DEDUÇÃO DE FÓRMULAS DE SPLINE CÚBICO

Dados: $x_0, x_1, ..., x_n$, distintos e indexados em ordem crescente, valores $f(x_0), f(x_1), ..., f(x_n)$ e duas condições nos extremos, que podem ser de várias formas, como veremos a seguir.

O objetivo é interpolar f nos pontos dados por uma função S(x) tal que: (i) S(x) é um polinômio cúbico $p_i(x)$ em cada intervalo $I_i = [x_{i-1}, x_i]$, para i = 1, ..., n; (ii) S''(x) existe e é contínua.

Como S(x) interpola f nos pontos dados, então, para cada $i=1,\ldots,n,$ $p_i(x_{i-1})=f(x_{i-1})$ e $p_i(x_i)=f(x_i)$. Isto garante a continuidade de S(x) nos nós internos x_1,\ldots,x_{n-1} . A condição (ii) implicitamente diz que S(x) é diferenciável e S'(x) é contínua. Portanto, para cada nó interno $x_i,$ $i=1,\ldots,n-1$, vale $p_i'(x_i)=p_{i+1}'(x_i)$. E a continuidade de S''(x) impõe $p_i''(x_i)=p_{i+1}''(x_i)$.

A estratégia consagrada para a abordagem deste problema, que consiste em encontrar os polinômios cúbicos p_1, \ldots, p_n , é: (1) tomar as derivadas da função interpoladora nos nós, isto é, os valores $S'(x_0), S'(x_1), \ldots, S'(x_n)$ serem as incógnitas do problema. Para facilitar a notação, chamá-las-emos de d_0, d_1, \ldots, d_n ; (2) escrever a expressão do polinômio cúbico $p_i(x)$ tal que $p_i(x_{i-1}) = f(x_{i-1}), p_i'(x_{i-1}) = d_{i-1}, p_i(x_i) = f(x_i), p_i'(x_i) = d_i$; (3) escrever as n-1 equações de continuidade de S''(x); (4) acrescentar as duas equações provenientes das condições nos extremos; (5) resolver o sistema linear de n+1 equações nas n+1 incógnitas d_0, d_1, \ldots, d_n ; (6) substituir os valores encontrados nas expressões dos p_i .

A expressão de p_i sai da tabela de diferenças divididas adaptada (fizemos em aula). O resultado é

$$p_{i}(x) = f(x_{i-1}) + d_{i-1}(x - x_{i-1}) + \frac{f[x_{i-1}, x_{i}] - d_{i-1}}{x_{i} - x_{i-1}} (x - x_{i-1})^{2} + \frac{d_{i-1} + d_{i} - 2f[x_{i-1}, x_{i}]}{(x_{i} - x_{i-1})^{2}} (x - x_{i-1})^{2} (x - x_{i})$$

Para montarmos as equações de continuidade de S''(x), precisamos dos valores da segunda derivada de p_i nos extremos esquerdo e direito do intervalo I_i . Para isso, basta derivar p_i duas vezes, obtendo-se $p_i''(x)$, e substituir x por x_{i-1} e x_i . O resultado disso é

$$p_i''(x_{i-1}) = \frac{2}{x_i - x_{i-1}} (-2d_{i-1} - d_i + 3f[x_{i-1}, x_i])$$

e

$$p_i''(x_i) = \frac{2}{x_i - x_{i-1}} (d_{i-1} + 2d_i - 3f[x_{i-1}, x_i])$$

A equação do nó x_i é $p_i''(x_i) = p_{i+1}''(x_i)$, portanto

$$\frac{2}{x_i - x_{i-1}} (d_{i-1} + 2d_i - 3f[x_{i-1}, x_i]) = \frac{2}{x_{i+1} - x_i} (-2d_i - d_{i+1} + 3f[x_i, x_{i+1}])$$

Essa equação envolve apenas 3 incógnitas: d_{i-1} , d_i , d_{i+1} . Após rearranjo dos termos, ela se escreve como

$$(x_{i+1} - x_i)d_{i-1} + 2(x_{i+1} - x_{i-1})d_i + (x_i - x_{i-1})d_{i+1}$$

= $3(x_{i+1} - x_i)f[x_{i-1}, x_i] + 3(x_i - x_{i-1})f[x_i, x_{i+1}]$

Colocando as duas equações adicionais uma na linha zero e a outra na linha n, as demais linhas, dos nós, são dominadas pelo elemento da diagonal: o elemento da diagonal é o dobro da soma dos demais elementos. Isto indica a possibilidade de se usar Jacobi ou Gauss-Seidel para resolver o sistema.

Tratemos agora das imposições adicionais. Há vários tipos:

- 1. Spline grampeado (clamped). Este é o caso em que as derivadas dos extremos são especificadas. Ou seja, são atribuídos valores a d_0 e a d_n diretamente. As linhas 0 e n ficam triviais e, em particular, o critério das linhas dá positivo, garantindo a convergência de Jacobi e Gauss-Seidel.
- **2. Spline natural.** Impõe-se que a derivada segunda nos extremos seja igual a zero. Ou seja, a linha zero vem da equação $p_1''(x_0) = 0$ e a linha n vem da equação $p_n''(x_n) = 0$. Explicitamente, elas ficam

$$2d_0 + d_1 = 3f[x_0, x_1]$$

e

$$d_{n-1} + 2d_n = 3f[x_{n-1}, x_n]$$

Essas equações também preservam o critério das linhas.

- **3. Spline "não sei o nome".** (se alguém achar, agradeço) Neste caso, impõe-se continuidade da terceira derivada nos nós internos mais próximos dos extremos: $p_1'''(x_1) = p_2'''(x_1)$ e $p_{n-1}'''(x_{n-1}) = p_n'''(x_{n-1})$. Mas dois polinômios cúbicos que são iguais num ponto até a terceira derivada são, de fato, o mesmo (tente mostrar). Portanto essa condição impõe, de fato, que $p_1 = p_2$ e $p_{n-1} = p_n$. Não gosto muito dessa imposição, então não vou escrever as equações.
- 4. Spline periódico. Esta é bem interessante. O sistema deixa de ser estritamente tridiagonal, mas permanece satisfazendo o critério das linhas. Aqui é preciso uma hipótese a mais nos dados do spline:

$$f(x_0) = f(x_n)$$

Neste caso, podemos impor a continuidade cíclica de S(x), com $d_n=d_0$ e $p_1^{\prime\prime}(x_0)=p_n^{\prime\prime}(x_n)$. Então elimina-se a última equação, troca-se d_n por d_0 na linha n-1 e explicita-se $p_1^{\prime\prime}(x_0)=p_n^{\prime\prime}(x_n)$ como a primeira equação:

$$(2(x_n - x_{n-1}) + 2(x_1 - x_0))d_0 + (x_n - x_{n-1})d_1 + (x_1 - x_0)d_{n-1}$$

= $3(x_n - x_{n-1})f[x_0, x_1] + 3(x_1 - x_0)f[x_{n-1}, x_n]$

Vejamos um exemplo. Para facilitar, ele terá espaçamento regular entre os nós. Então as equações de continuidade da segunda derivada dos nós ficam mais simples:

$$d_{i-1} + 4d_i + d_{i+1} = 3f[x_i - h, x_i] + 3f[x_i, x_i + h]$$

Também fica mais simples a equação extra do spline periódico:

$$4d_0 + d_1 + d_{n-1} = 3f[x_0, x_0 + h] + 3f[x_n - h, x_n]$$

Vamos usar como dados do spline os valores da função seno nos pontos $x_0=0, x_1=\frac{\pi}{2}, x_2=\pi, x_3=\frac{3\pi}{2}, x_4=2\pi$. Portanto estamos com um espaçamento regular onde $h=\pi/2$. As equações dos nós internos são

$$d_0 + 4d_1 + d_2 = 3f\left[0, \frac{\pi}{2}\right] + 3f\left[\frac{\pi}{2}, \pi\right] = 0$$

$$d_1 + 4d_2 + d_3 = 3f\left[\frac{\pi}{2}, \pi\right] + 3f\left[\pi, \frac{3\pi}{2}\right] = -\frac{12}{\pi}$$

$$d_2 + 4d_3 + d_4 = 3f\left[\pi, \frac{3\pi}{2}\right] + 3f\left[\frac{3\pi}{2}, 2\pi\right] = 0$$

Spline grampeado: no intuito de "imitar" a função seno, colocamos $d_0=1$ e $d_4=1$. Com essas imposições, eliminamos essas duas variáveis, ficando com 3 equações em d_1,d_2,d_3 :

$$4d_1 + d_2 = -1$$

$$d_1 + 4d_2 + d_3 = -\frac{12}{\pi}$$

$$d_2 + 4d_3 = -1$$

A primeira e a terceira equações, combinadas, implicam $d_1=d_3$, reduzindo o sistema a

$$4d_1 + d_2 = -1$$

$$2d_1 + 4d_2 = -\frac{12}{\pi}$$

Daí sai

$$d_2 = \frac{-\frac{24}{\pi} + 1}{7} \cong -0.95$$

e

$$d_1 = d_3 \cong -0.013$$

Então $S'(\pi) \cong -0.95$, próxima de -1, que é a derivada de sen(x) em π , e $S'\left(\frac{\pi}{2}\right) = S'\left(\frac{3\pi}{2}\right) \cong -0.013$, próxima de zero, que é a derivada de sen(x) nesses dois pontos.

Spline natural: agora impomos segunda derivada zero nos extremos, que é a condição de spline natural. Por coincidência, a função seno também tem segunda derivada zero em 0 e em 2π .

Juntamos as duas equações de spline natural às três dos nós internos e ficamos com o sistema tridiagonal 5×5 :

$$2d_0 + d_1 = \frac{6}{\pi}$$

$$d_0 + 4d_1 + d_2 = 0$$

$$d_1 + 4d_2 + d_3 = -\frac{12}{\pi}$$

$$d_2 + 4d_3 + d_4 = 0$$

$$d_3 + 2d_4 = \frac{6}{\pi}$$

Resolvendo por eliminação gaussiana com 4 algarismos significativos, obtive $d_0=0.9550$, $d_1=0$, $d_2=-0.9550$, $d_3=0$, $d_4=0.9550$. Também valores de derivada próximos do esperado para a função seno.

Spline periódico: Como os valores de f coincidem nos extremos, podemos calcular o spline periódico. Então $d_4=d_0$ e ficamos com o sistema 4×4 :

$$4d_0 + d_1 + d_3 = \frac{12}{\pi}$$

$$d_0 + 4d_1 + d_2 = 0$$

$$d_1 + 4d_2 + d_3 = -\frac{12}{\pi}$$

$$d_0 + d_2 + 4d_3 = 0$$

Resolvendo por eliminação gaussiana com 4 algarismos significativos, chegamos em

$$d_0 = 0.9550, d_1 = 2.667 \times 10^{-4}, d_2 = -0.9550, d_3 = -5.626 \times 10^{-6}$$

Resultado muito próximo daquele obtido via spline natural.