study the precipitation process in alloys,
particularly those in which a ferromagnetic phase precipitates in a paramagnetic matrix.
When conditions are favorable, the size of the precipitate particles, the total amount of pre-
cipitate, and the way in which these quantities change with time can be measured. The
interpretation of such measurements is not always straightforward. For one thing, the size
of the field required to saturate the particles depends on their shape and orientation, as men-
tioned near the end of Section 3.8. But more important is the fact that the magnetic prop-
erties of very fine particles are unusual. These properties are described in Chapter 11, and
an example of a magnetic study of precipitation will be given there (Section 11.7).

PROBLEMS

4.1 Show that Equation 4.25 is equivalent to Equation 3.48.

4.2 From Fig. 4.22,
a. What alloy has the highest saturation magnetization?

b. What is the numerical value of this magnetization, expressed as magnetization per
unit mass?

c. How does this compare with the saturation per unit mass of iron?



CHAPTER 5

ANTIFERROMAGNETISM

5.1 INTRODUCTION

Antiferromagnetic substances have a small positive susceptibility at all temperatures, but
their susceptibilities vary in a peculiar way with temperature. At first glance, they might
therefore be regarded as anomalous paramagnets. However, closer study has shown that
their underlying magnetic structure is so entirely different that they deserve a separate
classification. The theory of antiferromagnetism was developed chiefly by Néel' in a
series of papers, beginning in 1932 [L. Néel, Ann. de Physique, 18 (1932) p. 5], in
which he applied the Weiss molecular field theory to the problem.

The way in which the susceptibility of an antiferromagnetic varies with temperature is
shown in Fig. 5.1. As the temperature decreases, y increases but goes through a
maximum at a critical temperature called the Néel temperature Ty. The substance is
paramagnetic above Ty and antiferromagnetic below it. Ty often lies far below room
temperature, so that it may be necessary to carry susceptibility measurements down to
quite low temperatures to discover if a given substance, paramagnetic at room tempera-
ture, is actually antiferromagnetic at some lower temperature. Most, but not all, antiferro-
magnetics are ionic compounds: oxides, sulfides, chlorides, and the like. A very large
number are known, which makes them much more common than ferromagnetics. A selec-
tion is given in Table 5.1. They are of considerable scientific interest, and are important in
some computer applications that make use of exchange anisotropy or exchange bias
(see Chapter 15). The theory of these materials is worth examining in some detail

'Louis Néel (1904—2000) was a French physicist and former student under Weiss at Strasbourg. He founded, after
World War 11, a flourishing center of magnetic research at the University of Grenoble. He was awarded a Nobel
prize in 1970.
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T(K)

-0

Fig. 5.1 Temperature dependence of susceptibility y and inverse susceptibility 1/y for an antiferro-
magnetic material (schematic). AF = antiferromagnetic, P = paramagnetic.

because it leads naturally into the theory of ferrimagnetic materials, which are of great
industrial importance.

Just as in the case of ferromagnetism, the clue to the behavior of an antiferromagnet lies
in the way its susceptibility varies with temperature above the critical temperature.

TABLE 5.1 Some Antiferromagnetic Materials”

Metal Ion 1} Xp(o)
Material Arrangementb Tn (K) 0 (K)° T~ Xp(TN)
MnO fce 122 610 5.0 0.69
FeO fce 198 570 2.9 0.78
CoO fce 293 280 1.0 —
NiO fce 523 3000 5.7 0.67
a-MnS fcc 154 465 3.0 0.82
B-MnS fcc 155 982 6.3 —
a-Fe,03 r 950 2000 2.1 —
Cr,05 r 307 1070 35 0.76
CuCl, - 2H,0 r 4.3 5 1.2 —
FeS hl 613 857 1.4 —
FeCl, hl 24 —48 -2.0 <0.2
CoCl, hl 25 —38 -1.5 ~0.6
NiCl, hl 50 —68 —-14 —
MnF, bct 67 80 1.2 0.76
FeF, bct 79 117 1.5 0.72
CoF, bct 40 53 1.3 —
NiF, bct 78 116 1.5 —
MnO, bct 84 — — 0.93
Cr bee 310
a-Mn cc 100

“Data from various sources.

bfec = face-centered cubic, r = rhombohedral, hl = hexagonal layers, bct = body-centered tetragonal, bcc =
body-centered cubic, cc = complex cubic.

“The sign of 6 in this column refers to a y, 7 relation in the form y = C/(T + 6).
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Figure 5.1 shows that a plot of 1/y vs T is a straight line above Ty and that this line extra-
polates to a negative temperature at 1/x = 0. The equation of the line is

1 T+6
-7 5.1
Palre 5.1)
or
C C
X (5.2)

TTYe T-(9

In other words, the material obeys a Curie—Weiss law but with a negative value of 6.
Inasmuch as 6 is proportional to the molecular field coefficient y (see Equation 3.21),
the molecular field H,, in the paramagnetic region, is opposed to the applied field H;
whereas H acts to align the ionic moments, H,, acts to disalign them. If we now think of
the molecular field on a very localized scale, the result is that any tendency of a particular
ionic moment to point in one direction is immediately counteracted by a tendency for the
moment on an adjacent ion to point in the opposite direction. In other words, the exchange
force is negative.

Below the critical temperature Ty, this tendency toward an antiparallel alignment of
moments is strong enough to act even in the absence of an applied field, because the ran-
domizing effect of thermal energy is so low. The lattice of magnetic ions in the crystal then
breaks up into two sublattices, designated A and B, having moments more or less opposed.
The tendency toward antiparallelism becomes stronger as the temperature is lowered below
T, until at OK the antiparallel arrangement is perfect, as depicted in Fig. 5.2. Only the mag-
netic metal ions are shown in this sketch: the other ions (oxygen, or sulfur, etc., as the case
may be) are nonmagnetic and need not be considered at this point.

We now see that an antiferromagnetic at OK consists of two interpenetrating and iden-
tical sublattices of magnetic ions, each spontaneously magnetized to saturation in zero
applied field, but in opposite directions, just as the single lattice of a ferromagnetic is spon-
taneously magnetized. Evidently, an antiferromagnetic has no net spontaneous moment and
can acquire a moment only when a strong field is applied to it. We note also that the Néel
temperature Ty plays the same role as the Curie temperature 7,; each divides the temperature
scale into a magnetically ordered region below and a disordered (paramagnetic) region
above. The several analogies to ferromagnetism are apparent and the name “antiferromag-
netism” is entirely appropriate.

D

i O O O
. ~O- ~O- ~O-
i O O O
s ~O- ~O- ~O-

Fig. 5.2 Antiferromagnetic arrangement of A and B sublattices.
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5.2 MOLECULAR FIELD THEORY

Before entering into the details of the molecular field theory, we should note that almost all
antiferromagnetics are electrical insulators or semiconductors. Their electrical resistivities
are thus at least a million times larger than those of typical metals. This means that they
contain essentially no free electrons and that the electrons responsible for their magnetic
properties are localized to particular ions. We therefore expect greater success in applying
the molecular field theory, which is a localized-moment theory, to an antiferromagnetic
insulator like MnO than to a ferromagnetic conductor like iron.

We will apply the molecular field theory to the simplest possible case, namely, one for
which the lattice of magnetic ions can be divided into two identical sublattices, A and B,
such that any A ion has only B ions as nearest neighbors, and vice versa, as shown for
two dimensions in Fig. 5.2. We assume that the only interaction is between nearest neigh-
bors (AB) and ignore the possibility of interactions between second-nearest neighbors (AA
and BB).

We now have rwo molecular fields to deal with. The molecular field A, acting on the A
ions is proportional, and in the opposite direction, to the magnetization of the B sublattice:

Hma = —yMs, (5.3)
where vy is the molecular field coefficient, taken as positive. Similarly,
Hp = —YMa. (.4)

These two equations are valid both above and below Ty. We will consider the two cases
in turn.

5.21 Above Ty

In the paramagnetic region we can find an equation for the susceptibility by proceeding as
in Section 3.6, according to Equations 3.19-3.22. Assuming Curie-law behavior, we have

M C
X= DH T (5.5)
or
MT = pCH, (5.6)

where H must be interpreted as the total field, applied and molecular, acting on the material.
We now write Equation 5.6 for each sublattice:

MAT = pC'(H — yMsp), (5.7
MgT = pC'(H — yMy), (5-8)

where C’ is the Curie constant of each sublattice and H is the applied field. By adding
these two equations we can find the total magnetization M produced by the field and
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hence the susceptibility:

(Ma + Mg)T = 2pCH — pC'y(Ma + Mp),
MT = 2pCH — pC'yM,

M(T + pCly) = 2pCH, (5.9)
M2
Xm =0H " T+ pCy’

This relation is equivalent to Equation 5.2, found experimentally, with

C=2C"and 6= pCly. (5.10)

Note that, when a field is applied above Ty, each sublattice becomes magnetized in the same
direction as the field, but each sublattice then sets up a molecular field, in the opposite direc-
tion to the applied field, tending to reduce both M, and Mg . The result is that the suscep-
tibility y is smaller, and 1/y larger, than that of an ideal paramagnetic in which the
molecular field is zero. The two are compared graphically in Fig. 5.3, which also shows
how y varies with 7 in a substance with a large positive molecular field, such as a ferro-
magnetic above its Curie point.

1/x

H,, positive

Fig. 5.3 Dependence of the susceptibility y on the molecular field H,, for a fixed value of the Curie
constant C.
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5.2.2 Below Ty

In the antiferromagnetic region, each sublattice is spontaneously magnetized, in zero
applied field, by the molecular field created by the other sublattice. When H is zero,

M=Mx+ Mg =0,

and
My = —Mg, (5.11)

at any temperature below T. At a temperature infinitesimally below T we may assume that
M is still proportional to the total field, because saturation effects are unimportant near 7.
Then Equations 5.7 and 5.8 are still valid. At T= Ty and H = 0, Equation 5.7 becomes

MaTy = —pC'yMg. (5.12)

Therefore,
pC'y = 6 = —(Ma/Mp)Tx = Tx. (5.13)

The Néel temperature, at which the maximum in the y, T curve occurs, should therefore
equal the 6 value found from the high-temperature susceptibility measurements.

Below Ty, each sublattice is spontaneously magnetized to saturation just as a ferromag-
netic is, and we can compute its magnetization in the same way. As in Section 4.2, we prefer
to consider the specific magnetization o (=M/p) rather than M, because a range of temp-
erature is involved. The fractional specific magnetization of the A sublattice will then be
given, according to Equation 4.13, for any temperature and field by

H
IA — BU, d) :B<J, i ) (5.14)
O0A kT

where B is the Brillouin function. The field H which appears in Equation 5.14 is the total
field acting on the A sublattice. Since we are computing the spontaneous magnetization, the
applied field is zero, and we include only the molecular field due to the B sublattice:

Hna = —yMp = yMa = ypoa. (5.15)

Therefore, the fractional spontaneous magnetization of the A sublattice is given by

oA P YPOsA
- B<J, 7) 5.16
O0A kT ( )

with a similar expression for the B sublattice. This equation can be solved graphically by the
method of Fig. 4.4. A plot of the two sublattice magnetizations is given in Fig. 5.4.
Although the net spontaneous magnetization is zero below Ty, an applied field can
produce a small magnetization. The resulting susceptibility is found to depend on the
angle which the applied field makes with the axis of antiparallelism marked D in
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Fig. 5.4 Spontaneous magnetizations of the A and B sublattices at temperatures below Ty
(schematic).

Fig. 5.2, an axis which usually coincides with an important crystallographic direction in the
crystal. For brevity we will call this the spin axis. (In most antiferromagnetics, the orbital
contribution is almost entirely quenched, so that the net moment per magnetic ion is due
essentially to spin.) We will consider two limiting cases.

Field at Right Angles to Spin Axis. The effect of the applied field H is to turn each
sublattice magnetization away from the spin axis by a small angle «, as shown in Fig. 5.5a,
where the vectors representing the magnetizations of the two sublattices are drawn from one

_ - - ~ -~ -
OB Osa
o o D
HmB ~ — HmA H
S~ — -
~ ~ — -
R,
Hm
(@)
D D
% ® RN
Aoy Aoy
oy - L 2 - Gy
—_—
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()

Fig. 5.5 Magnetization changes in an antiferromagnet when the field H is applied (a) at right angles
and (b) parallel to the spin axis D.
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point. This rotation immediately creates a magnetization o in the direction of the field and

sets up an unbalanced molecular field H,, in the opposite direction. The spins will rotate
until H,,, equals H, or

2(Hpya Sina) = H,

) (5.17)
2ypoasina = H.
But
0 = 20 Sin a.
Therefore, ypo = H, and
o 1 C
=_—=_ =" 5.18
XL =g vo 260 ( )

We have assumed here that the sublattice magnetizations o4 and osg change only their
directions and not their magnitude when a field is applied; this is a good approximation
because « is very small. We note from Equation 5.18 that the susceptibility at right
angles to the spin axis is inversely proportional to the molecular field constant, as might
be expected, and it is independent of the temperature. The high-temperature susceptibility
Equation 5.9 should thus give the same result as Equation 5.18 at Ty. This can be shown by
combining Equations 5.9, 5.10, and 5.13.

Field Parallel to Spin Axis. Suppose the field is applied in the direction of the A sub-
lattice magnetization. Then the effect of the field is to increase the zero-field value of the A
sublattice magnetization o by an amount Ao, and decrease the corresponding value o,
of the B sublattice by an amount Aoy, as shown in Fig. 5.5b. The balance between the two
sublattices is upset, and a net magnetization in the direction of the field is produced:

0= 0a — 0 = |Aoa| + |Ads|. (5.19)

Now the magnetization of either sublattice is governed by the Brillouin function B(J, a’) of
Equation 4.13, as shown in Fig. 5.6. Here P represents the spontaneous magnetization oy, in
the absence of an applied field, of either sublattice; it is determined by the particular value
ag of the variable a’. The effect of an applied field is to move the point P up on the curve for
the A sublattice and down on the curve for the B sublattice. To simplify the calculation, we
replace the Brillouin curve by its tangent at P, which amounts to assuming that the applied
field produces equal changes in both sublattices:

|Aca| = |Aos|,
o =2A0,. (5.20)

The value of Ao, will be given by the product of Aa’ and the slope of the magnetization
curve:

Aoa = Ad' [ooaB'J, ap)], (5.21)
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Fig. 5.6 Magnetization changes when the field is applied parallel to the spin axis.

where B'(J, a;) is the derivative of the Brillouin function with respect to its
argument «’, evaluated at ag. To find Ad’, we must remember that the field H in the variable
d'(=pyH/kt) can include both an applied field, which we will now write explicitly as H,,
and a molecular field. In the present problem, the increase in a’ is caused by the application
of the field H, less the amount the molecular field due to the B sublattice has decreased
due to H,, or

Ad' =0 (H, — yp|Aay|) = "2 (H, — ypAoy). (5.22)
Equation 5.21 then becomes

_ e MIZJ
2kT

Ao (H, — ypDop)B' (U, ay), (5.23)

where we have put 0y, which represents absolute saturation of the A sublattice, equal to
(ng/2)un, Where ng is the number of magnetic ions per gram. After solving Equation
5.23 for Aos, we arrive finally at an expression for the susceptibility parallel to the spin
axis:

_ 0 _280n 2B, ap) (5.24)
X = H, H,  2kT +ngudypB'(J, )’ '
This equation may be put in another form by making the substitution
ngpiy = 3kC (T (5.25)
e =T+ 1) '

which follows from Equation 3.48 and where C is the Curie constant and J the quantum
number.
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Equation 5.24 is quite general and holds both above and below the Néel temperature. It
also holds for a ferromagnet: The increase in magnetization caused by unit applied field, as
given by Equation 5.24, corresponds exactly to the “forced magnetization” of Section 4.2.
This forced magnetization of a ferromagnet is difficult to measure because it is small and
imposed on the spontaneous magnetization, which is rather large. But it is easy to
measure in an antiferromagnetic, because the net magnetization, before the field is
applied, is zero. It is left to the reader to demonstrate the following properties of
Equation 5.24:

1. It reduces to Equation 5.2 at high temperatures.
2. It reduces to Equation 5.18 at Ty.
3. It approaches zero as T approaches OK.

The variation of )| between OK and 7y, relative to x , , depends only on J and may be cal-
culated with the aid of B'(J, a;)) values. This variation is shown in Fig. 5.7. It may be inter-
preted physically as follows: at 0K, o’ is infinite and the sublattice magnetization curve is
perfectly flat, so that an applied field can produce no change in the magnetization of either
sublattice, both of which are in a state of absolute saturation. As the temperature increases
above 0K, thermal energy decreases the spontaneous magnetization of each sublattice (as
shown in Fig. 5.4), the applied field is able to reverse an increasing number of spins,
and x| increases.

In a powder specimen or a random polycrystal, in which there is no preferred orientation
of the grains, the spin axis D takes on all possible orientations with respect to the applied
field. To find the susceptibility of a powder we must therefore average over all orientations.
If the applied field H makes an angle 6 with the spin axis D of a particular crystal in the
powder, then the magnetizations acquired by that crystal, parallel and perpendicular to
D, are

o= XHH cos 0, (5.26)
o, =X, Hsiné.
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Fig. 5.7 Calculated temperature variation of the susceptibility of an antiferromagnet near and below
the Néel temperature 7. The curve of x| is calculated for J = 1.
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The magnetization in the direction of the field is then

0':0"|c0s0+(nsin0

= XHHCOSZ(H- x. H sin?@
or

X= % =X cos’6 + x, sin6. (5.27)
This susceptibility of one crystal must then be averaged over all possible values of 8 to give
the susceptibility of the powder:

X, = X|c0s?6 + X, sin*6
1 2
:g,\/u +§XL' (5.28)

A plot of the temperature variation of the powder susceptibility is included in Fig. 5.7.

5.2.3 Comparison with Experiment

The molecular field theory outlined above leads to three predictions, easily compared with
experiment:

1. 6/Ty should equal 1, according to Equation 5.13.

2. The values of x| and y, for a single crystal should vary with temperature as in
Fig. 5.7.

3. The ratio of the susceptibility of a powder at OK to its value at Ty should equal %,
according to Equation 5.28, since | =0 and x, = xg, at OK.

Table 5.1 shows that observed values of 6/ Ty range from 1 up to 5 or 6. This departure from
unity does not mean that the molecular field theory has failed but that our initial assumption
was too restrictive. We assumed that the only molecular field acting on the A ions was due
to the B sublattice. Actually, there is no reason to exclude the possibility that AA and BB
exchange forces are also acting. Equations 5.3 and 5.4 would then be replaced by

Ha = —YagMB + YaaMa, (5.29)
Hug = —YapMa + vpMs, (5.30)

where there are now two molecular field constants; yap defines the strength of the AB inter-
action, and 7y, usually assumed equal to ygg, defines the strength of the AA interaction.
The constant ya5 (=7ygp) can be positive, negative, or zero. When ya 4 is not zero, the ratio
0/ T can take on larger values than unity; the ratio ys/yap can then be computed from
the observed value of 6/Tn. Negative values of 6, which mean that y = C/(T — 6) above
Tn, observed for some chlorides like FeCl,, imply that ys4 is negative.
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Fig. 5.8 Temperature variation of the susceptibility of MnO powder. [H. Bizette, C. F. Squire, and
B. Tai, Compt. Rend., 207 (1938) p. 449.]

The other predictions of the theory are reasonably well satisfied by experiment. Table 5.1
shows that x,(0)/x,(Tn) is nearly always close to the theoretical value of 0.67. Typical y, T
curves for powders are shown in Figs 5.8 and 5.9 and for a single crystal in Fig. 5.9; these
curves are seen to agree quite closely with the theoretical curves of Fig. 5.7. (The fact that
the susceptibility of MnO below Ty depends on the size of the field used to measure it is due
to crystal anisotropy, which is discussed in Section 7.9.)
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Fig. 5.9 Temperature variation of the molar susceptibility of MnF,. The central curve (below Ty) is

for a powder sample, and the other two curves are for a single crystal. [H. Bizette and B. Tai, Compt.
Rend., 238 (1954) p. 1575.]
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The generally good agreement between theory and experiment is all the more remarkable
when we realize that one of our initial assumptions is often not satisfied. This is the assump-
tion that any A ion has only B ions as nearest neighbors. This requirement can be satisfied
by a body-centered cubic arrangement of metal ions, in which the cube-center ions form the
A sublattice and the cube-corner ions the B sublattice, and by a body-centered tetragonal
arrangement, provided the axial ratio ¢/a of the unit cell lies between certain limits. It is
not satisfied for the face-centered cubic arrangement, as will become clear in the
next section.

The crystal anisotropy of antiferromagnetics and the attendant phenomenon of metamag-
netism are discussed in Section 7.9.

5.3 NEUTRON DIFFRACTION

The first substance to be clearly recognized as antiferromagnetic was MnO, in 1938, when
the results shown in Fig. 5.8 were published. Between 1938 and 1949 the evidence which
had accumulated for the assumed spin arrangement in antiferromagnets below Ty was good
but rather indirect: it consisted solely in the agreement of the susceptibility data with what
could be predicted from the model. In 1949 the first direct evidence was provided, when
C. G. Shull and J. S. Smart [Phys. Rev., 76 (1949) p. 1256] succeeded in showing by
neutron diffraction that the spins on the manganese ions in MnO are divided into two
groups, one antiparallel to the other. Neutron diffraction has wide applicability as a research
tool, but here we are interested only in its application to magnetic studies. These are not
confined to antiferromagnetic substances, because neutron diffraction can furnish important
information about ferro- and ferrimagnetics as well.

A stream of particles has many attributes of wave motion, in particular a wavelength A,
given by A = h/p, where h is Planck’s constant and p is the momentum of the particles. A
stream, or beam, of neutrons can therefore be diffracted by a crystal just like a beam of X
rays, provided that the neutron wavelength is of the same order of magnitude as the inter-
planar spacings of the crystal. The neutrons in the core of a nuclear reactor have just the
right wavelength, about 0.Inm, and a beam of them can be obtained simply by cutting a
narrow hole through the shielding of the reactor.

The diffraction of neutrons is governed by the same Bragg law that governs the diffrac-
tion of X rays

nA = 2dsin 6, (5.31)

where n is an integer (0, 1, 2, ...) called the order of reflection, d is the spacing of atomic
planes in the crystal, and 0 is the angle between the incident beam and the atomic planes
involved (Fig. 5.10). When neutrons, or X rays, encounter an atom, they are scattered in
all directions, and what we call a diffracted beam is simply a set of scattered beams
which are in phase, so that they reinforce one another. The Bragg law states the condition
that rays scattered in the direction shown in the sketch, making an angle 6 with the atomic
planes equal to the angle of incidence, will be in phase with one another. In all other direc-
tions of space the phase relations between the scattered beams are such that they cancel one
another. In experimental work, the angle 26, rather than 6, is usually measured; it is the
angle between the diffracted beam and the incident or the transmitted beam.
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Fig. 5.10 Diffraction geometry.

Although both X rays and neutrons obey the Bragg law, they are scattered by atoms in
markedly different ways. X rays are scattered by the electrons of the atom, because X rays
are electromagnetic radiation which can interact with the electronic charge. Neutrons are
uncharged, easily penetrate the electron screen, and are scattered only by the nucleus.
There is one important exception to this statement: if the scattering atom or ion has a net
magnetic moment, that moment will interact with the neutron beam, because the neutron
has a small magnetic moment of its own, equal to about 10> Bohr magneton. Neutron scat-
tering from a magnetic ion therefore has two parts, one nuclear, the other magnetic; the
magnetic part is due to the electrons of the ion, because it is the ion’s electrons that are
responsible for its magnetic moment. Neutrons can thus “see” elementary magnetic
moments, whereas X rays cannot. Furthermore, both the magnitude and direction of the
magnetic moment of an atom or ion can be determined from measurements of the intensity
of the magnetic scattering. It is this feature of neutron diffraction which makes it so valuable
in the study of magnetic materials.

Electron diffraction is a fairly common means of investigating crystals, and the reader
may wonder why it also is not effective in revealing magnetic structure. After all, each elec-
tron in the beam of electrons incident on the solid, in an electron diffraction experiment, has
a magnetic moment of one Bohr magneton and therefore of the same order of magnitude as
the net magnetic moment of each atom of the solid, rather than a moment of less than 1073
times an atomic moment, as is typical of neutrons. The answer lies in the fact that electrons
are charged. The incident electrons are scattered by atomic electrons because of the very
large electrostatic (Coulomb) repulsion between them. This electrostatic interaction is so
much stronger than the magnetic interaction that the latter is normally unobservable.
Neutrons, on the other hand, are uncharged, and their magnetic interaction with the scatter-
ing atoms, although much weaker than that of electrons, can easily be observed because it is
not overwhelmed by an electrostatic interaction.

When an antiferromagnet is cooled below Ty, what was previously a random arrange-
ment of spins becomes an ordered arrangement, with one set of spins antiparallel to the
other. This change is very similar, especially from a diffraction point of view, to the chemi-
cal ordering which takes place in certain solid solutions when cooled below a critical temp-
erature. Consider X-ray diffraction from the (100) planes of such a solid solution, consisting
of elements C and D in equal atomic proportions and assumed to have a body-centered
cubic structure. These planes are marked X and Z in Fig. 5.11a, which applies to the disor-
dered state. If the incoming X rays make an angle 0 such that the path difference abc
between scattered rays 1 and 3 equals one whole wavelength, then rays 1 and 3 will be
in phase and reinforce each other. But if abc = A, the path difference def between rays 1
and 2 is A/2, so that these rays are exactly out of phase. Moreover, the amplitudes of 1
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Fig. 5.11 Diffraction by (a) disordered and (b) ordered structures.

and 2 are exactly equal, because planes X and Y are statistically identical when the solution
is disordered. Scattered rays 1 and 2 therefore cancel each other, as indicated in the sketch of
the scattered wave form, and so do 3 and 4, 5, and 6, etc. There is no 100 reflection from the
disordered solution. There is, however, a 200 reflection; this is obtained by increasing the
angle 6 until def = A so that rays 1 and 2, scattered from the (200) planes X and Y, are in
phase. In Fig. 5.11b there is perfect order: C atoms occupy only cube corners and D atoms
only cube centers. For first-order (n = 1) reflection from (100) planes, scattered rays 1 and 2
are again exactly out of phase. But now their amplitudes differ, because planes X and ¥ now
contain chemically different atoms, with different numbers of electrons per atom and hence
different X-ray scattering powers. Therefore, rays 1 and 2 do not cancel but combine to form
the wave indicated by the dashed line in the sketch. The ordered solid solution thus pro-
duces a 100 reflection. If we examined other reflections, from planes of different Miller
indices hkl, we would find other examples of lines which are present in the diffraction
pattern of ordered solutions and absent from the pattern of disordered ones. These extra
lines are called superlattice lines, and their presence constitutes direct evidence of order.
The detection of order in magnetic systems with neutrons is exactly analogous. We now
regard Fig. 5.11a as representing a lattice of chemically identical ions, C ions, say, each
with an identical magnetic moment randomly oriented in space. For the same reasons as
in the X-ray case, there will be no 100 neutron reflection. In Fig. 5.11b we have magnetic
order: the spins on the corner ions are “up,” say, and those on the body-centered ions,
“down.” There will now be a 100 neutron superlattice line, because the neutron magnetic
scattering is sensitive to the differing directions of the spin moments on adjacent planes.
Before considering a particular example, we must qualify the remarks just made about
“up” and “down” spins. No magnetic scattering at all can take place if the spin axes are
normal to the reflecting planes, for reasons described by G. E. Bacon [Neutron
Diffraction, 2nd ed., Oxford University Press (1962)]. Thus, if “up” and “down” mean
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normal to the (100) planes, there will be no 100 superlattice reflection, not because of any
cancellation effect, as in Fig. 5.11a, but because there is no magnetic scattering to begin
with, only nuclear scattering. But a 100 superlattice reflection will occur if the axis of
the antiparallel spins makes any angle other than 90° with the (100) planes.

We choose MnF, to exemplify these general rules, because it exhibits simpler diffraction
phenomena than MnO. It has the structure of the mineral rutile (TiO,), with 2 MnF, per unit
cell, located as follows:

1

2

. 1 1 11 1 1
4Fions atxx0; xx0; - +x, -~ —x, -; - —x, -+ x, —.
2 2 2

2Mn ions at 000, ;

N | o=

(The ionic coordinates are given as fractions of the unit-cell edges.) The value of xis 0.31. The
cell is tetragonal with a = 0.487 nm and ¢ = 0.331 nm. The unit cell is shown in Fig. 5.12.

Neutron diffraction experiments were carried out on this compound with an instrument
called a neutron diffractometer (Fig. 5.13). The neutrons which issue from a reactor have a
range of wavelengths, and it is necessary to select a single wavelength from this range for
the diffraction experiment. This is done by setting a single crystal, usually copper or lead, in
the path of the beam at a particular angle 6 of incidence, so that it will reflect, in accordance
with the Bragg law, only the particular wavelength desired, usually one in the range 0.10—
0.12 nm. The crystal “monochromator” thus reflects only one wavelength out of the many
wavelengths incident on it. The reflected beam from the monochromator then encounters
the specimen (which may be a single crystal or a compacted mass of powder), is diffracted
by it, and enters a counter which measures its intensity. The diffraction pattern is obtained
by moving the counter stepwise through various angles 260 and measuring the intensity of
the radiation diffracted by the specimen at each angle.

The result is a plot of diffracted intensity vs 26 which is shown for MnF; in Fig. 5.14, for
temperatures above and below the Néel temperature of 67K. The chief difference between
the two patterns is the presence of the strong 100 superlattice line below Ty. This tells us
immediately that the spins on the cell-corner ions are antiparallel to those on the cell-center
ions. On the other hand, there is no 001 line; the spin axis is therefore normal to these planes
and parallel to the c-axis of the unit cell, as shown in Fig. 5.15. Detailed analysis of the
intensities of the other lines in the pattern confirms this conclusion. The intensity of the
100 line from MnF, depends on the degree of spin order, and it increases as the temperature

Fig. 5.12 Structure of MnF,.
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decreases from Ty to OK. From such measurements one can determine the shape of the sub-
lattice o, T curve, shown schematically in Fig. 5.4. Such information cannot be obtained
from magnetic measurements.

It is not always possible to determine the orientation of the spin axis solely from diffrac-
tion patterns made with powder specimens. Often a single-crystal specimen is required. (In
some substances the orientation of the spin axis can be found from susceptibility measure-
ments alone, without any recourse to neutron diffraction; by trial and error two orientations
of the crystal in the applied field were found for which the y, T curves have the form of
Fig. 5.7.)

MnO has the face-centered cubic NaCl structure, which is like a three-dimensional
checkerboard (Fig. 5.16a). In Fig. 5.16b, only the magnetic ions are shown, and the spin
structure as deduced by neutron diffraction. The spin axis is parallel to (111) planes and
lies in the [110] direction in these planes; alternate (111) planes, shown by dashed lines
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Fig. 5.14 Neutron diffraction patterns of a powder sample of MnF, in the paramagnetic state (300K)
and in the antiferromagnetic state (23K). [R. A. Erickson, Phys. Rev., 90 (1953) p. 779.]
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Fig. 5.15 Projection of the MnF, unit cell on a (010) face. Only the Mn ions are shown.

in the drawing, have opposite spin. The antiferromagnetic state of MnO has one feature not
found in MnF,: The magnetic unit cell differs from the chemical (also called the nuclear)
unit cell. Although a unit cell may be chosen in many ways, the choice must meet certain
requirements. One is that the “entity” (chemical species, spin direction, etc.) at one corner of
the cell be the same as that at all other corners. The unit cell in Fig. 5.16a is the chemical
unit cell and has a manganese ion at each corner; it is also the magnetic unit cell above Ty,
because the spin directions are then random and the manganese ions are, in a magnetic
sense, statistically identical. But when magnetic ordering sets in, the spin direction at
one corner of the chemical unit cell is opposite to that at the three nearest corners. It is
then necessary to choose a magnetic unit cell twice as large along each cube edge, as
shown in Fig. 5.16b.

Neutron diffraction has disclosed spin structures in which the spins in alternate layers are
not antiparallel but inclined at some angle other than 180°. MnAu, is an example and

® Mn?

O o

Chemical

unit ceil
e’

Y
Magnetic unit cell

(@ (b)

Fig. 5.16 Structure of MnO. (a) Chemical unit cell of Mn and O ions. (b) Chemical and magnetic
units cells, Mn ions only.
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Fig. 5.17 Structure of MnAus,.

Fig. 5.17 shows its chemical unit cell. It is body-centered tetragonal, and Au atoms
are arranged at a distance of about ¢/3 above and below each Mn atom, along the
c-axis. The spins of the Mn ions in each (002) plane are parallel to one another and to
the (002) plane itself, but the spins rotate through an angle ¢ of 51° about the c-axis
from one (002) plane to the next. Such an arrangement of spins is called a spiral or
helical structure.

Evidently we must revise our earlier definition of antiferromagnetism and make it more
general, to include the possibility that the spins of the two sublattices may have any relation
to each other as long as they form an ordered arrangement with no net magnetization. More
complex spin arrangements than that of MnAu, have been found, some involving more than
two sublattices.

Slight deviations from ideal antiferromagnetism can also exist. In some substances the
spins of the two sublattices are not quite antiparallel but slightly tilted or “canted” out of
alignment, as indicated in Fig. 5.18. The result is a small net magnetization o in one direc-
tion. From one point of view such substances are ferromagnetic; they are composed of
domains, each spontaneously magnetized to a magnitude o, and they show hysteresis.
But they do not saturate, and in strong fields they exhibit a susceptibility y appropriate to

Fig. 5.18 Canted spins.
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their basic antiferromagnetism. Such substances have a magnetization curve like that of
curve A of Fig. 3.12, which can be described by

og=o0,+ xH, (5.32)

where the first term reaches its maximum value o only in a finite field, as indicated by
curve C of Fig. 3.12. In the older literature this phenomenon is called parasitic ferromag-
netism, and it was often attributed to a ferromagnetic impurity existing as particles of a
second phase. It is now recognized as having a more basic cause and is known as canted
antiferromagnetism. Substances which show this behavior at room temperature include
a-Fe,03 (hematite) and the rare-earth orthoferrites. These have the general formula
RFeO;, where R is yttrium or a rare earth. Their crystal structure is orthorhombic (three
axes of unequal length at right angles to one another), and the spontaneous magnetization
o, 18 parallel to the c-axis (the (001)-axis of the cell), except in SmFeOs, where o is parallel
to the g-axis.

The exchange interaction in antiferromagnetic ionic solids takes place by the mechanism
of indirect exchange, also called superexchange, already alluded to briefly near the end of
Section 4.7. In these structures, the positive metal ions, which carry the magnetic moment,
are too far apart for direct exchange forces to be of much consequence. Instead, they act
indirectly through the neighboring anions (negative ions). Consider, for example, two
Mn?" jons being brought up to an O~ ion from a large distance, as in Fig. 5.19a. The direc-
tions of the moments on these two ions are at first unrelated. The oxygen ion has no net
moment, because it has a neon-like structure of filled shells. But imagine that the outer elec-
trons of the oxygen ion constitute two superimposed orbits, one with a net spin up, the other
with a net spin down, as pictured in Fig. 5.19a. When a manganese ion with an up spin is
brought close to the oxygen ion, the up-spin part of the oxygen ion will be displaced as in
Fig. 5.19b, because parallel spins repel one another. If now another manganese ion is
brought up from the right, it is forced to have a down spin when it comes close to the
up-spin side of the “unbalanced” oxygen ion. The strength of the antiparallel coupling
between metal ions M depends on the bond angle AOB and is generally greatest when
this angle is 180° (M—O-M collinear).

(a)

R

®)
Fig. 5.19 Superexchange.
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To conclude this section we will consider what neutron diffraction has revealed concern-
ing the spin structure of some transition metals.

5.3.1 Antiferromagnetic

Chromium is antiferromagnetic below 37°C and manganese below 95K. Neither has a sus-
ceptibility which varies much with temperature and neither obeys a Curie—Weiss law.
(Inasmuch as they are both electrical conductors, rather than insulators, we do not expect
their behavior to conform closely to a localized-moment, molecular-field theory.)
Chromium turns out to have a peculiar magnetic structure known as a incommensurate
spin-density wave, in which the magnitude of the spin forms a spatial wave whose wave-
length is not an integral number of unit cell edges. Manganese has a complicated crystal
structure with 29 atoms per unit cell, and develops a complicated antiferromagnetic struc-
ture with moments varying from 0.25 to 1.9 ug per Mn atom.

5.3.2 Ferromagnetic

For iron, nickel, and cobalt, neutron diffraction shows that the spins on all the atoms are
parallel to one another and that the moment per atom is in accord with values deduced
from measurements of saturation magnetization. (Furthermore, the diffraction experiments
show that each atom has the same moment. This evidence disposes of a suggestion that had
been made that a nonintegral moment, such as 0.6 ug/atom, was simply an average, result-
ing from the appropriate mixture of atoms of zero moment and atoms with a moment of one
Bohr magneton.) It has even been possible to discover the way in which the magnetization
is distributed around the nucleus [C. G. Shull, in Magnetic and Inelastic Scattering of
Neutrons by Metals, T. J. Rowland and P. A. Beck, eds, Gordon and Breach (1968)]. In
cobalt this distribution is spherically symmetrical. In iron, however, the magnetization is
drawn out to some extent along the cube-edge directions of the unit cell; in nickel, it
tends to bulge out in the face-diagonal and body-diagonal directions.

5.4 RARE EARTHS

The 15 rare earth metals extend from lanthanum La (atomic number 57) to lutetium Lu (71).
They are all paramagnetic at room temperature and above. At low temperatures their mag-
netic behavior is complex. Because almost all the rare earths are antiferromagnetic over at
least some range of temperature, it is convenient to give their magnetic properties some
brief consideration here.

The rare earths are chemically very similar, and it is therefore difficult to separate them
from one another or to obtain them in a pure state. This near identity of chemical behavior is
due to the fact that the arrangement of their outer electrons is almost identical. However, the
number of electrons in the inner 4f shell varies from O to 14 through the series La to Lu, and
the magnetic properties are due to this inner, incomplete shell. Because the 4f electrons are
so deep in the atom, they are shielded from the crystalline electric field of the surrounding
ions; the orbital moment is therefore not quenched, and the total magnetic moment has both
orbital and spin components. The total moment can become very large in some of the atoms
and ions of the rare earths (see following text).
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The “light” rare earths, lanthanum (La) to europium (Eu), remain paramagnetic down to
91K or below, and then five of the seven become antiferromagnetic. [Promethium (Pm) is
not found in nature and has no stable isotope; the properties of the metallic form are
unknown. ]

Of the eight “heavy” rare earths, six become ferromagnetic at sufficiently low tempera-
tures, and five of these (terbium, Tb, through thulium, Tm) pass through an intermediate
antiferromagnetic state before becoming ferromagnetic. Gadolinium (Gd) just misses
being ferromagnetic at room temperature; its Curie point is 16°C. All six ferromagnetic
rare earths have magnetic moments per atom uy exceeding that of iron; if they only retained
their ferromagnetism up to room temperature, they might make useful, although expensive,
materials. The one with the largest moment is holmium, Ho, which has uy = 10.34 ug/
atom, or almost five times that of iron (2.22 ug). The rare earth atoms are so heavy,
however, that their saturation magnetizations o per gram at 0K are not very different
from that of iron. For example, we may calculate, by means of Equation 4.27 and
the moment per atom given above, that o for holmium is 351 emu/g, compared to
221.9 emu/g for iron.

The rare earths and their alloys have provided a rich field for research by neutron diffrac-
tion. The spin structures of the antiferromagnetic states include helical and even more
complex arrangements. Even the ferromagnetic structures are sometimes unusual.
Consider, for example, gadolinium and holmium, which have the same crystal structure
(hexagonal close-packed). Ferromagnetic Gd has a simple arrangement of parallel spins,
like iron. Antiferromagnetic Ho has a helical spin structure like that of Mn Au, in
Fig. 5.17; the spins in any one hexagonal layer are all parallel, but they progressively
rotate about the c-axis from one layer to the next. In the ferromagnetic state below 20K,
this spiral spin structure is retained, but added to it is a ferromagnetic component of
spins parallel to the c-axis in every layer. (The c-axis is normal to the hexagonal layers.)
The resultant of these two components, one parallel and one at right angles to the hexagonal
layers, gives ferromagnetic Ho a kind of conical spin arrangement.

5.5 ANTIFERROMAGNETIC ALLOYS

Antiferromagnetism is now known to exist in a considerable number of alloys, most of them
containing Mn or Cr. It is more common in chemically ordered structures, which exist at
simple atomic ratios of one element to the other, like AB or AB,, but it has also been
found, surprisingly, in some disordered solid solutions.

An example of antiferromagnetism in an ordered phase has already been given: MnAu,
in Fig. 5.17. In the same alloy system, the phases MnAu and MnAuj; are also antiferromag-
netic. Some other antiferromagnetic ordered phases are CrSb, CrSe, FeRh, FePt;, MnSe,
MnTe, Mn,As, and NiMn. The spin structure of the latter is interesting. The unit cell is
face-centered tetragonal and the (002) planes, normal to the c-axis, are occupied alternately
by Ni and Mn atoms. Each (002) layer of atoms, whether all Ni or all Mn, is antiferromag-
netic in itself, i.e., half the atoms in one layer have spins pointing in one direction and
parallel to the plane of the layer, and the other half have spins pointing in the opposite
direction.

Among disordered alloys antiferromagnetism has been observed in Mn-rich Mn—Cu
and Mn-Au alloys. They have a face-centered tetragonal structure. All the spins in any
one (002) plane are parallel to one another and to the c-axis, but the spins in alternate
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(002) layers point “up” and “down.” Disordered MnCr is also antiferromagnetic. It is
body-centered cubic, with the spins on the cell-corner atoms antiparallel to those on the
body-centered atoms. In none of these examples is there any chemical ordering. Each
lattice site in, for example, the Mn—Cu alloys is occupied by a statistically “average”
Mn-Cu atom, and each average atom appears to have a magnetic moment of the same
magnitude. This behavior is understandable on the basis of the band theory, which envi-
sages all the 3d and 4s electrons as belonging to a common pool, but not on the basis of
a localized-moment theory. If the moments were localized, the various exchange
interactions (molecular fields), between Mn—Mn, Mn—-Cu, and Cu-Cu atoms, would
have different orientations from one unit cell to the next in a disordered alloy, so that it
would be difficult to understand how any long-range magnetic order could result.
Finally, it should be noted that the susceptibility —temperature curves of alloys do not
usually give evidence for, or against, the existence of antiferromagnetism, because a
Curie—Weiss law is not often followed. Neutron diffraction is the only sure test.

PROBLEMS

5.1 MnF; is antiferromagnetic and at high temperatures its Curie constant per mol is 4.10.
Its molar susceptibility xy; is 0.024 emu/Oe/(g mol) at the Néel temperature.
Assuming the ideal behavior described in Section 5.2, and assuming all the magnetic
moment of Mn is due to spin, calculate
a. The value of J.

b. The spontaneous magnetization of each sublattice at OK.
c. The molecular field acting on each sublattice at OK.
d.

The angle « in Fig. 5.5a when a field of 1.2 T is applied perpendicular to the spin
axis of a single crystal at OK.

5.2 Show that Equation 5.24 reduces to Equation 5.2 at high temperatures, to Equation
5.18 at Ty, and to zero at OK.

5.3 In a body-centered tetragonal arrangement of metal ions (Fig. 5.12), the cell-center
ions form the A sublattice and the cell-corner atoms form the B sublattice. If an A
ion is to have only B ions as nearest neighbors, find the range of allowable values
for ¢/a.



CHAPTER 6

FERRIMAGNETISM

6.1 INTRODUCTION

Ferrimagnetic substances exhibit a substantial spontaneous magnetization at room tempera-
ture, just like ferromagnetics, and this fact alone makes them industrially important. Like
ferromagnetics, they consist of magnetically saturated domains, and they exhibit the
phenomena of magnetic saturation and hysteresis. Their spontaneous magnetization disap-
pears above a certain critical temperature T, also called the Curie temperature, and then
they become paramagnetic (Fig. 6.1). Ferrimagnetics were not recognized as forming a
distinct magnetic class until 1948. In practical importance they are second only to ferro-
magnetics and are essential materials in some applications.

The most important ferrimagnetic substances are certain double oxides of iron and
another metal, called ferrites (although not all oxide ferrites are ferrimagnetic). This miner-
alogical term is not to be confused with the same word applied by metallurgists to body-
centered cubic iron. The ferrites were developed into commercially useful magnetic
materials, chiefly during the years 1933-1945, by Snoek and his associates at the
Philips Research Laboratories in the Netherlands [J. Smit and H. P. J. Wijn, Ferrites,
Wiley (1959)]. In a classic paper published in 1948, L. Néel [Ann. Phys., 3 (1948)
p-137] provided the theoretical key to an understanding of the ferrites, and the word ferri-
magnetism is due to him. It was perhaps not the best choice, since careful enunciation
is needed to distinguish “ferrimagnetism” from ‘“ferromagnetism.” Ferrimagnetism is
pronounced either as fer-eye-magnetism or fer-ee-magnetism.

The magnetic ferrites fall mainly into two groups with different crystal structures:

1. Cubic. These have the general formula MO -Fe,O3, where M is a divalent metal ion,
like Mn, Ni, Fe, Co, or Mg. Cobalt ferrite CoO-Fe,0j3 is magnetically hard, but all
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Fig. 6.1 Temperature dependence of magnetic properties of a typical ferrimagnet (NiO-Fe,03).
Left-hand figure shows the fractional saturation magnetization per unit mass oy/0y in the ferrimag-
netic region and the right-hand figure shows the reciprocal susceptibility (per mole) in the paramag-
netic region. The dashed curve in the left-hand figure is the corresponding data for metallic iron.

the other cubic ferrites are magnetically soft. As magnetic materials, these ferrites are
both old and new, inasmuch as magnetite Fe;O, (=FeO-Fe,03), which might be
called iron ferrite, is the oldest magnetic material known to man, the “lodestone”
of the ancients.

2. Hexagonal. The most important in this group are barium and strontium ferrites,
BaO-6 Fe,0; and SrO-6 Fe,03, which are magnetically hard.

Ferrites are manufactured by the usual techniques of ceramics. To make nickel ferrite, for
example, NiO and Fe,O;, in powder form, are thoroughly mixed, pressed to the desired
shape, and sintered at temperatures in excess of 1200°C. Sometimes metal carbonates are
used as the starting materials and converted to oxides in a preliminary calcining stage.
(See Section 13.6 for details.) The resulting product is hard and brittle. It is also a semicon-
ductor, which means that its electrical resistivity is at least a million times that of a metal.
This very large resistivity means in turn that an applied alternating magnetic field will not
induce eddy currents (Section 12.2) in a ferrite. This property makes ferrites the best mag-
netic materials for high-frequency applications where power losses from eddy currents must
be minimized.

Many ferrites are found, usually in an impure state, as naturally occurring minerals in
rocks. Knowledge of the properties of ferrites is therefore important to geologists
working in the field of rock magnetism. Studies of the magnetic properties of rocks have
led to important conclusions about the strength and direction of the Earth’s magnetic
field in past geological ages, and these conclusions form part of the evidence for the
theory of continental drift.

The ferrites are ionic compounds, and their magnetic properties are due to the magnetic
ions they contain. We are therefore interested in knowing what magnetic moment a particu-
lar metal ion should have. (The oxygen ion O*~ has no net moment.) This information is
given by Hund’s rule, which states that the spins in a partly filled shell are arranged so as to
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produce the maximum spin unbalance consistent with the Pauli exclusion principle. The
rule is stated here in terms of spin alone, because the orbital contribution is unimportant
in ferrites. Hund’s rule was derived from a study of optical spectra, and the spin arrange-
ments which it predicts are the result of exchange forces acting within a single atom or
ion. We can apply the rule to ions of the first transition series in the following way. The
outermost shell is the 3d, and it can contain five electrons with spin up and five with
spin down. The first five electrons enter with spin up, say, in order to maximize the
moment. The sixth electron, because of the exclusion principle, must have spin down.
An ion with six 3d electrons, such as Fe’", must then have a spin-only moment of 5 —
1 =4 pg. The moments of a number of other ions are given in Table 6.1. Note again
that we are dealing with ionic compounds which are effectively insulators. In such
materials, the electronic energy levels of the ions do not overlap, as they do in a metal,
and therefore an integral number of electrons can be associated with each ion of the
solid, just as in the free ion. This is just another way of saying that the electrons of each
ion in the solid are fixed to that ion and cannot wander freely about.

When we try to reconcile the ionic moments of Table 6.1 with the measured magnetiza-
tion values for ferrites we realize the great difference between ferrimagnets and ferromag-
netics. In nickel ferrite NiO-Fe,03, for example, there is one divalent nickel ion with a
moment of 2 ug and two trivalent iron ions, each with a moment of 5 ug. If positive
exchange forces produced a parallel alignment of all of these moments as in a ferromag-
netic, the total moment per NiO-Fe,O3 formula unit would be 2 +5 45 =12 ug. On
the other hand, the measured saturation magnetization oy at OK is 56 emu/g or A m? /kg,
which corresponds to 2.3 ug per molecule. This marked difference shows that the ionic
moments cannot be aligned parallel to one another.

Inspection of Fig. 6.1 yields further evidence that the ferrites are not ferromagnetic. The
fractional magnetization o/ 0y of a typical ferrite decreases rather rapidly with increasing
temperature, whereas the value of /0y for iron, for example, remains large until 7/7,
exceeds about 0.8. Furthermore, in the paramagnetic region, the variation of the inverse sus-
ceptibility with temperature is decidedly nonlinear, which means that the Curie—Weiss law
is not obeyed.

TABLE 6.1 Spin-Only Moments of Ions of First Transition Series

Number  Spin-Only
of 3d Moment

Tons Electrons in ug

st Tt 0 0
T+ v 1 1
Tt V3ot 2 2
v oot Mt 3 3
cr’t Mndt Fett 4 4

Mn>t Fe*t Co*t 5 35

Fe*t  Co*t  Ni*t 6 4

Co*" NPt 7 3

Nizt+ 8 2

Cu?t 9 1

Cut zn?t 10 0

[After J. Smit and H. P. J. Wijn, Ferrites, Wiley (1959)]
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These several facts led Néel to the conclusion that the ferrites had a magnetic structure
distinctly different from any previously recognized. It was known that the metal ions in a
ferrite crystal occupied two crystallographically different kinds of position, called A sites
and B sites. Néel made the basic assumption that the exchange force acting between an
ion on an A site and an ion on a B site is negative, as in an antiferromagnetic. There is
thus a lattice of A ions spontaneously magnetized in one direction and a lattice of B ions
magnetized in the opposite direction. However, in a ferrimagnetic, the magnitudes of the A
and B sublattice magnetizations are not equal. The two opposing magnetic moments do not
cancel, and a net spontaneous magnetization results. Ferrimagnetism can therefore be
thought of as imperfect or incomplete antiferromagnetism. Néel worked out all the impli-
cations of his hypothesis using molecular-field theory and obtained results in good agree-
ment with experiment. Before examining this theory, we will consider the crystal structure
of a cubic ferrite in some detail in order to understand the difference between A and B sites.

6.2 STRUCTURE OF CUBIC FERRITES

These ferrites have the spinel structure and are sometimes called ferrospinels, because their
crystal structure is closely related to that of the mineral spinel, MgO - Al,O5. The structure is
complex, in that there are eight formula units, or a total of 8 x 7 = 56 ions, per unit cell.
The large oxygen ions (radius about 0.13nm) are packed quite close together in a
face-centered cubic arrangement, and the much smaller metal ions (radii from about 0.07
to 0.08 nm) occupy the spaces between them. These spaces are of two kinds. One is
called a tetrahedral or A site, because it is located at the center of a tetrahedron whose
corners are occupied by oxygen ions (Fig. 6.2a). The other is called an octahedral or B
site, because the oxygen ions around it occupy the corners of an octahedron (Fig. 6.2b).
The crystallographic environments of the A and B sites are therefore distinctly different.

The unit cell contains so many ions that a two-dimensional drawing of the complete cell
is too cluttered to be useful. Instead we can consider a unit cell of edge a to be divided into
eight octants, each of edge a/2, as shown in Fig. 6.2c. The four shaded octants have iden-
tical contents, and so do the four unshaded octants. The contents of the two lower-left
octants in Fig. 6.2c are shown in Fig. 6.2d. One tetrahedral site occurs at the center of
the right octant of Fig. 6.2d, and other tetrahedral sites are at some but not all octant
corners. Four octahedral sites occur in the left octant; one is connected by dashed lines
to six oxygen ions, two of which, shown dotted, are in adjacent octants behind and
below. The oxygen ions are arranged in the same way, in tetrahedra, in all octants.

Not all of the available sites are actually occupied by metal ions. Only one-eighth of the
A sites and one-half of the B sites are occupied, as shown in Table 6.2. In the mineral
spinel, the Mg*" ions are in A sites and the AI*" ions are in B sites. Some ferrites
MO-Fe,05 have exactly this structure, with M>" in A sites and Fe*" in B sites. This is
called the normal spinel structure. Both zinc and cadmium ferrite have this structure and
they are both nonmagnetic, i.e., paramagnetic. Many other ferrites, however, have the
inverse spinel structure, in which the divalent ions are on B sites, and the trivalent ions
are equally divided between A and B sites. The divalent and trivalent ions normally
occupy the B sites in a random fashion, i.e., they are disordered. Iron, cobalt, and nickel
ferrites have the inverse structure, and they are all ferrimagnetic.

The normal and inverse structures are to be regarded as extreme cases, because X-ray
and neutron diffraction show that intermediate structures can exist. Thus manganese
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Fig. 6.2 Crystal structure of a cubic ferrite.

ferrite is almost, but not perfectly, normal; instead of all the Mn?* ions being on A sites, a
fraction 0.8 is on A sites and 0.2 on B sites. Similarly, magnesium ferrite is not quite
inverse; a fraction 0.9 of the Mg”" ions is on B sites and 0.1 on A sites. The distribution
of the divalent ions on A and B sites in some ferrites can be altered by heat treatment; it

TABLE 6.2 Arrangements of Metal Ions in the Unit Cell of a Ferrite MO-Fe,0;

Occupants
Kind of Site Number Available Number Occupied Normal Spinel Inverse Spinel
Tetrahedral (A) 64 8 Y 8Fe’*
Octahedral (B) 32 16 16Fe’ 8Fe’"

8M2+
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may depend, for example, on whether the material is quenched from a high temperature or
slowly cooled.

Ferrites can be prepared containing two or more different kinds of divalent ion, e.g.
(Ni,Zn)O-Fe,03. This is called a mixed ferrite. Most of the cubic ferrites used commer-
cially are mixed ferrites.

6.3 SATURATION MAGNETIZATION

We can calculate the saturation magnetization of a ferrite at OK, knowing (a) the moment on
each ion, (b) the distribution of the ions between A and B sites, and (c) the fact that the
exchange interaction between A and B sites is negative. Actually, the AB, AA, and BB
interactions all tend to be negative, but they cannot all be negative simultaneously. The
AB interaction is usually the strongest, so that all the A moments are parallel to one
another and antiparallel to the B moments. The crystallographic directions of these
moments are of the form (111), i.e., parallel to a body diagonal of the unit cell, in all the
cubic ferrites except cobalt. In cobalt ferrite the moments are parallel to the cube edge
directions (100).

Example 1 of Table 6.3 shows how the calculation is made for Ni ferrite. The structure is
inverse, with all the Ni*" ions in B sites and the Fe’ " ions evenly divided between A and B
sites. The moments of the Fe’" ions therefore cancel, and the net moment is simply that
of the Ni** ion, which is 2 ug. Generalizing on this, we conclude that the saturation
magnetization wy of any inverse ferrite is simply the moment on the divalent ion. This
leads to the following calculated values, in ug per molecule, for the series of ferrites
from Mn to Zn:

Ferrite Mn Fe Co Ni Cu Zn

Calculated uy 5 4 3 2 1 0
Measured uy 4.6 4.1 37 23 13 0

As stated earlier, Mn ferrite is far from being inverse, and yet its calculated net moment
is still 5 up per molecule. This is due to the fact that Mn®" and Fe®" ions each have a
moment of 5 upg; whatever their distribution between A and B sites, the expected net
moment per molecule is still 5 ug. The ion and spin distribution in Zn ferrite are shown
in Example 2 of Table 6.3. This ferrite has the normal structure, and Zn>" ions of zero
moment fill the A sites. There can thus be no AB interaction. The negative BB interaction
then comes into play: the Fe* " ions on B sites then tend to have antiparallel moments, and
there is no net moment. One would therefore expect Zn ferrite to be antiferromagnetic. It is,
but only below 9K. It is paramagnetic down to this temperature, because the negative BB
interaction is so weak that even small amounts of thermal energy can prevent the antipar-
allel ordering of the moments.

Figure 6.3 compares the calculated and measured moments of the series of ferrites just
discussed. The agreement is generally good, and affords strong support to Néel’s basic
assumption. Even more direct support has been given by neutron diffraction, which has
shown that the moments on the A and B sites are indeed antiparallel.



6.3 SATURATION MAGNETIZATION 181

TABLE 6.3 Ion Distribution and Net Moment per Molecule of Some Typical Ferrites

Tetrahedral A Octahedral B Net Moment (ug/

Example Substance Structure Sites Sites Molecule)
1 NiO - Fe,03 Inverse Fe’* Ni?t  Fe’t
5 2 5 2
— — —
2 ZnO - Fe,03 Normal Zn*" Fe*™  Fe’'
0 5 5 0
— —
3 MgO - Fe,05 Mostly Mg>"  Fe*™ Mgt Fe*t
inverse 0 4.5 0 5.5 1
— —
4 0.9NiO - Fe,0;  Inverse Fe3t Ni?t  Fe**
4.5 1.8 4.5
— — —
0.1ZnO - Fe,0;  Normal Zn>* Fe3t  Fe’T
0 0.5 0.5
— —
4.5 7.3 2.8
— —

The discrepancies between theory and experiment, evident in Fig. 6.3, are generally
ascribed to one or both of the following:

1. Orbital moments may not be completely quenched; i.e., there may be an orbital
moment, not allowed for in the theory, besides the spin moment. This is thought
to be particularly true of the Co®" ion.

Saturation magnetization py
(ug /molecule)

Moment of divalent ion

Fig. 6.3 Saturation magnetization at OK of some simple ferrites.
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2. The structure may not be completely inverse. And, as mentioned earlier, the degree of
inversion can sometimes be changed by heat treatment. The saturation magnetization
then becomes a structure-sensitive property.

Mg ferrite is a frequent component of mixed ferrites. If its structure were completely
inverse, its net moment would be zero, because the moment of the Mg2+ ion is zero.
But, as noted earlier, 0.1 of the Mg®" ions are on A sites, displacing an equal number
of Fe** ions. Then, as shown in Example 3 of Table 6.3, the A-site moment becomes
0.9 (5)=4.5pup and the B-site moment 1.1 (5)=15.5 up, giving an expected net
moment of 1.0 ug. This agrees well with the experimental value of 1.1 wg.

A surprising fact about mixed ferrites containing zinc is that the addition of the nonmag-
netic Zn”" ion increases the saturation magnetization. Suppose we compute, as in Example
4 of Table 6.3, the net moment of a mixed ferrite (solid solution) containing 10 mol% Zn
ferrite in Ni ferrite. The Zn”>" ions of zero moment go to the A sites as in pure Zn ferrite,
thus weakening the A-site moment, and the Fe*" jons from the Zn ferrite now have parallel
moments in the B sites, because of the strong AB interaction. The expected net moment
therefore increases from 2.0 up, for pure Ni ferrite, to 2.8 ug for the mixed one. If this
increase, of 0.8 ug per 10mol% of Zn ferrite, continued with further additions, we
would expect pure Zn ferrite to have a moment of 10 ug. This cannot occur because the
A moments will soon become too weak to affect the B moments, and the net moment
must sooner or later begin to decrease. However, the experimental curve does begin with
a slope very close to the theoretical, as shown in Fig. 6.4, which gives data on three
mixed ferrites containing zinc.

Table 6.4 summarizes magnetic and other data on various pure ferrites and compares
them with similar data on metallic iron. Although the magnetic moment per molecule of

10

Mn-Zn
Co-Zn

Ni-Zn

Saturation magnetization py
(ug/molecule)

0 20 40 60 80 100
MO - Fe, 0,4 ZnO - Fe, 0,
Mot percent ZnO - Fe, O,

Fig. 6.4 Effect on the saturation moment (at OK) of adding Zn ferrite to Mn, Co, and Ni ferrite.
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TABLE 6.4 Magnetic and Other Data for Various Ferrites and Metallic Iron

. 0K 20°C
Lattice

Parameter Density, a9, M, as, M,
Substance a, nm g/cm? emu/g  emu/cm’® emu/g emu/em® T, °C
MnO-Fe,0; 0.85 5.00 112 560 80 400 300
FeO-Fe,0; 0.839 5.24 98 510 92 480 585
Co0O-Fe,0; 0.838 5.29 90 475 80 425 520
NiO-Fe,03 0.834 5.38 56 300 50 270 585
CuO-Fe,05 0.837¢ 5.41 30 160 25 135 455
MgO-Fe,05 0.836 4.52 31 140 27 120 440
BaO-6Fe,0; a=0.588 5.28 100 530 72 380 450

c=232
Fe 0.287 7.87 222 1747 218 1714 770

“Cubic when quenched from above 760°C. If slowly cooled it becomes tetragonal, with @ = 0.822 and ¢ = 0.870 nm.
[After J. Smit and H. P. J. Wijn, Ferrites, Wiley (1959)]

many ferrites is rather large (several Bohr magnetons), iron has a much larger magnetization
on the basis of unit mass or unit volume.

6.4 MOLECULAR FIELD THEORY

Most ferrimagnetics have such low electrical conductivity that their magnetic moments may
be regarded as completely localized at particular ions. A molecular field (localized-
moment) theory is therefore expected to be valid. We also expect that the exchange
forces between the metal ions in a ferrimagnetic will act through the oxygen ions by
means of the indirect exchange (super-exchange) mechanism, just as in antiferromagnetics
(Fig. 5.19).

However, molecular field theory for a ferrimagnetic is inherently more complicated than
for an antiferromagnetic, because the A and B sites are crystallographically different for a
ferrimagnetic, but identical for an antiferromagnetic. This means that the AA interaction in
a ferrimagnetic will differ from the BB interaction, even though the ions involved are iden-
tical. The basic reason is that an ion on an A site has a different number and arrangement of
neighbors from the same ion on a B site.

Figure 6.5a shows the interactions (exchange forces) that would have to be considered
in a rigorous treatment of an inverse ferrite MO -Fe,O3. These interactions are shown by
arrows, and there are five in all, compared to two (AB and AA = BB) in an antiferromag-
netic. To simplify the problem, Néel replaced the real ferrimagnetic with a model composed
of identical magnetic ions divided unequally between the A and B sublattices. This still
leaves three different interactions to be considered, as shown in Fig. 6.5b. The Néel
theory is outlined below.

Let there be n identical magnetic ions per unit volume, with a fraction A located on A
sites and a fraction v (= 1 — A) on B sites. Let ws be the average moment of an A ion
in the direction of the field at temperature 7. (Even though the A and B ions are identical,
Ma is not equal to wp, because these ions, being on different sites, are exposed to
different molecular fields.) Then the magnetization of the A sublattice is M = Anwa.
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A sites B sites
Fe M Fe
o b b1 1A
Fe M Fe
A B
(b) i > i
A B

Fig. 6.5 Exchange interactions between ions in an inverse cubic ferrite.

Put nus = M,. Then M5 = AM,, and Mg = vM,,. The total magnetization is

M:MA +MB:/\M3+UM},. (61)
The molecular field acting on sublattice A is
Hua = —YasMB + YaaMa, (6.2)

where the molecular field coefficients vy are regarded as positive quantities, and the signs
correspond to the assumption of a negative (antiparallel) interaction between A and B
ions and a positive (parallel) interaction between A ions. Similarly,

Hug = —YapMa + vsMs, (6.3)
The coefficients ysa and ygp are now unequal, and we express them as fractions of yap.

_ YAA VBB
a == B=—.
YaB YaB
The molecular fields are then

HmA = 'YAB(aAMa - UMb)a (64)
Hup = Yap(BoMy — AM,). (6.5)

These equations are valid both above and below the Curie temperature.

6.4.1 Above T,

In the paramagnetic region we proceed, as we did for antiferromagnetics, by assuming
Curie-law behavior, namely,

MT = pCH,

for each sublattice. Here p is the density and H, is the total field, the sum of the applied field
H and the molecular field. Then, for the two sublattices,

M,T = pC(H + Hpa), (6.6)
M,T = pC(H + Hmp), (6.7)

where C is the Curie constant per gram of the magnetic ions involved, from Equation 3.49.
By eliminating M,, My, H,a, and H,,g from Equations 6.1 and 6.4—6.7, we find, after much
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tedious algebra, the following expression for the mass susceptibility y:

M CT — ypppC* A2 + a + B)
X=—"F=m > . (6.8)
pH T2 — ya\gpCT(ak + Bv) + Yigp*C2Av(af — 1)
This may be written in the form

1 7T 1 b
— =t ————, 6.9
X C xo T-90
1 T+(C b
2 + ( /XO) 7 , (6.10)
X C T-0

where

1
— = yAppQRyV — ay’ — Pv°),
Xo

b=y P Cyvi¥(l + @) —v(1 — BJ
0= y\gpCyv(2 + a+ B).

Equation 6.10 represents a hyperbola, and the physically meaningful part of it is plotted in
Fig. 6.6. It cuts the temperature axis at 6, called the paramagnetic Curie point. At high
temperatures the last term of Equation 6.10 becomes negligible, and the equation reduces
to a Curie—Weiss law:

C

XTTE(Cx)

This is the equation of a straight line, shown dashed in Fig. 6.6, to which the (1/x) vs T
curve becomes asymptotic at high temperatures.

Equation 6.10 is in good agreement with experiment, except near the Curie point.
Figure 6.7 shows the data for Mg ferrite. The temperature 6; (or 7..) at which the suscepti-
bility becomes infinite and spontaneous magnetization appears is called the ferrimagnetic
Curie point; in the example shown, it was determined from measurements made in the

1/x

_C/Xo

Temperature (K)

Fig. 6.6 Theoretical variation of reciprocal susceptibility with temperature for a ferrimagnetic above
the Curie point.



186 FERRIMAGNETISM

600 —
500 -
D
g 400 |-
S
g
o0
v
S 300
=
£
2
§ 200 Equation (6-10)
100
0
500 600 700 800 900 1000

Temperature (K)

Fig. 6.7 Reciprocal susceptibility vs. temperature for Mn ferrite. Here yi refers to a half molecule
of ferrite, i.e., to one mol of Fe’™t.

ferrimagnetic region. This disagreement between theory and experiment in the region of the
Curie “point” recalls the similar disagreement in ferromagnetism (Fig. 4.10) and is presum-
ably due to the same cause: short-range spin order (spin clusters) at temperatures above 6y.

By fitting Equation 6.10 to the experimental points at temperatures sufficiently above 6,
the constants o, b and 0 can be evaluated. For the curve of Fig. 6.7, for example, they have
the values 1/xo = 296.7, b = 14,700, and 6 = 601.8, with C equal to 4.38 for the Fe’" jon,
which is assumed to be the only magnetic ion present. Values of ysg, «, 3, and A can then
be calculated from xg, b, and 6, by a method given by Néel, provided that the saturation
magnetization at OK is also known. Néel analyzed the data on several ferrites in this way
and found ysp to be large and positive, as expected, but o and B small and negative,
which means that y55 and ygg are small and negative. Recalling the assumptions behind
the signs of Equations 6.2 and 6.3, we conclude that the AA and BB interactions are
weakly antiparallel.

6.4.2 Below T,

In the ferrimagnetic region each sublattice is spontaneously magnetized by the molecular
field acting on it, but the two sublattice magnetizations are opposed to each other. The
net (observable) magnetization is then

M| = [Ma| — |Mg].

Each sublattice magnetization is governed by the same relation as a ferromagnetic, namely,
Equation 4.13. In terms of the magnetization per gram o (=M/p), the fractional specific
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magnetization of the A sublattice is given by

H
9IA _ gy, dy=n8(J, ML), (6.11)
00A kT

where B is the Brillouin function. The field H here is to be put equal to the molecular field
H,, acting on the A lattice, because we are computing the spontaneous magnetization in
the absence of an applied field. In terms of o rather than M, Equation 6.4 becomes

Hina = —yapplada, — voy).

The two sublattice fractional spontaneous magnetizations are then given by

OsA _ B(J, My Yap Playo, — VO'b)> 6.12)
O0A kT
9B _ B <J, My Yap P(Bvoy, — VU'a)) 6.13)
O0B kT

These two equations cannot be solved separately by the simple graphical method of
Fig. 4.4, because they are not independent. The extent to which the A lattice is magnetized
depends on the extent to which the B lattice is magnetized, and vice versa. Instead, the
equations must be solved simultaneously. The solutions in a typical case might appear
like Fig. 6.8, where the dashed lines show the sublattice magnetizations and the full line
is the resultant. Note that the two sublattices must have the same Curie point. If not,
then, at some temperature between the two Curie points, one lattice would have zero
moment and so could not align the moments on the other.

If the values of the constants ysg, @, 3, and A have been calculated for a particular sub-
stance from an analysis of its paramagnetic behavior, then the oy, T curve of that substance
below T, can be calculated, and the result is in fairly good agreement with experiment.
However, it is necessary to follow a rather arbitrary procedure. In an inverse ferrite
MO-Fe,0s, the B sites are actually occupied by M*" and Fe*" jons with different
moments. In the calculation it is necessary, to conform to the assumptions of the
molecular-field theory, to replace these two kinds of ions on B sites with a single fictitious
kind of ion having a moment intermediate between that of M*" and Fe’ ™.

-~ O

Fig. 6.8 Spontaneous magnetizations of the A and B sublattices, and the resultant saturation mag-
netization o, for a typical cubic ferrimagnet (schematic).
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Fig. 6.9 Unusual o vs T curves for cubit ferrimagnets.

The sublattice magnetizations given by Equations 6.12 and 6.13 depend on the molecu-
lar field constants yag, o, and B and on the magnetic ion distribution parameter A. The
shapes of the sublattice oy, T curves thus depend on the values of these constants, and
the shape of the curve for lattice A will generally differ from that of lattice B. Since the
observed, resultant curve is the difference between these two, it follows that slight
changes in the shapes of the sublattice curves can yield resultant curves of quite unusual
shape. Néel has determined the various forms the resultant curve can assume, as a function
of yag, a, B, and A. Two quite unexpected forms, shown in Fig. 6.9, were predicted, and
both have since been observed.

In Fig. 6.9, the sublattice magnetization curves are both plotted on the positive side of
the temperature axis. In Fig. 6.9a the resultant magnetization increases with temperature
and goes through a maximum before finally falling to zero, because |osa| decreases less
rapidly with increasing temperature than |o,g|. The chromite NiO-Cr,03, which has the
spinel structure, behaves like this. In Fig. 6.9b we see the opposite behavior: The resultant
magnetization decreases to zero below 7, and then becomes “negative.” The temperature at
which the resultant becomes zero is that at which the opposing sublattice magnetizations are
exactly balanced; it is called a compensation point. Lig sFe| »5Cr 2504, which also has the
spinel structure, shows this behavior.

It is not accurate to say that o, becomes negative above the compensation point, because
that would imply diamagnetism. If a rod of the material is placed parallel to a saturating
field directed from left to right, then, at any temperature below T, the magnetization o

(a) (b)

Fig. 6.10 Behavior of a ferrimagnet with a compensation point.
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Fig. 6.11 Saturation magnetization vs temperature for several cubic ferrimagnets. [Data for Figs
6.11 and 6.13 from J. Smit and H. P. J. Wijn, Ferrites, Wiley (1959).]

will be directed from left to right. The oy, T curve should thus be plotted as in Fig. 6.10a
rather than as in Fig. 6.9b. It is the remanent magnetization o, which changes sign with
change in temperature. Let the rod be saturated at temperature 7; and the field then
removed; its remanent magnetization at this temperature o(7}) is then represented by
point a in Fig. 6.10b. The effect of the demagnetizing field of the rod has been neglected
in this illustration. If the rod is now heated, still in zero field, from T to 75, its remanent
magnetization will decrease, become zero, and then reverse direction, ending up at point
b in the diagram. This sign reversal of the remanence can be convincingly demonstrated
in the following way. Hang the rod, in the remanent state at 7, by a torsion-free suspension,
so that it can freely rotate in a horizontal plane, in a weak field. The field should be too weak
to alter the magnetic state of the rod appreciably but strong enough to align it. When the rod
is then heated through the compensation point, it will rotate through 180°. Only a ferrimag-
netic of this peculiar kind will behave in this way; this experiment is thus, in a sense, a
crucial test of the theory of ferrimagnetism.

The two examples just described are unusual. The saturation magnetization of most
ferrimagnetics decreases continuously, but more rapidly than that of a ferromagnetic, to
zero at T,. Typical examples are shown in Fig. 6.11.

6.4.3 General Conclusions

We have seen that the Néel molecular field theory successfully accounts for a whole new
class of magnetic materials and is in generally good agreement with experiment. In particu-
lar, it offers satisfactory explanations for (a) the marked curvature of the 1/, T plot, which
has been called the most characteristic single property of ferrimagnetics, and (b) the unu-
sually shaped oy, T curves shown in Fig. 6.9.

The success of the theory may seem surprising in view of the simplified magnetic struc-
ture of the model adopted, a structure which rarely corresponds to that of a real ferrimag-
netic. However, according to J. S. Smart [Effective Field Theories of Magnetism,
Saunders (1966)], “it can be shown that a generalization of the model to include the
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possibility [of more than one type of magnetic ion] merely introduces more adjustable
parameters into the theory and does not change the general characteristics of the suscepti-
bility and magnetization curves already predicted.”

6.5 HEXAGONAL FERRITES

There are many hexagonal ferrimagnetic oxides, but the only ones of commercial import-
ance are barium ferrite BaO - 6Fe,O3(=BaFe|,019) and strontium ferrite with Sr replacing
Ba in the same formula. Barium ferrite has the same crystal structure as magnetoplumbite,
which is a mineral with the approximate composition PbFe; sMnj3 5AlgsTipsO19. The Fe
ions in barium ferrite occupy the same positions as the mixture of Fe, Mn, Al, and Ti
ions in magnetoplumbite.

The hexagonal unit cell of barium ferrite contains two formula units, or an amount totalling
2 x 32 = 64 atoms. It is very long in the ¢ direction, with ¢ = 2.32 nm and a = 0.588 nm.
The Ba>" and O® ions are both large, about the same size, and nonmagnetic; they are
arranged in a close-packed fashion. The smaller Fe>" ions are located in the interstices.

The key to an understanding of this large complex cell lies in the relation between the
hexagonal-close-packed and the face-centered-cubic structures. Both are built up by stack-
ing identical layers of atoms one on top of another in a particular sequence. Within each
layer the atoms are located at the corners of a network of adjoining equilateral triangles,
as shown at the top of Fig. 6.12. If the layers are stacked in the sequence ABABAB.. .,
i.e., with the third layer directly over the first, the resulting structure is hexagonal close-
packed. If the stacking sequence is ABCABC..., so that the sequence does not repeat
until the fourth layer, the result is face-centered cubic. The cubic ferrites with the spinel
structure may be thought of in this way, i.e., as being composed of layers of oxygen ions

@ Hexagonal

B
Cubic
C
A
C Hexagonal
A
¢

C .

} Cubic
B
A
B
A

Fig. 6.12 The barium ferrite structure.
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stacked in the ABCABC sequence, with the M2t and Fe*" ions in the interstices. The
moments of the magnetic ions are normal to the plane of the oxygen layers, in a direction
of the form (111).

In the barium ferrite unit cell, shown schematically in Fig. 6.12, there are 10 layers of
large ions (Ba®" or O%7), with four ions per layer. Eight of these layers are wholly
oxygen, while two contain one barium ion each, as indicated. The whole block of 10
layers can be regarded as made up of four blocks, two cubic and two hexagonal. In the
cubic blocks the arrangement of oxygen ions, occupied tetrahedral sites, and occupied octa-
hedral sites is exactly the same as in the cubic spinels. In each hexagonal block a barium ion
substitutes for an oxygen ion in the central of the three layers, and the layers are stacked in
the hexagonal sequence. A study of the stacking sequence indicated in the drawing shows
that the cubic and hexagonal sections overlap; thus the four layers between those containing
barium have cubic packing, and the five layers centered on a barium ion have hexagonal
packing. The unit cell as a whole has hexagonal symmetry.

The only magnetic ions in barium ferrite are the Fe*" ions, each with a moment of 5 .
These are located in three crystallographically different kinds of sites: tetrahedral, octa-
hedral, and hexahedral. The hexahedral site is surrounded by five equidistant oxygen
ions, arranged at the corners of a bipyramid with a triangular base. One of these sites
occurs in each barium-containing layer. The Fe* " ions have their moments normal to the
plane of the oxygen layers, and thus parallel or antiparallel to the +c axis of the hexagonal
cell, which is the (0001) direction. Of the 24 Fe*" ions per cell, four are in tetrahedral sites,
18 in octahedral, and two in hexahedral. By starting with the known spin directions of the
Fe*" ions in the cubic sections of the cell and by applying the known principles governing
the superexchange interaction, one can proceed from ion to ion throughout the cell and
predict the direction of its spin moment, that is, whether it is [0001] or [0001]. In this
way one arrives at a predicted value, per cell, of 16 ions with spins in one direction
and eight with spins in the other. The predicted magnetic moment per cell is therefore
(16 — 8)(5) =40 ug per cell or 20 ug per molecule of BaO-6Fe,05. This quantity
corresponds to 100 emu/g or Amz/kg, and agrees exactly with the measured value of
the saturation magnetization at OK. The variation of o, with temperature is shown in
Fig. 6.13. At 20°C it has fallen to 72 emu/g or Am?/kg (M, = 380 emu/cm?) and the
Curie temperature is 450°C.
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Fig. 6.13 Temperature variation of saturation magnetization of barium ferrite.
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The hexagonal ferrites have strong uniaxial crystal anisotropy and are widely used as
permanent magnet materials. See Chapter 14.
Other ferrimagnetic oxides with a hexagonal structure include the following:

BaO - 2MO - 8F6203 \W%
2(BaO - MO - 3Fe,03) Y
3BaO - 2MO - 12F6203 Z

Here M is a divalent ion as before, and the letter symbols at the right serve as abbreviations.
Thus, Co,Z stands for 3BaO-2Co0O- 12Fe,0;. The structures and magnetic properties of
these compounds are described by Smit and Wijn.

6.6 OTHER FERRIMAGNETIC SUBSTANCES

Besides the ferrites already described, there are a number of other ferrimagnetics of con-
siderable interest.

6.6.1 'y-Fe203

This compound, called maghemite, has a cubic structure and is made by oxidizing
magnetite:

1
2Fe;04 + 502 — 3Fe,03

It is unstable and transforms to a-Fe,O3 (hematite) on heating above 400°C. (Hematite is
rhombohedral and a canted antiferromagnetic, with a Néel temperature of 950K.)
Elongated particles of y-Fe,O3 are used as the active recording medium in many recording
tapes and floppy disks for storing analog and digital data.

All the magnetic ions in y-Fe,O; are identical, namely Fe* ", and ferrimagnetism arises
from an unequal distribution of these ions in A and B sites. This substance therefore corre-
sponds exactly to the model adopted by Néel for his theory of ferrimagnetism. The higher
O/Fe ratio of y-Fe,0s, compared to that of Fe30,, is achieved, not by adding oxygen, but
by removing iron. The unit cell of y-Fe,0j is tetragonal, with ¢/a = 3. It is made by piling
up three of the cubic spinel cells of Fe;0,4 and then removing eight Fe ions from octahedral
(B) sites. The unit cell of Fe;0,4 contains eight molecules, so that the conversion to y-Fe,O3
can be written, in terms of the tetragonal cell, as:

(3)(8)(FC304) — 8Fe = F864096 = 32(FCQO3).

From the information in Table 6.2 we can then conclude that the Fe** ions in a unit cell of
v-Fe, 03 are distributed as follows:

A sites: 8 x 3 = 24,
B sites: (16 x 3) — 8 = 40.

Because each ion has a moment of 5 ug, the net moment is (40 — 24)(5) = 80 up per unit
cell or 80/32 =2.50 up per molecule of Fe,O;. This is in good agreement with the
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experimental value of oy of 2.39 ug/molecule = 83.5 emu/g or A m?/kg. At 20°C, oy is
76.0 emu/g or Am?/kg.

6.6.2 Garnets

The semiprecious stone garnet is actually a group of isomorphous minerals with a complex
cubic structure. A typical composition is 3MnO- Al,03-3Si0,, but certain other divalent
ions can be substituted for Mn”>" and certain other trivalent ions for AI>". By substituting
certain trivalent ions for the mixture of divalent (Mn>") and tetravalent (Si*") ions in
natural garnet, it is possible to make silicon-free garnets with the composition
3M,0;-5Fe;05. The most magnetically interesting of these synthetic garnets are those in
which M is yttrium (Y) or one of the rare earths from gadolinium (Gd) to lutetium (Lu),
inclusive. These are all ferrimagnetic, but rather weakly so; oy in the neighborhood of
room temperature is less than 10emu/g or Amz/kg. Yttrium—iron garnet, commonly
known as YIG, has a normal oy, T curve, but most of the rare-earth garnets exhibit a
compensation point (Fig. 6.10). YIG has important applications at very high frequency,
in the microwave region.

The cubic unit cell is large, with a lattice parameter of more than 1.29 nm, and it contains
160 atoms. Three crystallographically different kinds of sites exist, labeled conventionally
as A, B, and C, and occupied as follows: 16Fe*" in A, 24Fe*" in B, and 24M>" in C. The
interaction between the Fe>" ions in A and B sites is strongly antiparallel. In the rare-earth
garnets, the moment on the rare-earth ions in C sites is antiparallel to the resultant moment
of the Fe** ions. The Y ion in YIG has no moment, so that the net moment of YIG is
solely due to an unequal distribution of the same kind of ions (Fe’>") in A and B sites,
as in y-Fe,O;.

The garnets were extensively investigated and developed in the 1960s and 1970s during
the creation of a nonvolatile computer memory and processor system based on moveable
magnetized regions called bubble domains. A great deal of high-quality materials and
engineering work was done, but the system was not commercially successful and has
disappeared.

6.6.3 Alloys

Ferrimagnetic intermediate phases occur in several alloy systems. Perhaps the best known is
Mn,Sb. Its tetragonal cell contains two atoms of manganese in different kinds of sites. The
moment of a Mn atom in an A site is antiparallel and unequal to the moment of a Mn atom
in a B site, leading to a net moment of 0.94 wg per Mn atom. This magnetic structure for
Mn,Sb was proposed by Guillaud in 1943, five years before the publication of Néel’s
general theory of ferrimagnetism, and was later confirmed by neutron diffraction. Mn,Sb
was the first strongly magnetic substance to be recognized as ferrimagnetic rather than
ferromagnetic.

Other ferrimagnetic metallic phases include Mn,Sn, Mn;Ga, Mn;Ge,, MnsIn, FeGe,,
FeSe, Cr;As,, and CrPts.

Many binary alloys of a rare-earth element, especially a heavy rare earth, and a transition
metal, are ferrimagnetic. Typical examples are RCos alloys, where R = Gd, Tb, Dy, Ho,
Er, or Tm, all of which, incidentally, show a compensation point. In these alloys the
cobalt moments are antiparallel to those of the rare earths. On the other hand, when R is
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a light rare earth, all moments are parallel, resulting in ferromagnetism, as mentioned in
Section 4.5.

6.7 SUMMARY: KINDS OF MAGNETISM

We have surveyed, in Chapters 3—6, the five main kinds of magnetism exhibited by matter.
A graphical summary of this material is shown in Fig. 6.14. Here a circle represents an atom
or ion, and an arrow through that circle represents its net magnetic moment. Open and solid
circles represent atoms or ions of different valence or chemical species. The magnetic struc-
tures depicted are those which exist in zero applied field.

The five kinds of magnetism can be divided into three broad categories:

1. Diamagnetism and Pauli paramagnetism, characterized by atoms having no inherent
magnetic moments.

2. Ideal Curie paramagnetism, characterized by noninteracting atomic moments.

3. Curie—Weiss paramagnetism, ferromagnetism, antiferromagnetism, and ferrimagnet-
ism, characterized by interacting atomic moments.
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Fig. 6.14 Kinds of magnetism.
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PROBLEMS

6.1

6.2

6.3

In 1907, Pierre Weiss published measurements of the magnetization of magnetite
(Fe30,) as a function of temperature. His values, with magnetization expressed as a
fraction of the magnetization at absolute zero and temperature expressed as a fraction
of the Curie temperature, are as follows:

o/o, 092 088 0.83 077 0.68 058 043 032 0.22 0.03
T/T. 023 033 043 054 055 078 0.69 094 095 098

Plot these values together with the curve derived from the Weiss—Langevin theory of
ferromagnetism, which is the curve labeled J = oo in Fig. 4.7. In 1907, ferrimagnetism
was unknown, and magnetite was regarded as a ferromagnet. The agreement between
theory and experiment shown by these two curves was strong evidence for the validity
of the theory. But the agreement was just a coincidence; the ferrimagnetic structure of
magnetite means the theory cannot apply.

The measured saturation magnetization of NiO-Fe,O5 at OK is 56 Am? /kg. Calculate
the magnetic moment per molecule, in Bohr magnetons.

A mixed Co—Zn ferrite contains cobalt and zinc in the ratio of 4.5 : 1 by weight. Find
the saturation magnetization in Bohr magnetons per molecule. Assume pure Co ferrite
to have the theoretical spin-only moment of a completely inverse ferrite.



CHAPTER 7

MAGNETIC ANISOTROPY

7.1 INTRODUCTION

The remainder of this book will be devoted, almost without exception, to the strongly
magnetic substances, namely, ferro- and ferrimagnetics. Chapters 7—12 deal mainly with
structure-sensitive properties, those which depend on the prior history (thermal,
mechanical, etc.) of the specimen. In these chapters we shall be concerned chiefly with
the shape of the magnetization curve; that is, with the way in which the magnetization
changes from zero to the saturation value M. The value of M; itself will be regarded
simply as a constant of the material. If we understand the several factors that affect
the shape of the M, H curve, we will then understand why some materials are magnetically
soft and others magnetically hard.

One factor which may strongly affect the shape of the M, H (or B, H) curve, or the shape
of the hysteresis loop, is magnetic anisotropy. This term simply means that the magnetic
properties depend on the direction in which they are measured. It is pronounced ann-eye-
SOT-rope-ee. This general subject is of considerable practical interest, because anisotropy
is exploited in the design of most magnetic materials of commercial importance. A
thorough knowledge of anisotropy is thus important for an understanding of these materials.

There are several kinds of anisotropy:

1. Crystal anisotropy, formally called magnetocrystalline anisotropy.
2. Shape anisotropy.
3. Stress anisotropy (Section 8.5).

Introduction to Magnetic Materials, Second Edition. By B. D. Cullity and C. D. Graham
Copyright © 2009 the Institute of Electrical and Electronics Engineers, Inc.
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198 MAGNETIC ANISOTROPY

4. Anisotropy induced by
a. Magnetic annealing (Chapter 10).
b. Plastic deformation (Chapter 10).
c. Irradiation (Chapter 10).

5. Exchange anisotropy (Section 11.8).

Of these, only crystal anisotropy is intrinsic to the material. Strictly, then, all the others are
extrinsic or “induced.” However, it is customary to limit the term “induced” to the aniso-
tropies listed under item 4 above. All the anisotropies from 1 to 5 (except 4c) are important
in practice, and any one may become predominant in special circumstances. In this chapter
we will consider only crystal and shape anisotropy.

7.2 ANISOTROPY IN CUBIC CRYSTALS

Suppose a single crystal with cubic structure is cut in the form of a disk parallel to a plane'
of the form {110}. This specimen will then have directions of the form (100), (110), and
(111} as diameters, as shown in Fig. 7.1 for the plane (110). Measurements of magnetiza-
tion curves along these diameters, in the plane of the disk, will then give information about
three important crystallographic directions. The results for iron, which has a body-centered
cubic structure, are shown in Fig. 7.2a, and those for nickel (face-centered cubic), in
Fig. 7.2b.

For iron these measurements show that saturation can be achieved with quite low fields,
of the order of a few tens of oersteds at most, in the (100) direction, which is accordingly
called the “easy direction” of magnetization. This tells us something about domains in iron
in the demagnetized state. As will become clear later, a domain wall separating two
domains in a crystal can be moved by a small applied field. If we assume that domains
in demagnetized iron are spontaneously magnetized to saturation in directions of the
form (100), then a possible domain structure for a demagnetized crystal disk cut parallel

(1] [o011]

}

(1101 Z _L-(110)
~ -

Y 0

Fig. 7.1 The three principal crystallographic directions in the (110) plane of a cubic material.

"Planes of a form are planes related by symmetry, such as the six faces of a cube: (100), (010), (001), (100), (010),
and (001). By convention, minus signs are placed above the index number. The indices of any one, enclosed in
braces {100}, stand for the whole set. The indices of particular directions are enclosed in square brackets, such
as the six cube-edge directions: [100], [010], [001], [100], [010], and [001]. These are directions of a form, and
the whole set is designated by the indices of any one, enclosed in angular brackets (100).
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Fig. 7.2 Magnetization curves for single crystals of iron (a) and nickel (b).

to (001) would be that shown in Fig. 7.3a. It has four kinds of domains, magnetized parallel
to four of the six possible easy directions, namely, [010], [100], [010], and [100]. Actually,
an iron crystal disk of diameter, say, 1 cm, would contain tens or hundreds of domains,
rather than the four shown in Fig. 7.3. However, it would still be true that all these
domains would be of only four kinds, namely those with M, vectors in the [010], [100],
[010], and [100] directions. If a field H is now applied in the [010] direction, the [010]
domain will grow in volume by the mechanism of domain-wall motion, as indicated in
Fig. 7.3b. It does so because the magnetic potential energy of the crystal is thereby



200 MAGNETIC ANISOTROPY
& Ms

(@M=0 (by M>0
H
(0101
I—+ (1001
[001]
©M=M,

Fig. 7.3 Domain structures in a single-crystal disk of iron (schematic). The field H is applied in the
[010] direction.

lowered; Equation 1.5 shows that the energy of a [010] domain in the field is — M H per unit
volume, that of a [010] domain is +MH, and that of a [100] or [100] domain is zero.
Continued application of the field eliminates all but the favored domain, and the crystal
is now saturated (Fig. 7.3c). This has been accomplished simply by applying the low
field required for domain wall motion. Since experiment shows that only a low field is
needed to saturate iron in a (100) direction, we conclude that our postulated domain struc-
ture is basically correct and, more generally, that the direction of easy magnetization of a
crystal is the direction of spontaneous domain magnetization in the demagnetized state.
In nickel, Fig. 7.2b shows that the direction of easy magnetization is of the form (111),
the body diagonal of the unit cell. The direction (111) is also the direction of easy magne-
tization in all the cubic ferrites, except cobalt ferrite or mixed ferrites containing a large
amount of cobalt. The latter have (100) as an easy direction.

Note that, on the scale of a few domains, as in Fig. 7.3b, a partially magnetized crystal is
never uniformly magnetized, in the sense of M being everywhere equal in magnitude and
direction, whether or not the crystal is ellipsoidal in shape. The notion of uniform magne-
tization predates the domain hypothesis. It has validity, for a crystal containing domains,
only when applied either to a volume less than that of one domain, or to a volume so
large that it contains many domains and has a net magnetization M equal to that of the
whole crystal.

Figure 7.2a shows that fairly high fields, of the order of several hundred oersteds or tens
of kiloamps per meter, are needed to saturate iron in a {110) direction. For this orientation of
the field, the domain structure changes as in Fig. 7.4. Domain wall motion, in a low field,
occurs until there are only two domains left (Fig. 7.4c), each with the same potential
energy. The only way in which the magnetization can increase further is by rotation of
the M vector of each domain until it is parallel with the applied field. This process is
called domain rotation. The domain itself, which is a group of atoms, does not rotate. It
is the net magnetic moment of each atom which rotates. Domain rotation occurs only in
fairly high fields, because the field is then acting against the force of crystal anisotropy,
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Fig. 7.4 Domain structures in a single crystal of iron (schematic). The field H is applied in the [110]
direction.

which is usually fairly strong. Crystal anisotropy may therefore be regarded as a force which
tends to hold the magnetization in certain equivalent crystallographic directions in a crystal.
When the rotation process is complete (Fig. 7.4d), the domain wall in Fig. 7.4c disappears,
and the crystal is saturated.

Because the applied field must do work against the anisotropy force to turn the magne-
tization vector away from an easy direction, there must be energy stored in any crystal in
which M; points in a noneasy direction. This is called the crystal anisotropy energy E.
The Russian physicist Akulov showed in 1929 that E can be expressed in terms of a
series expansion of the direction cosines of M relative to the crystal axes. In a cubic
crystal, let Mg make angles a, b, ¢ with the crystal axes, and let «;, a,, as be the cosines
of these angles, which are called direction cosines. Then

E=Ky+ Kl(afag + a%a% + aga%) + Kz(a%agag) + .- (7.1)

where K, K;, K5, . .. are constants for a particular material at a particular temperature and
are expressed in erg/ cm® (cgs) or J / m® (SI). Higher powers are generally not needed, and
sometimes K is so small that the term involving it can be neglected. The first term, Ky, is
independent of angle and is usually ignored, because normally we are interested only in the
change in the energy E when the M; vector rotates from one direction to another. Table 7.1
gives the value of E when the M; vector lies in a particular direction [u v w].

TABLE 7.1 Crystal Anisotropy Energies for Various Directions in a Cubic Crystal

[uvw] a b c o o o5 E
[100] 0 90° 90° 1 0 0 Ky
[110] 45° 45° 90° 1/4/2 1/42 0 Ko+ K, /4

[111] 547°  547° 5470 1/3 13 13 Ko+ KJ3+Ky/27
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TABLE 7.2 Directions of Easy, Medium, and Hard Magnetization in a Cubic Crystal

K + + + — - _
K, +00 to —9K,/4 to —9K; to — 00 to 9|K;|/4 to 9|K;| to
—9K,/4  —9K, S 9Ki|/4 9K +oo
Easy (100) (100) (111) (111) (110) (110)
Medium (110) (111) (100) (110) (111) (100)
Hard (111) (110) (110) (100) (100) (111)

When K, is zero, the direction of easy magnetization is determined by the sign of K. If
K, is positive, then E\gg < E; 19 < Ej1;1, and (100) is the easy direction, because E is a
minimum when M is in that direction. Thus iron and the cubic ferrites containing cobalt
have positive values of K. If K, is negative, E1;; < Ejjo < Ejo0, and (111) is the easy
direction. K is negative for nickel and all the cubic ferrites that contain little or no cobalt.

When K, is not zero, the easy direction depends on the values of both K; and K,. The
way in which the values of these two constants determine the directions of easy, medium,
and hard magnetization is shown in Table 7.2.

An alternative notation for anisotropy constants [see Robert C. O’Handley, Modern
Magnetic Materials, Wiley (2000)] has some advantages, especially when higher-order ani-
sotropy terms are important, but is rarely used in practice.

7.3 ANISOTROPY IN HEXAGONAL CRYSTALS

Magnetization curves of cobalt, which has a hexagonal close-packed structure at room
temperature, are shown in Fig. 7.5. The hexagonal ¢ axis is the direction of easy
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Fig. 7.5 Magnetization curves for a single crystal of cobalt.
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magnetization, and, within the accuracy of the measurements, all directions in the basal
plane are found to be equally hard. Under these circumstances the anisotropy energy E
depends on only a single angle, the angle 6 between the M vector and the ¢ axis, and
the anisotropy can be described as uniaxial. Therefore,

E = K} + K| cos’0 + K} cos* 0 + - - - (7.2)

However, it is customary to write the equation for E in uniaxial crystals in powers of sin6.
Putting cos”# = 1 — sin?6 into Equation 7.2, we have

E = Ky + K; sin®0 + K, sin*0 + - - - (7.3)

When K and K, are both positive, the energy E is minimum for 6 = 0, and the c-axis is an
axis of easy magnetization. A crystal with a single easy axis, along which the magnetization
can point either up or down, is referred to as a uniaxial crystal, as noted above. Its domain
structure in the demagnetized state is particularly simple (Fig. 7.6). Elemental cobalt,
barium ferrite, and many rare earth transitional metal intermetallic compounds behave in
this way.

When K, and K, are both negative, the minimum value of E occurs at § = 90°. This
creates an easy plane of magnetization, which is the basal plane of a hexagonal material,
lying perpendicular to the c-axis.

If K, and K, have opposite signs, the situation can be more complicated, as indicated in
Fig. 7.7. Here K is plotted on the x-axis and K, on the y-axis, so any pair of values K, K, is
represented by a point in the plane of the figure. If K is positive and K is negative, the line
K, = —K, is the boundary between uniaxial and planar anisotropy. When K; = — K,
exactly, there are easy directions at both 0 and 90°.

If K, is negative and K is positive, the limit of easy plane behavior is K, < —%K 1. In the
range K, = —%K 1 to K, = o (with K| negative), the minimum value of E is at an angle
between 0 and 90°, so there is an easy cone of magnetization. The value of 6, which is
the half-angle of the cone, drops sharply from 90° to near 0° as K, increases relative to
|Ki|, as indicated in Fig. 7.7. The value of 6 is given by 6= arcsin(/(|K;|/2K>). The
easy cone configuration is unusual, but not unknown.

@

Easy
axis

MS MS

Fig. 7.6 Domain structure of a uniaxial crystal.
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Fig. 7.7 Easy directions and planes in hexagonal crystals for all possible values of K; and K.

7.4 PHYSICAL ORIGIN OF CRYSTAL ANISOTROPY

Crystal anisotropy is due mainly to spin-orbit coupling. By coupling is meant a kind of
interaction. Thus we can speak of the exchange interaction between two neighboring
spins as a spin—spin coupling. This coupling can be very strong, and acts to keep neighbor-
ing spins parallel or antiparallel to one another. But the associated exchange energy is iso-
tropic; it depends only on the angle between adjacent spins, as stated by Equation 4.29, and
not at all on the direction of the spin axis relative to the crystal lattice. The spin—spin coup-
ling therefore cannot contribute to the crystal anisotropy.

The orbit-lattice coupling is also strong. This follows from the fact that orbital magnetic
moments are almost entirely quenched, as discussed in Section 3.7 This means, in effect,
that the orientations of the orbits are fixed very strongly to the lattice, because even large
fields cannot change them.

There is also a coupling between the spin and the orbital motion of each electron. When
an external field tries to reorient the spin of an electron, the orbit of that electron also tends
to be reoriented. But the orbit is strongly coupled to the lattice and therefore resists the
attempt to rotate the spin axis. The energy required to rotate the spin system of a domain
away from the easy direction, which we call the anisotropy energy, is just the energy
required to overcome the spin—orbit coupling. This coupling is relatively weak, because
fields of a few hundred oersteds or a few tens of kilamps per meter are usually strong
enough to rotate the spins. Inasmuch as the “lattice” consists of a number of atomic
nuclei arranged in space, each with its surrounding cloud of orbital electrons, we can



7.5 ANISOTROPY MEASUREMENT 205

& d}.‘
2,
«©

Weak

Fig. 7.8 Spin-lattice—orbit interactions.

also speak of a spin—lattice coupling and conclude that it too is weak. These several
relationships are summarized in Fig. 7.8.

The strength of the anisotropy in any particular crystal is measured by the magnitude of
the anisotropy constants K, K,, etc. Although there seems to no doubt that crystal aniso-
tropy is due primarily to spin—orbit coupling, the details are not clear, and it is generally
not possible to calculate the values of the anisotropy constants in a particular material
from first principles.

Nor is there any simple relationship between the easy, or hard, direction of magnetization
and the way atoms are arranged in the crystal structure. Thus in iron, which is body-centered
cubic, the direction of greatest atomic density, i.e., the direction in which the atoms are most
closely packed, is (111), and this is the hard axis. But in nickel (face-centered cubic) the
direction of greatest atomic density is (110), which is an axis of medium hard magneti-
zation. And when iron is added to nickel to form a series of face-centered cubic solid sol-
utions, the easy axis changes from (111) to (100) at about 25% iron, although there is no
change in crystal structure.

The magnitude of the crystal anisotropy generally decreases with temperature more
rapidly than the magnetization, and vanishes at the Curie point. Since the anisotropy con-
tributes strongly to the coercive field, the coercive field generally goes to zero together with
the anisotropy. The combination of vanishing anisotropy and coercive field and nonvanish-
ing magnetization leads to a maximum in permeability, especially the low-field or initial
permeability. A maximum in permeability at or near the Curie point was noted by
Hopkinson long before there was any theory to account for it, and is known as the
Hopkinson effect; it can be used as a simple method to determine an approximate value
of the Curie point.

7.5 ANISOTROPY MEASUREMENT
The anisotropy constants of a crystal may be measured by the following methods:

1. Torque curves.

2. Torsion pendulum.

3. Magnetization curves (Section 7.6).
4. Magnetic resonance (Section 12.7).
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The first method is generally the most reliable and will be described, along with the closely
related torsion-pendulum method, in this section. The other methods are left to later sec-
tions, or a later chapter.

7.5.1 Torque Curves

A torque curve is a plot of the torque required to rotate the saturation magnetization away
from an easy direction as a function of the angle of rotation. Consider first a uniaxial crystal,
such as a hexagonal crystal, with an easy axis parallel to the c-axis. It is cut in the form of a
thin disk with the c-axis in the plane of the disk, placed in a saturating magnetic field
(usually provided by an electromagnet) directed in the plane of the disk, as in Fig. 7.9.
The disk is rotated about an axis through its center, and the torque acting on the disk is
measured as a function of the angle of rotation. Details of how the torque can be measured
will be discussed later. If the field is strong enough, the magnetization M, will be parallel to
H and the angle between ¢ and M, which we can call 6, will be the same as the angle
between ¢ and H.

From Equation 7.3 the #-dependent part of the anisotropy energy, if K, is negligible, is
given by

E = K, sin’#. (7.4)

When the energy of a system depends on an angle, the derivative of the energy with respect
to the angle is a torque. Thus dE/d#@ is the torque exerted by the crystal on My, and —dE/d0
is the torque exerted on the crystal by M,. (Clockwise torques are taken as positive, and the
positive direction of 6 is measured from M to c.) Then the torque on the crystal per unit
volume is

dE
L=—-——, 7.5
70 (7.5)
L = —2K;sin 6 cos 8 = —K; sin26. (7.6)

The torque L is in dyne-cm/cm’ if E is in erg/cm’, or in N m/m’ if E is in J/m’.
Figure 7.10 shows how E and L vary with angle. For positive K, the 0 and 180° positions

v
Fig. 7.9 Uniaxial disk sample in a saturating magnetic field produced by an electromagnet. ¢ = easy
axis.
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Fig. 7.10 Variation with 6 of the anisotropy energy E and the torque L (= —dE/d6) for a uniaxial
crystal. 6 is the angle between M, and the easy axis.

are energy minima, and 6 = 90°, which is a direction of difficult magnetization, is a position
of instability. The slope of the torque curve at L = 0 is negative for the positions of stability
(6 =0 and 180°) and positive for the unstable position (6§ = 90°). At a stable position, a
clockwise (positive) rotation of the sample produces a negative (counterclockwise)
torque, and vice versa. At an unstable position, a clockwise rotation of the sample produces
a positive (clockwise) torque. The value of K; can found simply from the maximum ampli-
tude of the torque curve (= +K;), or from the values of the slope at the zero crossings
(= £2K;), or by fitting the entire curve to Equation 7.6 with the value of K; as a fitting
parameter.

The preceding analysis is valid only if the field is strong enough so that the magnetiza-
tion M, is aligned with the field H for all values of 6. This condition is often not met, and we
have instead the situation shown in Fig. 7.11. Here i is the angle from the c direction to the
applied field, which is known from the measurement; 6 is the angle from the ¢ direction to
the magnetization M;, and ¢ (=i — 6) is the angle from the field H to the magnetization
M. Neither 6 nor ¢ is known directly, but the angular position of M, is determined by
the balance between two torques, Lx = — K sin 26 and Ly = M H sin ¢. Here L is the ani-
sotropy torque, acting to rotate the magnetization toward the easy direction, and Ly is the
torque exerted by the field, acting to rotate the magnetization toward the field. Since these
torques are balanced, we have Ksin 20 = M;H sin ¢. We also know that the torque
exerted on the sample by the anisotropy must be balanced by the measured torque Lcas,
so that

Lineas = K1 5in260 = M H sin ¢. (7.7)

So if we measure L, and we know M and H, we can find sin ¢ and therefore ¢ from sin ¢ =
(Limeas/MsH). And knowing ¢, we can correct the measured value of ¢ for each measured



208 MAGNETIC ANISOTROPY

Fig. 7.11 As Fig. 7.9, for the case where M; is not aligned with the field H.

L to a value of 6. Figure 7.12 shows a plot of torque L vs i, for uniaxial anisotropy with
M H = 2K, (dashed line). The corrected curve (solid line) corresponds to M H >> K. The

correction does not affect the maximum torque, but it clearly does affect the slopes at zero
torque, and the general shape of the curve.

Torque (normalized)
=}

-1

Angle

Fig. 7.12 Variation of torque with angle iy between easy axis ¢ and field H for a uniaxial crystal. The
dashed curve is for H = 2K;/M; solid curve for H > 2K, /M.
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Note that the demagnetizing field does not directly influence the torque curve, because
the demagnetizing field is always directed opposite to the magnetization, and therefore
exerts no torque on the magnetization or on the sample. However, the demagnetizing
field is present, and the proper value of H to use in the preceding equations is the true or
corrected field.

Note also that M; sin ¢ (see Equation 7.7) is the component of magnetization perpen-
dicular to the applied field, which may be labeled M. This fact suggests an alternate
method for measuring torque: a measurement of M, in a known (true) field H gives a
value of M| H, which is numerically equal to torque L. Various methods can be used to
measure M |, including a VSM equipped with pickup coils to measure the perpendicular
component of magnetization. The principal disadvantage of this method is that as the
field becomes large, where one would expect the best results, ¢ and therefore M
become small, and correspondingly difficult to measure accurately.

For a cubic crystal, the simplest case is a disk cut parallel to the (001) plane with (100)
easy directions. This disk will have biaxial anisotropy, because it has two easy directions in
its plane. The top of Fig. 7.13 shows the orientation after the [100] axis has been rotated by
an angle 0 away from M and H, which is assumed to be very strong. The direction cosines
of M, are then a; = cos 0, a; = cos(90° — ) = sin 6, and a3 = 0. Putting these values
into Equation 7.1, we find the crystal anisotropy energy

E = Ky + K, sin’0 cos’6, (7.8)

which is independent of K,. This can be written as

K .
E=Ky+ Tlsm220. (7.9)
H
[oio]
% [100]
‘“
L
+0.5 K,
0 1
0 45° 90° 135° 180°
f——>
-05K, L

i t t 4 ¢

[100] [110]  [010] [ito]  ioo]

Fig. 7.13  Variation of torque L with angle 6 in the {001} plane of a cubic crystal for K; > 0.
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The torque on the crystal is then

dE
L= ~ 78 = —K;sin26 cos 26,
X (7.10)
1.
L = ——sin46.
5 sin

This equation is plotted in the lower part of Fig. 7.13. The torque goes through a full cycle
in a 90° rotation of the disk. The peak value of the curve is +K;/2 and the zero-crossing
slopes are +2K;. No information about K, results. The polar diagram of Fig. 7.14 clearly
shows the minima in anisotropy energy in (100) directions and the maxima in (110).

If a disk is cut parallel to {110}, as in Fig. 7.1, it will have three principal crystal direc-
tions in its plane, and both K and K, will contribute to the torque curve. If M is in the (110)
plane of Fig. 7.1 and at an angle 6 to [001], the direction cosines of M are o) = a, =
(sin 6/4/2) and a3 = cos 6. Equation 7.1 then becomes

K K
E=Ky+ <4‘> (sin*0 + sin®26) + (;) (sin*0 cos?6). (7.11)

When this equation is differentiated to find the torque, the result is an equation in powers of
sin 6§ and cos 6. This may be transformed into an equation in the sines of multiple angles:

_dE K K\ . 3Ky K>\ . 3K\ .
L= 70 (4+64>sm20 (8 +16)sm49+<64>sm60. (7.12)

This form of the equation shows immediately the various components of the torque: the
term in sin 26 is the uniaxial component (like Equation 7.6), the term in sin46 is the
biaxial component (like Equation 7.14), etc. Figure 7.15 shows the torque curve obtained
ona {110} disk cut from a crystal of 3.85% silicon iron (iron containing 3.85 wt% silicon in
solid solution). The points are experimental, and the curve is a plot of Equation 7.12 with
values of the constants chosen to give the best fit. There are many published experiments on
single crystals of iron with 3—4 wt% silicon. This is because these alloys are much easier to

(110 [010] [110]
ST
\
/ E
[100] [100]
\ Ko/
\ N
S|~

(110} [oiol (110

Fig. 7.14 Polar plot of crystal anisotropy E as a function of direction in the (001) plane of a cubic
crystal. K is positive and taken as 5Kj.
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Fig. 7.15 Measured torque of a {011} disk of an Fe + 3.85 wt% Si alloy. The fitted curve is drawn
for Ky = 2.87x 10° erg/cm’ and K, = 1x10° erg/cm’. [R. M. Bozorth, Ferromagnetism, reprinted
by IEEE Press (1993).]

prepare in single-crystal form than pure iron, for reasons given in Section 13.4, while they
remain like iron in having (100) easy directions. Similar Fe—Si alloys are widely used in the
magnetic cores of electrical machines.

Distortion of the torque curve occurs when the field is not strong enough to align the
magnetization exactly in the field direction, just as in the case of uniaxial anisotropy dis-
cussed above, and can be corrected in the same way, if the magnetization and field are
known. The value of sin ¢ is found from L., = M H sin ¢, and the value of ¢ is used
to correct the measured value of i to give 6.

If a disk is cut parallel to {111} and M, makes an angle 6 with a (110) direction, the
crystal anisotropy energy may be written

K K
E=Ky+— — )1 - . 1
0+ 2 + (108>( cos 66) (7.13)
The torque is then
dE K>\ .

The calculated torque curve is a simple sine curve, repeating itself every 60°, with an ampli-
tude of +K,/18 and zero-crossing slope +K,/3. In principle, a disk cut parallel to {111}
is a better specimen for the determination of K, than one cut parallel to {110}, because the
torque on a {111} specimen is determined only by K, whereas the torque on a {110} speci-
men is a function of both K; and K,. In practice, however, {111} disks often yield imperfect
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sin 66 curves, because slight misorientation of the specimen gives a relatively large contri-
bution from K;. In general, accurate K, values are not easy to obtain from torque measure-
ments, and the values reported in the literature tend to be inconsistent.

Fourier analysis of experimental torque curves offers a means of sorting out the various
contributions to the observed torque. The torque is expressed as a Fourier series:

L=Ajcos0+Aycos20+---+B;sinf+ Bysin20+ - -- (7.15)

Fourier analysis of the experimental curve then yields the values of the various coefficients
A,, and B,,, which in turn describe the kinds of anisotropy present. For example, suppose a
torque curve is obtained from a disk cut parallel to {100} in a cubic crystal. If conditions are
perfect, Fourier analysis of the experimental curve would show that all Fourier coefficients
are zero except By, because Equation 7.10 shows that the torque varies simply as sin 46. But
suppose that the specimen or torque magnetometer, or both, is slightly misaligned and that
this misalignment introduces a spurious uniaxial component into the torque curve. This will
be reflected in a nonzero value for B,, because Equation 7.6 shows that uniaxial anisotropy
causes a sin 26 variation of torque. The nonzero value of B, in this particular example, dis-
closes the misalignment, while the value of B, yields the quantity desired, namely,
K 1= — 2B4

Slight experimental imperfections do not distort a torque curve so much that its basic
character is unrecognizable. Thus, in the example just described, the experimental curve
would be somewhat distorted but still recognized as basically similar to the curve of
Fig. 7.13, which describes pure biaxial anisotropy. The function of Fourier analysis is
then to separate out the spurious torques and leave only the torque due to the crystal
itself. But specimens are also encountered in which two, or even three, sources of aniso-
tropy are simultaneously present, and with more or less the same strength. Fourier analysis
of the torque curve then becomes not merely a means of refining slightly imperfect exper-
imental data, but a necessary method for disentangling the various components of the ani-
sotropy. Before computers became ubiquitous, Fourier analysis of experimental torque data
was a fairly tedious computational task. It is now quick and easy.

7.5.2 Torque Magnetometers

The instrument for making torque measurements is called a torque magnetometer.
Depending on the material to be measured, the size of the sample, and the temperature,
the maximum torque may vary over many orders of magnitude, so that no single design
is universally useful. Commercial instruments are available, but many torque magnet-
ometers are specially built for particular uses.

Early designs made use of a torsion fiber, or a spiral clock spring, to measure the torque,
as suggested by Fig. 7.16. In this case, the deflections (the twist in the torsion fiber) are
large enough to be read by eye, but there is no simple way to record the data automatically.
A further difficulty is that over substantial portions of the torque curve, centered around the
unstable hard axes, there may be no stable angular position of the sample. The condition for
stability is that the net torque on the sample (the sum of the anisotropy torque and the
torsion fiber torque) is zero and has negative slope. As noted above, negative slope
means that a positive (clockwise) rotation of the sample produces a negative (counterclock-
wise) torque, and vice versa. Therefore the condition for stability is that the stiffness of the
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Fig. 7.16 Basic mechanical torque magnetometer (schematic).

torsion fiber, given by the (negative) slope of the torque vs angle curve, must be greater than
the positive slope of the torque curve in the hardest direction. In making this comparison,
the absolute value of the torque must be used; that is, the torque per unit volume times the
volume of the sample.

Again using the uniaxial case as the simplest example, the absolute value of the slope in
the hard direction is 2K, v, where v is the volume of the sample. The torque acting on the
sample due to the torsion fiber is —kf3, where £ is the torsion constant (dyne-cm or N-m per
radian) and f3 is the twist in the fiber. The slope of this torque (vs angle) is simply —k. The
zero net torque condition gives k8 = K;v, and the negative slope condition gives 2K;v —
k <0, or k > 2K,v. Solving for B gives 3 < % (radian), or less than 30°. Thus the suspen-
sion fiber must be made stiff enough so that the maximum twist angle is less than 30° to
permit stable readings through a full 360° rotation of the sample. This analysis does not take
into account the distortion of the torque curve when the field is not strong enough to align
the magnetization parallel to the field, as discussed above. The distortion increases the
measured slope in the hard direction, and thus increases the required stiffness of the
torsion fiber and decreases the maximum twist in the fiber. Exactly similar reasoning
applies to the torque curves for the various cubic anisotropy cases.

The conclusion is that, in order to insure stable readings, the simple torsion fiber version
of the torque magnetometer must be made so stiff that its maximum deflection is limited to
about +20° in the most favorable case, which limits the precision of the torque readings.
This limitation can be overcome to some extent by using a softer torsion fiber and limiting
the angular motion of the sample to a small range, say +1°, with mechanical stops, and
measuring the torque required to jump the sample position from one limit to the other
over the range of unstable positions. However, this virtually eliminates any possibility of
automatic recording of the torque data.
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For automatic recording of torque curves, two basic possibilities exist.

1. Passive Sensing. The torque magnetometer can be built with a very stiff torsion

structure and equipped with a sensitive way to measure the angle of twist. For
example, resistance strain gages can be used to measure small elastic strains in a
thin-walled torsion tube. Or sensitive position detectors such as linear variable differ-
ential transformers (LVDTs) can be used to detect small displacements of pointers
attached above and below a stiff torsion-sensing fiber. Such a system can have the
advantage that the sample is rigidly supported in the air gap of the electromagnet,
so that no bearing is required to limit the sideways motion of the sample. This
design is best suited to the measurement of relatively large torques—Ilarge anisotropy
or large sample, or both.

2. Active Sensing. The sample can be hung from a very sensitive torsion fiber, and fitted

with a feedback mechanism to supply the balancing torque. Figure 7.17 shows a
common arrangement. The top of the sample rod carries a coil of fine wire, which
is placed in the field of a small permanent magnet. This is exactly the configuration

Torsion fiber

Light source

Ny

" Split photocell

coil

Electromagnet
Sample

&)
() Low-friction

bearing

Fig. 7.17 Automatic recording torque magnetometer.
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of a D’ Arsonval analog meter; if the coil carries a current, it experiences a torque pro-
portional to the current. A sensing circuit, usually based on a light beam, mirror, and
photocell or photodiode as in the figure, provides a feedback signal that drives a
current through the coil to balance the anisotropy torque. If the system response is
fast enough (which is not difficult), the sample can be held at any angle to the
field. The value of the current through the coil is proportional to the torque on the
sample. This design can be made very sensitive for the measurement of small aniso-
tropies in small samples. Generally some low-friction method of keeping the sample
centered in the air gap of the magnet is required; for example, a jewel bearing, an air-
bearing, or a second torsion fiber.

In any torque magnetometer, either the electromagnet may be rotated around the sample,
or the magnetometer and sample may be rotated in a stationary magnet gap. Neither is easy,
but either is possible.

The ideal specimen shape is that of an ellipsoid of revolution (planetary or oblate spher-
oid), which is relatively easy to saturate. However, an ellipsoidal specimen is difficult to
make and also somewhat difficult to mount securely in the sample holder, and most inves-
tigators settle for a disk with a diameter/thickness ratio of 10 or more. Thin film samples
have inherently a very large diameter/thickness ratio, and make very satisfactory samples if
the sensitivity of the instrument is high enough. Simple theory predicts that the measured
value of the anisotropy should remain constant with increasing field once the field is large
enough to saturate the sample in any direction, but in practice, at least with samples other
than thin films, the measured anisotropy increases with increasing measuring field. This is
presumably partly due to lack of saturation in small volumes of the sample where the local
demagnetizing fields are large, and partly due to the real increase in saturation magnetiza-
tion with field as the field overcomes thermal vibration (the paraprocess). Whether the
measured values should be extrapolated to infinite field or back to zero field, and how
the extrapolation should be done, are matters that remain unresolved. They rarely have a
major impact on the measured values of the anisotropy, but they do limit the accuracy of
experimental values.

Torque measurements in a superconducting magnet are difficult, because access to
the sample is normally only possible in a direction parallel to the field. Split-coil supercon-
ducting magnets can be built to provide access perpendicular to the field direction, but they
must be designed to withstand the large attractive force between the two coils, and the
perpendicular access path must penetrate the thermal insulation around the superconduct-
ing windings.

7.5.3 Calibration
The torsion constant of a fiber (dyne-cm or N-m per radian) is given by
L w Gr

k=5~

(7.16)

where r is the fiber radius, / is the length, and G is the shear modulus, all in consistent
units. However, this equation does not give values accurate enough for most measurements,
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mainly because uncertainty in the value of the radius r of a small fiber is magnified in the
r* term.

The value of the torsion constant can be determined quite accurately by using it as a
torsion pendulum. The wire is suspended from a fixed support and its lower end is attached
to the center of a heavy disk of radius R and mass M. By rotating the disk through a small
angle and then releasing it, the system will go into torsional oscillation. The period of oscil-
lation T (sec) is measured by counting complete cycles of oscillation in a measured time
interval, and the torsion constant is obtained from

T =2m+\/1/k, (7.17)

where I is the moment of inertia, equal to MR?/2 for a disk. Therefore

B 272 MR?

k o

(7.18)

which requires no knowledge of the fiber dimensions or material. If k is large (a stiff sus-
pension), the period of oscillation 7 may be small, and some kind of electronic recording
system will be needed.

Torque magnetometers that do not rely on the properties of a torsion fiber must be cali-
brated directly. In principle, any torque measuring system can be calibrated with a string
wrapped around the shaft and a set of appropriate weights and pulleys. In practice, this
does not work well for a sensitive instrument, and a sample of known anisotropy is
needed instead. The usual choice is to rely on the shape anisotropy of a thin straight wire
of a material of known saturation magnetization, commonly nickel. The anisotropy
energy (per unit volume) is uniaxial, and is given by

1
Equpe = 5AN M? sin’, (7.19)

where AN is the difference in demagnetizing factor parallel and perpendicular to the wire
axis. For a long thin wire, N is 27 (cgs) or % (SI) when the magnetization is perpendicular
to the wire axis, and effectively zero when the magnetization is parallel to the axis. The
sample behaves as described previously for a uniaxial material, and the torque (per unit
volume of wire) is

dE 5 . M?
L= ~ 10 = —aM; sin 26 (cgs) or L= —Tsm 20 (SD). (7.20)

The field must be high enough to saturate the wire in the perpendicular direction [H >
27M; (cgs) or >1/2M; (SD)]. The sample volume can be obtained by direct measurement,
or (preferably) from the sample mass and density.
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For smaller fields, and for small rotations of the wire away from the easy direction,
F. E. Luborsky and C. R. Morelock [J. Appl. Phys., 35 (1964) p. 2055] give

TM*H M?H
=1 5y L=—— 57 9p(sI 721
H o+ 2miy 20ce o @l + 2y 206D (7.2

where 6 is in radians and L is the torque per unit volume of wire.

An alternative standard torque sample might be a disk of a highly anisotropic, high-
coercive field permanent magnet, such as one of the rare-earth transition metal compounds
discussed in Chapter 14. These materials can have magnetic moments that are almost
unchanged in fields over the range +20kOe (2T) or more. The energy of such a
sample, of magnetic moment m in a field H as function of the angle between m and H, is

E = —mH cos 6, (7.22)
and the torque is given by

dE .
L= 70 mH sin 6. (7.23)
Here m is the absolute magnetic moment of the sample, in emu (cgs) or A/m (SI), which
must be determined experimentally in a separate measurement.

It is important that the component parts of a torque magnetometer be properly aligned.
Each of three axes should coincide with the center of the magnet air gap: the axis of the
specimen, the axis of rotation of the torsion head (upper dial of Fig. 7.16), and the axis
of the instrument (the line from the upper support of the torsion wire through the center
of gravity of all the suspended parts). Improper alignment will introduce spurious
torques which distort the experimental curve. The alignment can be checked by determining
the torque curve of a specimen having a known, and simple, anisotropy, such as uniaxial,
and comparing this curve with that theoretically expected.

7.5.4 Torsion-Pendulum Method

In this case, the specimen is a disk, suspended by a torsion wire in the air gap of an elec-
tromagnet, just as in a torque magnetometer. Suppose the crystal is uniaxial, with the easy
axis c in the plane of the disk. The initial, minimum-energy position of the specimen is one
with ¢ parallel to the field H and no twist in the torsion wire. The specimen is then rotated
away from H by a small angle, released, and allowed to oscillate back and forth about the
field direction at the natural frequency of the suspended system. This frequency is
measured, by counting the number of oscillations in a known time interval. When the speci-
men is in the deflected position, two restoring torques act on it: (1) the torque in the wire,
and (2) the crystal anisotropy torque which tries to rotate ¢ back into parallelism with M,
and H. The period T of the oscillatory motion is still given by an equation of the general
form of Equation 7.21, but modified to include the anisotropy torque:

(7.24)
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where fis oscillation frequency, / is the moment of inertia of the suspended system, &, is the
torsion constant of the wire, and k; is the torsional stiffness of the specimen. The quantity &
is the rate of change of torque with angle and is therefore given by dL/d#6. But |L| = dE/d6,
so that k, = d°E / d#?, where E is the anisotropy energy. From the measured frequency, k
may be calculated, because / and k,, are known, and the anisotropy constant may then be
determined from k.

Anisotropy can be measured by the torsion-pendulum method in a few seconds, but only
the slope of the torque curve at the equilibrium angle is measured, not the full torque curve.
The method is rarely used.

7.6 ANISOTROPY MEASUREMENT (FROM MAGNETIZATION CURVES)

Anisotropy constants may determined from the magnetization curves of single crystals in
two ways:

1. By fitting a calculated magnetization curve to the observed one.

2. By measuring, on a graph of M vs H, the area included between the magnetization
curves for two different crystal directions.

7.6.1 Fitted Magnetization Curve

This is not a very common method. However, it is instructive to see how magnetization
curves are calculated, because the calculation tells us something about the magnetization
process. In such calculations we ignore everything but the crystal anisotropy forces;
that is, we assume that domain walls will move in negligibly small fields, but that M,
can be rotated out of the easy direction only by fields strong enough to overcome the ani-
sotropy forces.

The simplest case is that of a crystal magnetized in one of its easy directions, e.g. an iron
crystal magnetized in one of the (100) directions, as illustrated in Fig. 7.3, or a uniaxial
crystal (Fig. 7.6), magnetized parallel to its easy axis. Here the whole process, from the
demagnetized state to saturation, occurs by wall motion only, at an (assumed) negligibly
small field. The magnetization curve, shown in Fig. 7.18, is simply a vertical line, and
the hysteresis loop encloses zero area.

M/M,

-H 0 +H

— ]

Fig. 7.18 Idealized hysteresis loop of a crystal measured parallel to an easy axis.
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When a field is applied to an iron crystal in the [110] direction, wall motion occurs until
there are only two kinds of domains left, namely those with M; vectors in the [010] and
[100] directions, the two easy directions closest to the field (Fig. 7.4). The magnetization
of the sample is then M = M; cos 45° = M,/ V2 =0.707 M,. Further increase in field
rotates the M, vectors away from the easy directions by an angle 6 in the (001) plane
(Fig. 7.19a). The direction cosines of M relative to the crystal axes are then «; = cos 6,
a = cos (90° — J), and a3z = 0, for the [100] domains. (These comprise half the volume
of the crystal. It is enough to base the following calculation on them alone, because the
behavior of the [010] domains is exactly similar.) The anisotropy energy is then, from
Equation 7.13,

K
E,=Ky+ Zl sin’ 2.
The magnetic potential energy is, from Equation 1.5,

E, = —MH cos (45° — §).

The larger the angle 6, the larger is the anisotropy energy and the smaller the potential
energy. The angle 6 will therefore be such as to minimize the total energy E..

K
E =Ko+ leinz 28 — MH cos(45° — §).

To minimize E, we put

E,
% = [K, sin28cos 28] — [M.H sin(45° — 8)] = 0. (7.25)

This problem may be thought of in terms of torques, rather than energies. The first term in
Equation 7.25 is the torque exerted on M by the crystal, the second term is the torque

exerted on M by the field, and the equation states that these torques are equal and opposite.
The component of M; in the field direction is the measured magnetization:

M = M, cos(45° — §). (7.26)
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Fig. 7.19 Magnetization of an iron crystal in a [011] direction.
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Eliminating & from Equations 7.21 and 7.22, we find

MY 1

which gives the field required to reach any given level of magnetization. This field is
directly proportional to K; and independent of K,. The field required to make M = M,
which is to saturate the magnetization in the [110] direction, is

4Ky M
H =
M, M;

2K
H="" (7.28)
M;

Figure 7.18b shows the magnetization curve for iron at room temperature, calculated for
M= 1714 emu/cm’ and K, = 4.5x 10° erg/cm’ (1.714x 10° A/m and 4.5x 10* J/m?).

The magnetization curve in the [111] direction of a crystal having (100) easy directions
is calculated in similar fashion. Wall motion in low fields will eliminate all but three kinds
of domains—[100], [010], and [001]—and M, in each will be equally inclined, at 54.7°, to
the [111] field direction. The magnetization will then be M = M, cos 54.7° = M/ V3=
0.577M,. Further increase in field will rotate the M, vectors in {110} planes, as shown
for one of these in Fig. 7.20. The equation for the magnetization curve is complex:

v, =51 V2208 @ — 1)+ m(m? — 3)

K
-3¢ [V2=amiaomt — om? 4 1) - m@3m? — 16m* + 1], (7.29

where m = M /M. The field required to saturate in the [111] direction is

_4GK; +K3)

H
9IM

(7.30)

For a crystal like iron, this is less than the field required for saturation in the [110] direction,
in agreement with the experimental results shown in Fig. 7.2a.

H
(111l

[o01]

8] 54.7°

[100]
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Fig. 7.20 Magnetization of an iron crystal in a [111] direction.
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It is also of interest to calculate the magnetization of a uniaxial crystal like cobalt, when
the field is applied in a direction at right angles to the easy axis. When the field is strong
enough to rotate M away from the easy axis by an angle 6, the anisotropy energy is,
from Equation 7.3,

E, = Ko + K sin®0 + K, sin"6.
The magnetic potential energy is
E, = —MH cos(90° — 0).
The condition for minimum total energy is

2K sin 0 cos 6 + 4K, sin’0 cos @ — M,H cos 6 = 0.
Also,
M = M, cos(90° — 6).

Elimination of 6 from these two equations gives

2K, (M\ 4K, (MY
H=""L () 4225, (7.31)
M, \M;) " M, \ M

with saturation (M/M, = 1) attained in a field of

2K + 4K;
g Kirak

i (7.32)

If K; is zero, the magnetization curve becomes a straight line,

_2K\M

H )
M;

(7.33)

and the saturating field becomes
H="- (7.34)

Figure 7.21 shows the room-temperature magnetization curve for cobalt, calculated for
M, = 1422 emu/m3, K, =45x%x10° erg/cm3, and K, = 1.5%x 10° erg/cm3 (cgs), or My =
1.422 x10° A/m, K; = 450x10° J/m’, and K, = 150x 10* J/m> (SI). Fields in excess
of 10,000 Oe or 0.8 MA/m are needed for saturation. The dashed line shows the mag-
netization behavior if K, is zero.

For iron, nickel, and cobalt crystals the general features of the experimental magnetiza-
tion curves are well reproduced by the calculated ones. Figure 7.22 shows this kind of a
comparison for crystals of 3.85% silicon iron. The fact that nonzero fields are required
for saturation in the easy direction, evident in Figs 7.2, 7.5, and 7.22, shows that domain
walls encounter obstacles to their easy motion. This topic will be pursued in Chapter 9.

Up to this point we have examined the magnetization curve of a single crystal only when
the field is applied parallel to an axis of symmetry in the crystal. If the field is in some arbi-
trary direction, the magnetization process becomes more complicated. The demagnetizing
field Hy must then be considered and a distinction made between the applied field H, and
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Fig. 7.21 Calculated magnetization curves for cobalt single crystal with field perpendicular to the
easy axis.

the true field H, equal to the vector sum of H, and Hj, inside the specimen. H and M are no
longer always parallel, and neither is necessarily parallel to H,. For the case of an iron
crystal, see H. Lawton and K. H. Stewart [Proc. R. Soc., 193 (1948) p. 72], and for a
cobalt crystal see Y. Barnier, R. Pauthenet, and G. Rimet [Cobalt, 15 (1962) p. 1] or
[J. Phys. Soc. Japan, 17 (suppl. B1) (1962) p. 309].

7.6.2 Area Method

This method of determining anisotropy constants from magnetization curves is based
directly on the definition of the anisotropy energy E, namely, the energy stored in a
crystal when it is magnetized to saturation in a noneasy direction. If we can determine
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Fig. 7.22 Calculated and measured magnetization curves for Fe—Si crystals. [R. M. Bozorth,
Ferromagnetism, reprinted by IEEE Press (1993).]
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W, the work done on the crystal to bring it to saturation, we can equate E and W and so
determine the anisotropy constants.

One way of finding an expression for W is to calculate the electrical work done in mag-
netizing a rod specimen by means of a current in a solenoidal coil wound on the rod.
Assume that the rod is so long that the demagnetizing field can be neglected. Let the rod
be of length / and cross-sectional area A, wound with n turns. When the current increases
by an amount di, the induction increases by dB and the flux by d¢p = AdB. This change in
flux causes a back emf e in the coil, and work must be done to overcome this emf. We
ignore the work done in producing heat in the coil, equal to >R, where R is the resistance,
because this work does not contribute to the magnetization of the rod. The total work done
in time dt is

VdW = eidt joule, (7.35)

where V is the volume of the rod and W the work per unit volume. From Equation 2.6 we
have (using cgs units)

d dB
e= 10—8nd—(f =108 nAE volt. (7.36)

The field produced by the current is, from Equation 1.12,

47 ni
H = — . .
07 Oe (7.37)

Combining the last three equations and noting that V = Al, we obtain

1077 joul H
dW=——Hap I o aw =4 L. (7.38)
41 cm? 477 cm?
Then the work done per unit volume in changing the induction from 0 to B is
1 B
W:—J HdB ==, (7.39)
4 )o cm

where H is in oersteds and B in gauss. Because B = H + 4mM, at the same field dB =
47dM, and

M
W= J HdM C%, (7.40)
0

where M is in emu/ cm®. The work done in magnetization is simply the area between the M,
H curve and the M-axis, shown shaded in Fig. 7.23a.
The SI equivalent of Equation 7.39 is

B J
W:J HdB—3
0 m
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Fig. 7.23 Work done in magnetization.

and of Equation 7.40 is

M J
W= HdM — 7.41
J() Mo m3 ( )

Hysteresis has no direct connection with the measurement of anisotropy from magnetization
curves. In fact, complete reversibility (no hysteresis) is usually assumed in such measure-
ments. But if hysteresis is present, then removal of the magnetizing field will return energy
equal to the area shaded in Fig. 7.23b to the magnetizing circuit. The energy stored in the
material at its remanence point M, is the area shaded in Fig. 7.23c.

When a specimen is driven through one complete cycle, the total work done on the
specimen is the hysteresis loss Wy, which is equal to 1/4 times the area enclosed by
the B, H loop (erg/ cm®, cgs), or unity times this area (J /m3, SI) as shown in Fig. 7.23d.
This work appears as heat in the specimen.

For a substance of constant permeability w, such as a dia-, para-, or antiferromagnetic,
B = uH, dB = ndH, and Equation 7.41 becomes

H? H? H?
W= (cgs) or w=RT _HHT(qp (7.42)
8 2 2
If the substance is air, then w or u, ~ 1, and
H? H?
W=""(cgs) or W=5"" (g (7.43)
87 2

This is the energy per unit volume stored in a magnetic field in air (or vacuum).
The magnetization of a specimen can increase either by domain rotation or domain wall
motion, or both. Consider a small volume of the specimen with a magnetic moment m
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oriented at an angle 6 to the magnetizing field H. This moment has a component m cos 6
parallel to the field. Summing over unit volume of the specimen, we have

> mcos6=M. (7.44)

When the field increases from H to H + dH, the moment of the small volume considered
will rotate from orientation 6 to 6 — d6. The work done by the field is (couple)(angle) =
(mH sin 0)(—d6) (see Section 1.3). Summed over unit volume, the work done is

dw = —Z mH sin 6d6. (7.45)
From Equation 7.43,

dM = d(y " meos §) = =3 msin 0e. (7.46)
Combination of Equations 7.45 and 7.46 gives
dW =HdM.

If Wis the area between a particular M, H curve and the M-axis, then W equals the aniso-
tropy energy E stored in a crystal magnetized in that particular direction. We have already
worked out these energies for cubic crystals, and they appear in Table 7.1. Therefore,

Wioo = E100 = Ko,
K

Wiio :Euo:KoJrZ, (7.47)

Wi = Eyy = Ko + o022
111 — £111 — K0 3 27"

These equations may be solved for the anisotropy constants:

Ko = Wioo,
K = 4(Wi10 — Wioo), (7.48)
Ky = 27T(W111 — Wigo) — 36(Wi10 — Wio)-

Here an expression like (W;o— W) is to be understood as the area included between the
M, H curves for the [110] and [100] directions. As mentioned earlier, experimental M, H
curves in the easy direction usually show a nonzero area between the curve and the
M-axis, indicating that the field has had to overcome hindrances to domain wall motion.
These hindrances are assumed to be the same for any direction of the applied field relative
to the crystal axes. Therefore, equations like 7.48, which are based on the area between
certain curves, yield anisotropy constants which should be largely free of the effects of
domain wall motion.

It is rare to find more than one experimental method used in a single investigation, and
the literature therefore contains almost no comparisons of alternative techniques. Williams,
however, measured the anisotropy constants of his silicon iron crystals by three methods,
with the results shown in Table 7.3 [H. J. Williams, Phys. Rev., 52 (1937) p. 747].
Differences between the three results reflect not only experimental error, but also differ-
ences in what is actually being measured. The torque measurement is the most fundamental,
because a high-field torque measurement involves only the rotation of M relative to the
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TABLE 7.3 Anisotropy Constants of Fe + 3.85 wt% Si

Method K, (10° erg/cm3) K, (10° erg/cm3)
Torque curves 2.87 1.0
Fitting magnetization curves 2.80 1.0
Areas between magnetization curves 2.72 1.5

axes of a single-domain crystal; no wall motion is included. The other two methods include
(or ignore) the effects of domain wall motion at low fields, which are not directly related to
the anisotropy.

7.6.3 Anisotropy Field

The crystal anisotropy forces which hold the spontaneous magnetization M, of any domain
in an easy direction can also be expressed in an indirect but often useful way that does not
explicitly involve anisotropy constants. For small rotations of the magnetization away from
an easy direction, the crystal anisotropy acts like a magnetic field trying to hold the mag-
netization parallel to the axis. This field is called the anisotropy field and is given the
symbol Hg. The anisotropy field is parallel to the easy direction and of a magnitude
such that for small angular deviations 6 it exerts the same torque on M as the crystal ani-
sotropy itself. The torque due to the anisotropy field is HxM; sin 6, or HgM0 for small
values of 6. The torque due to crystal anisotropy depends on the crystal structure, the ani-
sotropy constants, the easy axis direction, and in some cases the crystallographic plane in
which M, rotates away from the easy axis. For example, in a cubic crystal with (100)
easy directions, the torque exerted on M by the crystal when M, rotates away from
(100) is, from Equation 7.14, +K;/2 sin 46, or 2K, 6 for small 6.
Equating these torques, we have

HxM 6 = 2K, 0
2K, 2K,
Hyx = Hx = SI). 7.49
K= (cgs) K LM, (SD (7.49)
If (111) is the easy direction, similar reasoning shows that

—4(3K, + K») —4(3K; + K>)
== Hi =—FF—— (SI 7.50
K oM. (cgs) K oM, (SD (7.50)

The last two equations are valid whatever the plane of rotation of M away from the easy
direction. For a uniaxial crystal we find, through Equation 7.4, that

2K,

LS
Cgs =
M, B K= oM,

Hg = (SD). (7.51)

From Equation 7.34 this is also the value of the field that is required to reach magnetic satu-
ration in the hard direction when K is zero. Thus for a uniaxial crystal the anisotropy field
has the added physical significance of being the magnitude of the field, applied at 90° to the
easy axis, which can completely overcome the anisotropy forces by rotating M, through 90°.
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7.7 ANISOTROPY CONSTANTS

Table 7.4 shows the values of the room temperature anisotropy constants of several mag-
netic materials. It is usually found that lower symmetry leads to larger anisotropy, so
materials with hexagonal crystal structure have larger anisotropy constants than cubic
materials. The extremely large anisotropy of YCos is typical of that of other RCos
phases, where R is Y (yttrium) or a rare-earth element.

The values of these constants are usually known only to two significant figures (some-
times only one) and the accuracy of K; is less than that of K;. Furthermore, the results of
different investigators are sometimes in poor agreement. The lack of reproducibility may
result from differences between samples, different experimental techniques, and different
maximum applied fields.

Anisotropy constants almost always decrease as the temperature increases and become
essentially zero before the Curie temperature is reached. There is then no preferred crystal-
lographic direction for the magnetization of a domain. Figure 7.24 shows the behavior of
iron and nickel and Fig. 7.25 that of cobalt. (The data for iron, which are quite old, are
in poor agreement with the room-temperature values given in Table 7.4.) The thermal vari-
ation of K, and K, for cobalt is such that the easy axis is (a) parallel to the ¢ axis up to
245°C, (b) inclined to the ¢ axis, but having any azimuthal position about it, at an angle
0 which increases from 0 to 90° as the temperature increases from 245 to 325°C, and (c)
in any direction in the basal plane above 325°C. Note that cobalt undergoes a sluggish
phase transformation from hexagonal close-packed to face centered cubic at about
410°C, with no change in saturation magnetization.

One model for the temperature dependence of anisotropy is based on the idea that, as the
temperature increases, the local magnetization direction spreads over a range of angles
about the mean direction. This raises the energy of the easy direction and lowers the
energy of the hard direction, and leads to the prediction that anisotropy will decrease as
a power of the reduced magnetization M/M,, where M, is the saturation magnetization at
OK. Specifically, the prediction is that

n(n+1)
K" M, 2
— oc [ — (7.52)
Ky \Myo
TABLE 7.4 Anisotropy Constants
Structure Substance K, (10° erg / em®) K> (10° erg / em®)
Cubic Fe 4.8 +0.5
Ni —-0.5 —-0.2
FeO - F6:203 —1.1
MnO - F6203 —-0.3
NiO - Fe,05 —0.62
MgO . F6203 —0.25
CoO - F6203 20
Hexagonal Co 45 15
BaO- 6FeZO3 33
YCos 550

MnBi 89 27
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Fig. 7.25 Temperature dependence of anisotropy constants of cobalt [Y. Barnier, R. Pauthenet, and
G. Rimet, Cobalt, 15 (1962) p. 1].

where n is the power of the anisotropy function. So for uniaxial anisotropy (n = 2),

3
Ky oc(MS) (7.53)
Ku,O MS,O
and for cubic anisotropy (n = 4)
K M, \©
L <_) (7.54)
Ko \M;p

This model fits the data quite well for iron, but fails badly for some other materials.
The anisotropy constants of alloys vary markedly with composition. These values will
be given later when particular alloy systems are discussed.

7.8 POLYCRYSTALLINE MATERIALS

If the constituent crystals (grains) of a polycrystalline body are oriented randomly in space
(which is not often the case), then the anisotropy of the individual grains will average out,
and the body on the whole will exhibit no crystal anisotropy. If, on the other hand, the crys-
tals have a preferred orientation, also called a crystallographic texture, then the polycrystal-
line aggregate itself will have an anisotropy dictated by the weighted average of the
individual crystals.

The kind of texture possessed by a body depends on its shape and how it was formed.
Thus a round wire, rod, or bar generally has a fiber texture: each grain has a certain
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crystallographic direction (uvw) parallel, or nearly parallel, to a single direction called the
fiber axis, which, in the case of a wire, coincides with the wire axis. However, the grains can
have any rotational position about this axis. Iron wire, for example, has a (110) fiber texture.
Double textures are also possible. Wires of some face-centered-cubic metals have a (111) +
(100) texture; some grains have (111) directions parallel to the wire axis, others have (100).
Electrodeposited or evaporated layers, deposited on a flat surface, may also have a fiber
texture, but here the fiber axis is normal to the surface of deposition.

Sheet made by rolling has a texture in which, in each grain, a certain plane {/k{} tends to
be parallel to the sheet surface and a certain direction {uvw) in that plane tends to be parallel
to the direction in which the sheet was rolled. Such sheet textures are described by the
symbolism: {rolling plane} (rolling direction). Thus the “cube texture,” found in some
metals and alloys, is {100} (001); a cube plane {100} is parallel to the sheet surface,
and a cube-edge direction (001) is parallel to the rolling direction.

Textures in metals are also distinguished by whether they are formed during deformation
(deformation textures) or during a recrystallization heat treatment (recrystallization
textures).

Crystal anisotropy is often exploited in the manufacture of magnetic materials by indu-
cing a texture such that the easy directions of magnetization in all grains are at least approxi-
mately parallel. The polycrystalline body as a whole then has an easy direction. Some
control of the degree and, to a lesser extent, of the kind of preferred orientation is possible
in metals and alloys formed by the usual processes of casting and working by rolling or wire
drawing. But in general it is not possible to produce a particular desired texture at will. Thus
both the deformation and recrystallization textures of iron wire are (110), and it stubbornly
resists any attempts to rotate the (100) easy directions into parallelism with the wire axis.
Efforts to make marked changes of any kind in the (110) texture, including recrystallization
in a magnetic field, have so far been unsuccessful.

On the other hand, control of easy-axis orientation is relatively easy when the manufac-
turing operation is one of pressing and sintering a powder, either metallic or nonmetallic, if
the individual particles are single crystals. It is simply a matter of applying a strong mag-
netic field in the required direction during the pressing operation. When the powder par-
ticles are still a loose assemblage, the field lines them up with their easy axes parallel to
one another and to the field; the compacting die then locks in this preferred orientation
as the powder is compressed. Note that alignment will not occur if the individual particles
are themselves random polycrystals.

The aligning effect of a magnetic field can also be used in a method for determining the
easy axis of a material, when a single-crystal specimen is not available. A powder is pre-
pared by grinding or filing, annealed to remove the effects of deformation, and mixed with
a solution of a binder so that it forms a powder suspension. A few drops are then placed on
a glass slide, or other flat plate, and allowed to dry in the presence of a magnetic field
applied normal to the slide surface. The dried powder specimen on the slide then has a
marked preferred orientation, with easy axes (uvw) normal to the slide surface. It is sub-
sequently examined in an X-ray diffractometer in the usual way, i.e., with the incident and
diffracted beams making equal angles with the slide surface. Under these circumstances,
only those grains which have their {4kl} planes parallel to the slide surface can contribute
to a particular Akl reflection. For the field-oriented specimen, certain X-ray reflections will
be abnormally strong, namely, those from planes at right angles to the (uvw) easy axis. The
direction (uvw) can then be determined from a knowledge of the crystal structure of the
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specimen. For example, a field-oriented powder specimen of hexagonal barium ferrite
(BaO - 6Fe,03) produces abnormally strong basal-plane {0002} reflections. This means
that the c-axis (0002) is the easy direction.

If a polycrystalline specimen in the form of a sheet, for example, has preferred orien-
tation, then a disk cut from the sheet will normally show magnetic anisotropy when exam-
ined in a torque magnetometer. If it is a cubic material, with (100) easy axes, and has the
cube texture, then its torque curve will resemble Fig. 7.13 with a smaller amplitude.
Textures are never perfectly sharp, since a perfect texture would be a single crystal.
Scatter of the crystal orientations about the ideal orientation {100} (001) introduces a
degree of randomness and therefore decreases the amplitude of the torque-curve peaks.

While it is thus possible to predict the torque curve of a polycrystalline disk from a
knowledge of its texture, the texture cannot be unambiguously deduced from the torque
curve. For example, consider again a cubic material with (100) easy axes. If one sheet
has the cube texture {100} (001), called texture A for short, and another sheet has
texture B, {100} (011), the corresponding torque curves would resemble Fig. 7.26a and
b. If a third sheet had a double texture, composed of 75% A and 25% B, its torque curve
would look like Fig. 7.26¢, the weighted sum of the (a) and (b) curves. But curve (c)
would also be produced by a mixture of 50% A and 50% random orientations.
Furthermore, an equal mixture of textures A and B would produce curve (d), which exhibits
no anisotropy, even though the specimen has preferred orientation. (See also Section 7.11.)

The only sure way of determining the kind and degree of preferred orientation is by
X-ray diffraction or some other direct crystallographic technique. On the other hand,
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Fig. 7.26 Effect of mixed textures on torque curves.
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even though torque curves are ambiguous, in that more than one kind of texture corresponds
to a given curve, torque curves may nevertheless be very useful in any work aimed at the
development of magnetically useful textures. A torque curve requires much less time than
an X-ray texture determination, and it does indicate the magnetically easy direction in the
sheet. When torque and X-ray measurements are carried out together, the effect of proces-
sing variables on texture, and thus on magnetic properties, can be evaluated more quickly
than with either technique alone.

7.9 ANISOTROPY IN ANTIFERROMAGNETICS

We digress now from the main subject of strongly magnetic substances to consider unusual
effects which occur in some antiferromagnetics. These effects are due to their crystal ani-
sotropy, which is about as strong as in ferro- or ferrimagnetics. In Section 5.2 we noted that
the spins of the two sublattices are parallel, in zero applied field, to an important crystallo-
graphic axis, labeled D in Fig. 5.2. When a field was applied at right angles to the D-axis,
we saw that the sublattice magnetizations rotated away from D, as shown in Fig. 5.5a, until
the reverse molecular field equaled the applied field. Actually, there is another force tending
to resist the rotation of the spins, and that is the crystal anisotropy which tends to bind the
spin directions to the D-axis. Inclusion of an anisotropy term does not alter the main con-
clusions reached in Section 5.2, but anisotropy forces are responsible for the following
effects:

1. Field-dependent Susceptibility of Powders. When the specimen is a powder com-
posed of randomly oriented crystals, the angle between the applied field and the
D-axis takes on all values between 0 and 90°. Under these circumstances the suscep-
tibility increases as the field strength increases, as shown for MnO powder in Fig. 5.8.

2. Spin Flopping. When a substance of mass susceptibility x;, and density p is magne-
tized by a field H, its magnetization M is ypH and its potential energy in the field is
(— xpH?), from Equation 1.5. In an antiferromagnetic below the Néel temperature,
X is greater than |, which means that the state with spins at right angles to H is
of lower energy than that in which spins are parallel and antiparallel to H. Thus
when H is parallel to the spin directions and the D-axis, as in Fig. 7.27a, there is a
tendency for the spin directions to rotate into orientation (b). Counteracting this is
the binding of the spin directions to the D-axis by the crystal anisotropy forces. As
the field increases, a critical value will be reached when these forces are overcome;

(a) (b) (©
Fig. 7.27 Spin flopping and metamagnetism.
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the spins then “flop over” from orientation (a) to (b), causing a sudden increase in
magnetization; further increase in field then rotates the spins slightly from the perpen-
dicular orientation, and M increases with H at a rate governed by the value of x, .
Figure 7.28a shows an example of this behavior in single crystals of MnF, at
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Fig. 7.28 (a) Spin flop in MnF, at 4.2K [L.S. Jacobs, J. Appl. Phys., 32 (1961) p. 1067]. (b)
Metamagnetism in FeCl, at 13.9K [C. Starr, F. Bitter, and A. R. Kaufmann, Phys. Rev., 58 (1940)
p- 9771.
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4.2K. The angles marked on the curves are those between H and the spin direction,
which is the c-axis in these crystals. (See Fig. 5.12 for the spin structure of MnF5.)

3. Metamagnetism. If the anisotropy forces are very strong and the field is applied
parallel to D, the magnetization will first increase with H according to the value of
X|- Then, at a high, critical value of H, the spins antiparallel to the field will flip
over into parallelism, and the substance will saturate. Thus an abrupt transition is
made from Fig. 7.27a to c; because of the very strong binding of the spin directions
to the D-axis, the intermediate state (b) is not stable. This behavior is known as
metamagnetism, and Fig. 7.28b shows an example. The specimen of FeCl, was in
the form of a powder with a very high degree of preferred orientation, and the
field direction was such that it was almost parallel to the D axis in every powder par-
ticle. Note that metamagnetic behavior represents a change in magnetic state from
antiferromagnetic to ferromagnetic, because the final state of parallel spins is, by defi-
nition, ferromagnetic. This transition is brought about solely by an increase in field at
constant temperature, and it thus differs from the antiferromagnetic-to-ferromagnetic
transition which occurs spontaneously in some rare earths on cooling through a
critical temperature.

7.10 SHAPE ANISOTROPY

Consider a polycrystalline specimen having no preferred orientation of its grains, and there-
fore no net crystal anisotropy. If it is spherical in shape, the same applied field will magne-
tize it to the same extent in any direction. But if it is nonspherical, it will be easier to
magnetize it along a long axis than along a short axis. The reason for this is contained
in Section 2.6, where we saw that the demagnetizing field along a short axis is stronger
than along a long axis. The applied field along a short axis then has to be stronger to
produce the same true field inside the specimen. Thus shape alone can be a source of
magnetic anisotropy.

In order to treat shape anisotropy quantitatively, we need an expression for the magneto-
static energy E, of a permanently magnetized body in zero applied field. If a body is mag-
netized by an applied field to some level A (Fig. 7.29) and the applied field is then removed,
the magnetization will decrease to C under the action of the demagnetizing field Hy. Here O
C is the demagnetizing-field line, with a slope of —1/Ny, where Ny is the demagnetizing
coefficient. The specimen then contains stored energy E. equal to the area of the
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Fig. 7.29 Magnetostatic energy of a magnetized body in zero applied field.
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shaded triangle OCD, according to Equation 7.40. This energy is that associated with the
demagnetizing field of the specimen, and is variously called the magnetostatic energy,
the self-energy, or the energy of a magnet in its own field. From Equation 7.43, this
energy is

1
Epe = 8—JH§ dv erg (ces) or Ems = % JH§ dv joule (SD), (7.55)
a

where dv is an element of volume and the integration extends over all space. The distribution
of H, in space is seldom known accurately and, even when it is, the evaluation of this integral
would be difficult. It is easier to compute the area of the triangle OCD in Fig. 7.28:

1
Eyn = EHdM’ (7.56)

where M is the level of magnetization at point C. This energy can be written in vector form as

1
Ems = —5Ha- M, (7.57)

because Hy is antiparallel to M.
On the other hand, the potential energy per unit volume of a magnet in an applied field
H, is, from Equation 1.6,

E,=—H,-M. (7.58)

The expressions for the energy of a magnet in its own field and in an applied field are there-
fore similar in form, except for the factor % Equation 7.58 can be written in terms of Ny, by
the substitution Hy = NgM:

1 1
Ems = ENszerg/cm3(cgs) or E, = Mo NyM? joule/m3 (SI). (7.59)

The reasoning leading to Equation 7.59 is more physically meaningful when one realizes
that the point representing the state of the specimen, or part of it, in Fig. 7.29 can be made
to move back and forth along the line OC. If C represents the room-temperature state, then
the point moves from C to O when the specimen is heated from room temperature to the
Curie point. If one now imagines a small volume, smaller that the normal volume of
a domain, at a temperature above T, then, on cooling through T, this small volume
becomes spontaneously magnetized to a level M which increases as the temperature
decreases. Simultaneously, a demagnetizing field Hy is set up. The point representing
this small volume therefore moves from O toward C. At room temperature the magnetiza-
tion of the whole specimen, which is the sum of the M, vectors in all the domains, is at
point C.

To return to shape anisotropy, we now consider a specimen in the shape of a prolate
spheroid (rod) with semi-major axis ¢ and semi-minor axes a of equal length (Fig. 7.30).
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e ——

Fig. 7.30 Prolate ellipsoid.

Let it be magnetized to a value M at an angle 6 to c. Then, taking components of M parallel
and perpendicular to ¢, we have

1
Ens = E[(M cos 0)> N + (M sin 6)* N,], (7.60)

where N, and N, are demagnetizing coefficients along ¢ and a, respectively, as given by
Equations (2.20) and (2.21). Substituting cos’0 =1 — sin’6, we find

1 1
Ems = EMZ Nc + E(Na - NC)M2 Sinze‘ (761)

This expression for the magnetostatic energy has an angle-dependent term of exactly the
same form as uniaxial crystal anisotropy energy (Equation 7.4). The long axis of the speci-
men plays the same role as the easy axis of the crystal, and the shape-anisotropy constant K
is given by

1 1
Ko = (N~ NoM? erg/em’ (cgs) or K = Sho(Na - NoM? joule/m’ (SI), (7.62)

which are often written as

1 1
K, = EANM2 erg/cm3 (cgs) or K= Mo ANM? joule/m3 (SD). (7.63)

Magnetization is easy along the c-axis and equally hard along any axis normal to c. If ¢
shrinks until it equals a, the specimen becomes spherical, N, = N., K; = 0, and shape
anisotropy disappears. The long axis of the spheroid is labeled 2¢ in Fig. 7.30 to
conform with the earlier definition of ellipsoids. It is not to be confused with the ¢ axis
of a hexagonal crystal.

Magnetization of a planetary or oblate spheroid (disk) is difficult along the short a-axis
and equally easy along any axis normal to a, i.e., in the plane of the disk, which is why
specimens for crystal-anisotropy measurements are made in the form of disks.

As Equation 7.62 shows, the “strength” of shape anisotropy depends both on the axial
ratio ¢/a of the specimen, which determines (N,—N,), and on the magnitude of the magne-
tization M. To illustrate the sort of numbers involved, we put M = 1422 emu/cm3 or
1.422x10° A m? / m?, which is the room-temperature saturation magnetization of uniaxial
cobalt, and calculate the value of the shape-anisotropy constant K as a function of ¢/a for a
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Fig. 7.31 Shape anisotropy constant vs axial ratio of a prolate spheroid. Numerical values calculated
for cobalt (M, = 1422 emu cm?>).

prolate spheroid of polycrystalline cobalt with no preferred orientation. E. C. Stoner and
E. P. Wohlfarth in [Phil. Trans. R. Soc, A-240 (1948) p. 599] give values of (N,—N,) as
a function of c¢/a for both prolate and oblate spheroids. Figure 7.31 shows the results.
At an axial ratio of about 3.5, K is about 45 x 10° erg/cm’ or 4.5x10° J/m?, which is
equal to the value of the first crystal-anisotropy constant K; of cobalt. In other words,
neglecting K,, we can say that a prolate spheroid of saturated cobalt, with axial ratio 3.5
and without any crystal anisotropy, would show the same uniaxial anisotropy as a spherical
cobalt crystal with its normal crystal anisotropy.

7.11 MIXED ANISOTROPIES

The calculation of the last paragraph suggests that we consider a more realistic situation, in
which two anisotropies are present together. The discussion will be limited to uniaxial ani-
sotropies. We have already touched on the problem of mixed anisotropies in Section 7.8,
where the effect of double textures on the anisotropy of polycrystalline sheet was dis-
cussed. Here we are interested in the combined effect of two anisotropies of different phys-
ical origin, such as crystal and shape anisotropy, on the resultant anisotropy of a single
crystal.

We might have, for example, a rod-shaped crystal of a uniaxial substance like cobalt,
with its easy crystal axis at right angles to the rod axis. Will it be easier to magnetize
along the rod axis, as dictated by shape anisotropy, or at right angles to the rod axis, as dic-
tated by crystal anisotropy? Both anisotropy energies are given, except for constant terms,
by expressions of the form: energy = (constant) - sin” (angle between M and easy axis).

The problem is generalized in Fig. 7.32. where AA represents one easy axis and BB the
other. The separate anisotropy energies, distinguished by subscripts, are

Ea = K, sin®#,
Eg = Kg sin*(90° — 6).
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B

Fig. 7.32 Mixed anisotropy.

The total energy is

E = Ky sin’0 + Kg cos*6
(7.64)
= K + (K — Kp) sin’6.

If the two anisotropies are of equal strength (K5 = Kg), then E is independent of angle and
there is no anisotropy. (Thus two equal uniaxial anisotropies at right angles are not equiv-
alent to biaxial anisotropy.) If they are not equal, we want the value of 6 for which E is a
minimum:

dE
g = Ka — Ka)sin26 = 0. (7.65)

The solutions are # = 0 and 6 = 90°. To find whether these are minima or maxima, we take
the second derivative,

2
E
27 = 2(Ks — Kg)cos 26, (7.66)

which must be positive for a minimum. Therefore, § = 0 is a minimum-energy position if
Ka > Kg, and 0 = 90° if K, < K. The direction of easiest magnetization is not, as might
be expected, along some axis lying between AA and BB. The easy direction is along AA if
the A anisotropy is stronger, and along BB if B is stronger. The basic reason for this behavior
is that a uniaxial anisotropy exerts no torque on M when M is at 90° to the uniaxial axis.

If the two easy axes of Fig. 7.31 are at some angle « to each other, rather than at right
angles, the reader can show that they are together equivalent to a new uniaxial axis CC,
which either (a) lies midway between AA and BB, if Kp = Kp, and has a strength of
Kc = KA = Kp, or (b) lies closer to AA, if K5 > Kg, and has a strength Kc > K.

PROBLEMS

7.1 Prove the statements in Section 7.1 regarding the equilibrium values of the angle 6 for
various relative values of K, and K in a hexagonal crystal.
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A disk sample 0.80 cm in diameter and 0.050 cm thick has a weak uniaxial anisotropy
with K; = 2500 erg/ cm®. What is the maximum torque acting on the sample when it
is rotated in a strong magnetic field about an axis perpendicular to the disk surface?

a. Find the relations between H and M for magnetization in the <100> and <110>
directions of a cubic crystal like nickel, with K; < 0. Assume K, = 0.

b. Compute and plot the magnetization curves of a nickel crystal in the <100>,
<110>, and <I111> directions. Take K; = —5.0 x 10°, K;=0, M=
846 x10° A/m.

c¢. What are the fields required to saturate in the <110> and <100> directions?

Calculate the anisotropy energy stored in a cubic crystal with <100> easy directions,
magnetized in a <110> direction, by finding the area between the M, H curve and
the M-axis.

Derive Equation 7.50.

An oblate or planetary spheroid and a prolate spheroid have the same ratio of major
axis to minor axis. Which has the greater shape anisotropy?

A cobalt single crystal is made into an oblate or planetary ellipsoid with ratio of major
to minor axis = 2. The <0001> easy axis of the crystal is normal to the plane of
the ellipsoid. Take K, = 4.5x10° erg/cm3, K, =0, M, = 1422 emu/cm3. In which
direction is it easiest to magnetize the sample to saturation?

At what value of the dimensional ratio will the sample of Problem 7.7 be equally easy
to saturate parallel and perpendicular to the surface?



CHAPTER 8

MAGNETOSTRICTION AND THE
EFFECTS OF STRESS

8.1 INTRODUCTION

When a substance is exposed to a magnetic field, its dimensions change. This effect is
called magnetostriction. It was discovered as long ago as 1842 by Joule, who showed
that an iron rod increased in length when it was magnetized lengthwise by a weak field.
The fractional change in length Al/I is simply a strain, and, to distinguish it from the
strain & caused by an applied stress, we give the magnetically induced strain a special
symbol A:

)\:#. 8.1

The value of A measured at magnetic saturation is called the saturation magnetostriction A,
and, when the word “magnetostriction” is used without qualification, A is usually meant.

The longitudinal, sometimes called Joule, magnetostriction just described is not the only
magnetostrictive effect. Others include the magnetically induced torsion or bending of a
rod. These effects, which are really only special cases of the longitudinal effect, will not
be described here.

Magnetostriction occurs in all pure substances. However, even in strongly magnetic sub-
stances, the effect is usually small: A, is typically of the order of 10>, The small magnitude
of this strain may perhaps be better appreciated if it is translated into terms of stress. If
Young’s modulus is 30 x 10° b/ in? (the normal value for iron and steel), a strain of
10~ would be produced by an applied stress of only (107°) (30 x 10°) = 300 Ib/in” or
0.2kg/ mm? or 2MPa. Alternatively, the magnetostrictive strain can be compared to
thermal expansion. Metals and alloys typically have thermal expansion coefficients near
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20 x 107° per K, so a strain of 10 results from a temperature change of just 0.5K. In
weakly magnetic substances the effect is even smaller, by about two orders of magnitude,
and can be observed only in very strong fields. We will not be concerned with magnetos-
triction in such materials.

Although the direct magnetostrictive effect is small, and not usually important in itself,
there exists an inverse effect (Section 8.5) which causes such properties as permeability and
the size and shape of the hysteresis loop to be strongly dependent on stress in many
materials. Magnetostriction therefore has many practical consequences, and a great deal
of research has accordingly been devoted to it.

The value of the saturation longitudinal magnetostriction A¢ can be positive, negative, or,
in some alloys at some temperature, zero. The value of A depends on the extent of magne-
tization and hence on the applied field, and Fig. 8.1 shows how A typically varies with H for
a substance with positive magnetostriction. As mentioned in the preceding chapter, the
process of magnetization occurs by two mechanisms, domain-wall motion and domain
rotation. Most of the magnetostrictive change in length usually occurs during domain
rotation.

Between the demagnetized state and saturation, the volume of a specimen remains very
nearly constant. This means that there will be a transverse magnetostriction A, very nearly
equal to one-half the longitudinal magnetostriction and opposite in sign, or

1
A=) 8.2)

When technical saturation is reached at any given temperature, in the sense that the speci-
men has been converted into a single domain magnetized in the direction of the field,
further increase in field causes a small further strain (Section 4.2). This causes a slow
change in A with H called forced magnetostriction, and the logarithmic scale of H in
Fig. 8.1 roughly indicates the fields required for this effect to become appreciable. It is
caused by the increase in the degree of spin order which very high fields can produce
(the paraprocess).

The longitudinal, forced-magnetostriction strain A shown in Fig. 8.1 is a consequence of
a small volume change, of the order of AV/V = 10" per oersted, occurring at fields

. S S—
' Forced t
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H

Fig. 8.1 Dependence of magnetostriction on magnetic field (schematic). Note that the field scale is
logarithmic.
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beyond saturation and called volume magnetostriction. It causes an equal expansion or
contraction in all directions. Forced magnetostriction is a very small effect and has no
bearing on the behavior of practical magnetic materials in ordinary fields.

The measurement of longitudinal magnetostriction is straightforward but not trivial,
especially over a range of temperatures. While early investigators used mechanical and
optical levers to magnify the magnetostrictive strain to an observable magnitude, today
this measurement on bulk samples is commonly made with an electrical-resistance strain
gage cemented to the specimen. The gage is made from an alloy wire or foil grid, embedded
in a thin paper or polymer sheet, which is cemented to the sample. When the sample
changes shape, so does the grid, and the change in shape causes a change in the electrical
resistance of the gage. With ordinary gages, the fractional change in resistance is about
twice the elastic strain. This is typically a small resistance change, but one fairly easily
measured with a bridge circuit, either ac or dc.

Commercial strain gages commonly are magnetoresistive (show a change in resistance
when subjected to a magnetic field). This effect can be compensated by including in the
bridge circuit used for detection a dummy gage that is subject to the same magnetic field
as the active gage, but that is not attached to the sample and so undergoes no strain. The
sensitivity, or gage factor, of a strain gage may also be temperature dependent.
Semiconductor strain gages are much more sensitive than ordinary alloy gages, but have
larger magnetoresistance and larger temperature dependence.

Capacitance or inductance or optical measuring systems of various designs may also be
used. These have the advantage that nothing has to be cemented to the specimen, and by
appropriate design they can be used over a wide temperature range. Careful control of
the sample temperature is always necessary, since (as noted above) a one-degree tempera-
ture change can easily produce a strain larger than the magnetostrictive strain to be
measured. Other, more subtle sources of error, due to uncertainties about the nature of
the demagnetized state, are considered later.

Thin film samples present special challenges in the measurement of magnetostriction,
since the films are almost always bonded to a nonmagnetic substrate. If the substrate is
thin enough, a change in dimension of the film may produce a measurable curvature in
the substrate, from which the magnetostrictive strain can be deduced. Another approach
is to apply a known stress to the sample and measure the resulting change in magnetic ani-
sotropy. This method makes use of the concept of the stress anisotropy, as described later in
this chapter.

8.2 MAGNETOSTRICTION OF SINGLE CRYSTALS

When an iron single crystal is magnetized to saturation in a [100] direction, the length of the
crystal in the [100] direction is found to increase. From this we infer that the unit cell of
ferromagnetic iron is not exactly cubic, but slightly tefragonal. (A tetragonal cell has
three axes at right angles; two are equal to each other, and the third is longer or shorter
than the other two.) This conclusion follows from what we already know about the
changes occurring in an iron crystal during magnetization in a [100] direction. These
changes consist entirely of domain wall motion and were described with reference
to Fig. 7.3. If the saturated crystal is longer in the direction of its magnetization than
the demagnetized crystal, then the single domain which comprises the saturated crystal
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Fig. 8.2 Magnetostriction of an iron crystal in the [100] direction.

must be made up of unit cells which are slightly elongated in the direction of the
magnetization vector.

The same is true of each separate domain in the demagnetized state. Figure 8.2a depicts
this state in terms of four sets of domains, [100], [100], [010], and [010]. Unit cells are
shown by dashed lines; their tetragonality is enormously exaggerated and so is their size
relative to the domain size. But the main point to notice is that these cells are all longer
in the direction of the local M vector than they are in directions at right angles to this
vector. Thus, when a region originally occupied by, say, a [010] domain is replaced by a
[100] domain, by the mechanism of wall motion, that region must expand in the
[100] direction and contract in directions at right angles. The length of the whole crystal
therefore changes from [/ to [+ Al, where Al/l= A, = the saturation magnetostriction
in the [100] direction.

The unit cell of iron is exactly cubic only when the iron is above the Curie temperature,
i.e., only when it is paramagnetic, and subject to no applied field. As soon as it cools below
T., spontaneous magnetization occurs and each domain becomes spontaneously strained, so
that it is then made up of unit cells which are slightly tetragonal. The degree of tetragonality
in iron and most other materials is less than can be detected by X-ray diffraction, so iron is
regarded as cubic in the crystallographic literature.

There are therefore two basic kinds of magnetostriction: (1) spontaneous magnetostric-
tion, which occurs in each domain when a specimen is cooled below the Curie point; and
(2) forced magnetostriction, which occurs when a saturated specimen is exposed to fields
large enough to increase the magnetization of the domain above its spontaneous value.
Both kinds are due to an increase in the degree of spin order. The spontaneous magnetos-
triction is difficult to observe directly, but it is evidenced by a local maximum at 7 in the
variation of the thermal expansion coefficient with temperature. (This is the reason why
Invar, an Fe—Ni alloy containing 36% Ni, has such a low expansion coefficient near
room temperature. Its Curie point is near room temperature, and its spontaneous magnetos-
triction varies with temperature in such a way that it almost compensates the normal thermal
expansion.) The “ordinary,” field-induced magnetostriction which concerns us, and in
which A changes from O to A (Fig. 8.1), is caused by the conversion of a demagnetized
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specimen, made up of domains spontaneously strained in various directions, into a satu-
rated, single-domain specimen spontaneously strained in one direction. Figure 8.2 shows
one special case of such a conversion, in which the only mechanism of magnetization
change is domain wall motion.

Domain walls are described by the angle between the M vectors in the two domains on
either side of the wall. Two types exist: 180° walls and non-180° walls. The uniaxial crystal
of Fig. 7.6 has only 180° walls, while the iron crystal of Fig. 8.2a has only 90° walls.
Nickel, which has (111) easy directions, can have 180°, 110°, or 71° walls. Non-180°
walls are often called 90° walls for brevity, whether the actual angle is 90°, 110°, or 71°.
The domain structure of real single crystals is normally such that both 180° and non-180°
walls exist.

The magnetostrictive effect of the motion of the two kinds of walls is quite different.
Because the spontaneous strain is independent of the sense of the magnetization, the dimen-
sions of a domain do not change when the direction of its spontaneous magnetization is
reversed. Since passage of a 180° wall through a certain region reverses the magnetization
of that region, we conclude that 180° wall motion does not produce any magnetostrictive
change in dimensions. Thus, when the uniaxial crystal of Fig. 7.6 is saturated in the
axial direction by an applied field, only 180° wall motion is involved, and the length of
the crystal does not change in the process. On the other hand, magnetization of the iron
crystal of Fig. 8.2 is accomplished by 90° wall motion, and a change in the length of the
crystal does occur.

Rotation of the M, vector of a domain always produces a dimensional change, because
the spontaneous magnetostriction depends on the direction of the M vector relative to the
crystal axes. Thus, in the general case of a crystal being magnetized in a noneasy direction,
the magnetization process will involve 180° and 90° wall motion and domain rotation. The
last two of these three processes will be accompanied by magnetostriction.

We now need expressions for the strain which a crystal undergoes in a certain direction
when it is magnetized either in the same direction or in some arbitrary direction.

8.2.1 Cubic Crystals

The saturation magnetostriction Ay undergone by a cubic crystal in a direction defined
by the direction cosines 31, 8,, B3 relative to the crystal axes, when it changes from the
demagnetized state to saturation in a direction defined by the direction cosines «;, as,
ag, is given by

A = 3ol BT + 585 + o3B3 — 1)
+3Mn(ar@ BBy + a3 5,65 + azai B36)), (8.3)

where Ajgp and A, are the saturation magnetostrictions when the crystal is magnetized,
and the strain is measured, in the directions (100) and (111), respectively. This equation
is valid for crystals having either (100) or (111) as easy directions. Most commonly, we
want to know the strain in the same direction as the magnetization; then
Bi, By, B3 = ), oy, az, and Equation 8.3 becomes

Asi = %)\100(013 + ag + ag - %) + 3)\111(01%01% + a%a% + a%a%). (8.4)
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This can be further reduced, by means of the relation
(oz% + a% + oz%)2 = (0/11 + ag + agl) + Z(a%a% + a%a% + aga%) =1, (8.5)
to the expression
Asi = Asoo + 3111 — Aigo)(@dal + ddal + adad). (8.6)

Equation 8.3 is called the “two-constant” equation for magnetostriction. Like the rather
similar equation for crystal anisotropy energy (Equation 7.1), it can be expanded to
higher powers of the direction cosines. The next approximation involves five constants;
its use is rarely justified by the accuracy of available magnetostriction data.

Equation 8.3 and others derived from it require a word of caution. They give the field-
induced strain when the crystal is brought from the demagnetized to the saturated state. The
saturated state is, by definition, one in which the whole specimen consists of a single
domain with its M vector parallel to the applied field. The demagnetized state, on the
other hand, is not well-defined. All that is required is that all the domain magnetizations,
each properly weighted by its volume, add vectorially to zero. The difficulty is that there
are an infinite number of domain arrangements and relative volumes that can result in
zero net magnetization of the whole specimen. Equation 8.3 is based on a paticular defi-
nition of the demagnetized state, namely, one in which all possible types of domains
have equal volumes. For example, in a cubic crystal like iron, with (100) easy directions,
this state is one in which the total volume of the crystal is divided equally among six
kinds of domains: [100], [100], [010], [010], [001], and [001]. If this “ideal” demagnetized
state is not achieved, Equation 8.3 is invalid, and the measured magnetostriction will be
larger or smaller than the calculated value. Differences in the magnetostriction values
observed by different investigators for the same material are usually due to differences in
the demagnetized states of their specimens.

The special symbol Ag; is used in Equation 8.3 and similar ones, where the subscript
refers to the ideal demagnetized state. This symbol is not widely used in the scientific
literature. It is introduced here in an attempt to inject greater clarity into the discussion
of magnetostrictive strains. The single symbol A is ambiguous, because it is used in the
literature to refer both to ideal and nonideal demagnetized states. We therefore have two
kinds of saturation magnetostriction:

173$2]
1

1. A, measured from the ideal demagnetized state. This value is a constant of the
material. Because it is defined, through Equation 8.3, in terms of Aoy and Aqqq,
the two latter are also Ay values, measured in these particular crystal directions.

2. A, measured on a particular specimen having a particular, nonideal demagnetized
state. This value is a property only of that particular specimen. The quantity A is
highly structure sensitive, in that it depends on the mechanical, thermal, and magnetic
history of the specimen. If the demagnetized state is nonideal, i.e., if all possible
domains are not present in equal volumes, it is said to be a state of preferred
domain orientation. Thus a preferred domain orientation can exist in the demagne-
tized state of a single crystal, or in the individual grains of a polycrystal, in addition
to the preferred grain orientation that may exist in a polycrystal.

The domain arrangement shown for the demagnetized crystal in Fig. 8.2a is an example
of preferred domain orientation, because it contains only four kinds of domains. If the
missing domains [001] and [001] were present, the demagnetized crystal would be
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shorter in both the [100] and [010] directions than the crystal shown. This means, for mag-
netization and strain measurement both in the direction [100], that the magnetostriction for
the ideal state would be greater than that for the crystal shown.

Equation 8.3 is of greater utility than may first appear. Properly manipulated, it allows
us (a) to calculate the dimensional change of a single domain due to a rotation of its M,
vector out of the easy direction, and (b) to circumvent, in magnetostriction measurements,
the uncertainty about the demagnetized state. The first application arises from the fact that a
saturated single crystal is a single domain. If we compute, by means of Equation 8.3, the
values of Ay for two different orientations of M in the saturated state, then the difference
between these two values is the strain undergone by the saturated, single-domain crystal
when M, rotates from one orientation to the other. For example, suppose we wish to
know how the length of a cube-edge direction (100) in a single domain changes as the
M vector rotates away from it. In Fig. 8.3a let M, rotate away from [001] by an angle 6 in
the plane (010). The direction cosines of M are «a; = cos(90° — ) = siné,
ay = 0, az = cos 6. We wish to know the strain along the [001] direction; therefore, 8, =

» = 0 and B; = 1. Substituting these values into Equation 8.3, we find

Asi(8 = 8) = 3Ajg0(cos® & — 1. (8.7)

This is the strain along [001] which occurs when an ideally demagnetized crystal is saturated
in the direction 6. When 6 = 0, this expression reduces to

Asi(8 = 0) = A0, (8.8)

as it should. If we take the state of saturation along [001] as the initial state, then the strain
along [001] in a single domain when M; rotates by an angle 6 away from [001] is

Al
7= Asi(8=0) — Ai(6=0)
= 3 100(cos*8 — 1) — Ao
= 7%/\1()0 sin28. (89)
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Fig. 8.3 Magnetostrictive strains in a cubic crystal with A;qp.
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In iron, A;q is positive and (100) is an easy direction. Therefore, when M rotates through an
angle of 90° out of an easy direction, the domain contracts fractionally in that direction by an
amount %)\100- The M; vector may rotate away from [001] in any plane, not only (010), and
Equation 8.9 will still apply, because a change in the plane of rotation changes only a; and
a,. Inasmuch as these appear only in terms involving B; or [3,, both zero, they do not
affect the final result. These several changes in the length of the crystal along [001] are illus-
trated in Fig. 8.3b. If the demagnetized state is nonideal, the zero of strain in this diagram will
be shifted up or down, and the Ay; values shown will become A values. However, the strain
Al/I, resulting from a change from one saturated state to another, will remain the same.

These results show that magnetostriction constants can be determined, without any
uncertainty regarding the demagnetized state, by making strain measurements as the M,
vector rotates from one orientation to another in a saturated crystal. For example, A
can be determined by cutting a disk from a crystal parallel to the plane (010). A strain
gage is cemented to the disk with its axis parallel to the chosen direction of measurement,
namely, [001], as in Fig. 8.4. The disk is then placed in the strong field of an electromagnet.
When this is done, the disk magnetostrictively strains, of course, but this strain is ignored.
With the disk in the position shown, the strain gage reading is noted. The disk is then rotated
by 90° in its own plane to make [100] parallel to My, which is parallel to the applied field,
and the gage reading is again noted. The difference between these two readings multiplied
by —% gives Ao, according to Equation 8.9. Actually, it is better to cut the disk parallel to
{110}, because this plane contains both (100) and (111) directions. Then Ao and A;1; can
both be determined from measurements on a single specimen. By this technique, without
any reference to or knowledge of the demagnetized state, we can determine the value of
Algo, for example, even though Aqo is defined as the strain in (100) occurring in a
crystal when it passes from the ideal demagnetized state to saturation in (100).

Figure 8.5 shows experimental curves for magnetostriction in various directions in an
iron crystal. The behavior is complex. When the field is parallel to [100], the strain in
that direction is a simple expansion, as noted earlier. When the field is parallel to [111],
180° wall motion occurs until the crystal contains only three sets of domains—[100],
[010], and [001]—with M, in each set equally inclined at 55° to the field; during this
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Fig. 8.4 Magnetostriction measurement on a single crystal using a strain gage.
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Fig. 8.5 Magnetostriction as a function of magnetization in single crystal iron rods. Each rod had a
different crystallographic axis. [W. L. Webster, Proc. R. Soc., A109 (1925) p. 570.]

process the dimensions of the crystal do not change. Further increase of field causes M,
vectors to rotate toward [111], and this rotation causes a contraction along [111].

When H is parallel to [110] in iron, the crystal first expands in that direction and then
contracts. These changes can be understood by reference to Fig. 7.4, if one imagines the
addition of [001] and [001] domains to the initial state depicted there. In response to the
applied field, 90° and 180° wall motion will take place until the crystal contains only
two sets of domains, those corresponding to the two easy axes nearest the applied field
(Fig. 7.4c). During this process, [001] and [001] domains have disappeared. Inasmuch as
these domains are spontaneously contracted in a direction parallel to the field direction
[110], their removal causes an expansion in the [110] direction, as observed. With
further increase in field, the magnetization in the remaining [100] and [010] domains
rotates into the [110] direction, causing an additional strain of %)\111 along [110].
Because Ajq; is negative, this strain is a contraction, and it is large enough to make the
crystal shorter at saturation than it was initially.

A nickel crystal contracts in all three principal directions when magnetized, as shown in
Fig. 8.6. From the observed contraction in the [111] direction and the fact that the easy
directions in nickel are (111), it follows that the unit cell of ferromagnetic nickel is
slightly distorted from cubic to rhombohedral, with one cell diagonal, the one parallel to
the local direction of magnetization, slightly shorter than the other three. So when the M,
vector in a domain is rotated away from a (111) easy axis, that axis becomes longer.
One can then understand, by arguments similar to those given above for iron, why A;qgq
and Ayq; are both negative in nickel.

Note that, in Fig. 8.5, magnetostriction is plotted against magnetization, while in Fig. 8.6
magnetostriction is plotted against magnetic field H. These qualitative descriptions of the
variation of A with H (or M) below saturation can be made quantitative without much dif-
ficulty, although certain rather arbitrary assumptions have to be made about the sequence of
180° and 90° wall motion.
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Fig. 8.6 Magnetostriction as a function of field and crystal direction for nickel single crystal.
Samples were planetary (oblate) spheroids. Solid lines, {011} disk; dashed lines, [001] disk.
[Y. Masiyama, Sci. Rep. Tohoku Univ., 17 (1928) p. 947.]

If the magnetostriction of a particular material is isotropic, we can put Ajgg = Ay1; = Agj.
Then Equation 8.3 becomes, with the introduction of a new symbol,

Ao =3\Gl(a] BT + a5 B3 + 05 B3 — ) + 2(1 2By By + 203 By B3 + s B3 By)]s
Ao =3Asil(@1 By + a2y + a3 B3) 11,
Ao =3Ag(cos’0—D), (8.10)

where Ay is the saturation magnetostriction at an angle 6 to the direction of magnetization,
measured from the ideal demagnetized state. (If 6 is the angle between two directions
defined by cosines o, a;, a3 and By, B35, B3, then cos 0= o B + a2 8, + a3 35.) Because
of isotropy, no reference to the crystal axes appears in Equation 8.10, and the magnetostric-
tive effect can be illustrated quite simply by Fig. 8.7, which shows a demagnetized sphere
distorted into an ellipsoid of revolution when saturated, for a positive value of Ag.
Figure 8.6 shows that the magnetostrictive behavior of nickel is approximately isotropic,
and Equation 8.10 is often applied to nickel.

Table 8.1 lists Ay; values for some cubic metals and ferrites. (The variation with compo-
sition of A; for alloys will be described later.) In general, the magnetostriction of the ferrites
is of about the same order of magnitude as that of the metals, with the notable exception of
cobalt ferrite. Here the spontaneous distortion of the crystal unit cell, from cubic to
tetragonal, is so large that it can be detected by X-ray diffraction. This ferrite also has an
unusually large value of crystal anisotropy (Table 7.4).
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The magnetostriction of a hexagonal crystal is given by the following equation, which cor-

responds to Equation 8.3 for a cubic crystal:

Asi = Aal(a1 By + a2f3)? — (a1 By + 2By B5]
+ As[(1 — a3)(1 — B3) — (a1 B) + @23,)°]

+ Acl(l — @)B5 — (a1 By + a2y Bs]
+4Ap(a1B) + a2 By)as fBs.

8.11)

Although this expression has four constants, it is the first approximation, like Equation 8.3.
The next approximation, involving higher powers of the direction cosines, has nine
constants. It is important to note that the direction cosines in Equation 8.11 relate, not to
hexagonal axes, but to orthogonal axes x, y, z. Figure 8.8 shows the relation between the
two. The usual hexagonal axes are a;, a,, as, and c. The orthogonal axes are chosen so
that x is parallel to a;, a, or as, and z is parallel to c. The base of the hexagonal unit

TABLE 8.1 Magnetostriction Constants of Cubic Substances (Units of 10~

Material /\1()0 Al 11 Apa
Fe +21 —21 -7
Ni —46 —24 —34
FeO - Fe,03 —20 +78 +40
CO()_gFeo'zO . FezO3 —590 —120

C0O - Fe,04 ~110
Ni()_gFe()_zO . F€203 —-36 —4

NiO - F6203 —26
MnO - Fe,0; -5
MgO - Fe,03 -6

“Experimental values for polycrystalline specimens.



252 MAGNETOSTRICTION AND THE EFFECTS OF STRESS

Fig. 8.8 Hexagonal and orthogonal axes in a hexagonal crystal.

cell is outlined. The ¢ and z axes are normal to the plane of the drawing. Equation 8.11 is
valid only for crystals in which the c-axis is the easy direction.

When the magnetostriction is measured in the same direction as the magnetization, then
Bi1, B2, B3 = a, oy, az, and Equation 8.11 reduces to a two-constant expression

Ai = Ml — @) — (1 — ad)ad] +4rp(1 — B)dd, (8.12)

because af + a3 + a3 = 1. Inasmuch as only a3 appears in Equation 8.12, the value of A
in, for example, the basal plane, is the same in any direction. Equations 8.11 and 8.12 there-
fore express cylindrical, rather than hexagonal, symmetry. Hexagonal symmetry appears
only in the next approximation. R. M. Bozorth [Ferromagnetism, Van Nostrand (1951);
reprinted by IEEE (1993)] finds that the behavior of cobalt is adequately described by
the following constants:

A = —45 x 107°, Ap = —95 x 107°,
Ac = +110 x 1076, Ap = —100 x 107°.

Magnetostriction as a function of field strength is shown in Fig. 8.9. As expected, A; par-
allel to the c-axis is zero, because only 180° wall motion is involved. The contraction
observed at 60° to the c-axis is much larger than in the basal plane (6 = 90°) and is, in
fact, the maximum contraction for any value of 6.

Alternative Notation An alternative notation for magnetostriction in single crystals
[E. R. and H. B. Callen, Phys. Rev., 129 (1963) p. 578; A139 (1965) p. 455] is sometimes
used, especially in theoretical treatments of the subject.

General Magnetostriction constants usually decrease in absolute magnitude as the temp-
erature increases, and approach zero at the Curie point. However, there are exceptions.
Figure 8.10 shows the behavior of iron; it is clear that A;gg and A,y have very different
temperature dependences.

Before leaving the topic of single crystals it is important to realize that any demagnetized
crystal that contains 90° walls is never completely stress free at room temperature. The
various domains simply do not fit together exactly. Figure 8.11a depicts a single crystal
of iron, for example, at a temperature above the Curie point; the dashed lines indicate
where domain walls will form below T.. As the crystal cools below T, it spontaneously
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Fig. 8.9 Magnetostriction of a cobalt single crystal as a function of field. The strain A is measured
parallel to the field H, and 6 is the angle between them and the hexagonal axis. [R. M. Bozorth,
Ferromagnetism, reprinted by IEEE Press (1993).]
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Fig. 8.10 Temperature dependence of magnetostriction constants of iron. [T. Okamoto and
E. Tatsumoto, J. Phys. Soc. Japan, 14 (1959) p. 1588.]
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Fig. 8.11 Strains in a demagnetized single crystal.
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magnetizes in four different directions in various parts of the crystal, thus forming domains.
At the same time, each domain strains spontaneously. If the domains were free to deform,
they would separate at the boundaries, as shown in Fig. 8.11b, because each domain
lengthens in the direction of M and contracts at right angles. But the strains involved are
much too small to cause separation of the domains. The result is an elastically deformed
state, something like Fig. 8.11c, in which each domain exerts stress on its neighbor.
Saturation removes the 90° walls, the cause of the misfit, and an elongated, single-
domain, stress-free crystal results.

8.3 MAGNETOSTRICTION OF POLYCRYSTALS

The saturation magnetostriction of a polycrystalline specimen, parallel to the magnetization,
is characterized by a single constant A,,. Its value depends on the magnetostrictive properties
of the individual crystals and on the way in which they are arranged, i.e., on the presence or
absence of preferred domain or grain orientation.

If the grain orientations are completely random, the saturation magnetostriction of the
polycrystal should be given by some sort of average over these orientations. Just how
this averaging should be carried out, however, is not entirely clear. When a polycrystal is
saturated by an applied field, each grain tries to strain magnetostrictively, in the direction
of the field, by an amount different from its neighbors, because of its different orientation.
There are two limiting cases: (1) stress is uniform throughout, but strain varies from grain to
grain; or (2) strain is uniform, and stress varies.

The condition of uniform strain is usually considered to be physically more realistic. It is
then a question of averaging the magnetostriction in the field direction over all crystal orien-
tations, or, what amounts to the same thing, averaging Equation 8.6, for cubic crystals, over
all orientations of the M, vector with respect to a set of fixed crystal axes. We first express
oy, ap, az in terms of the angles 6 and ¢ of Fig. 8.12. The relations are

a) =sin¢g cosf, ap =sin¢ sinh, a3 = cos .

On the surface of a spher