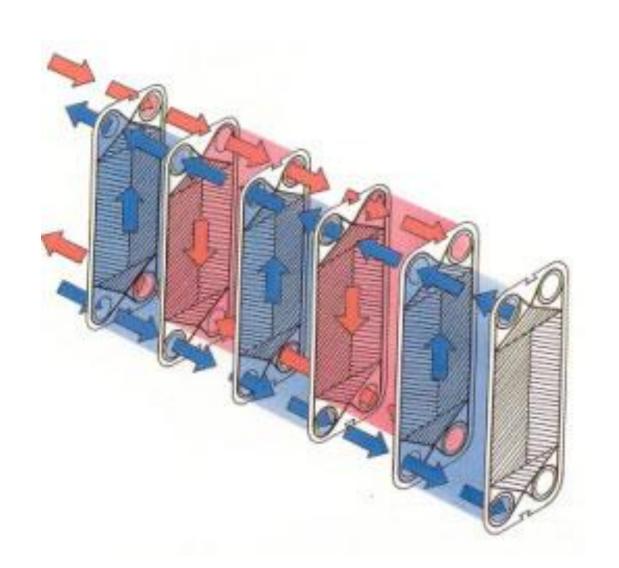
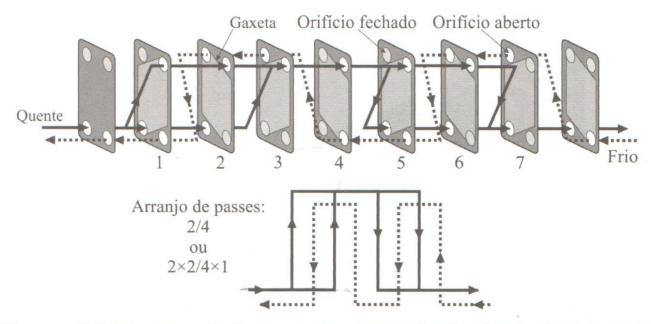

OPERAÇÕES UNITÁRIAS II

AULA 4:

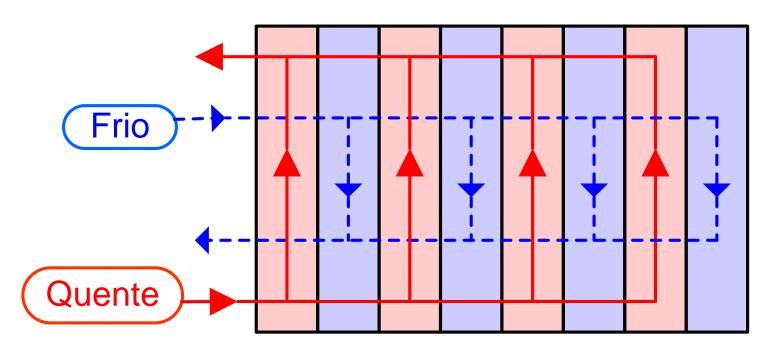

- DIMENSIONAMENTO DE TROCADORES DE CALOR A PLACAS

- ANÁLISE DE TROCADORES: MLDT E NUT

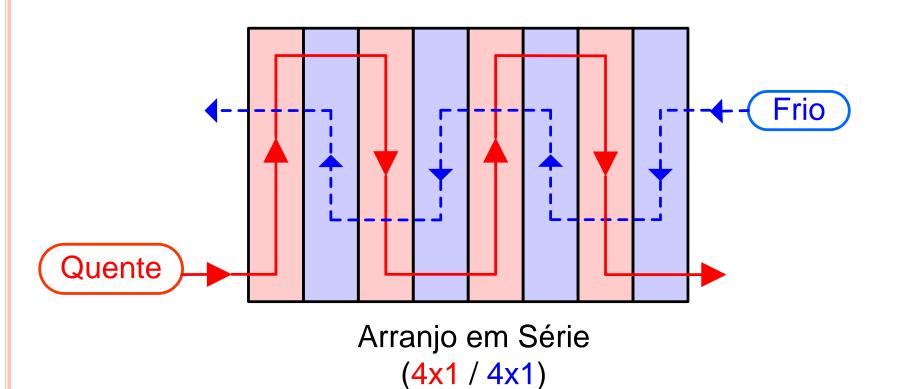
Profa. Dra. Milena Martelli Tosi

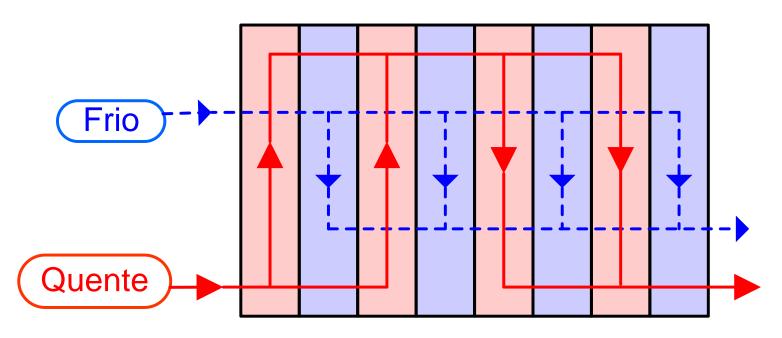


exch.html

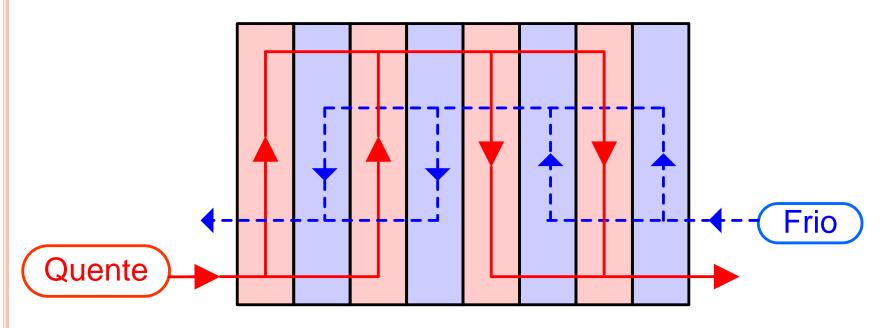

Trocador a placas

Arranjo de passes: lado quente → 2x2 (dois passes no trocador em dois canais) lado frio → 4x1 (quatro passes no trocador 1 canal)




Figura 10.9 Uma possibilidade de arranjo de passes para um trocador de calor de placas com nove placas e, consequentemente, oito canais de escoamento.

<u>Gaxetas</u>: juntas em elastômero responsáveis pela vedação entre os meios de troca e a atmosfera que equipam as placas.



Arranjo Paralelo Tipo U (1x4 / 1x4)

Arranjo Multipasse Assimétrico (2x2 / 1x4)

Arranjo Multipasse Simétrico (2x2 / 2x2)

TROCADORES A PLACA

- Regime laminar: Re < 400 (o limite é diferente de tubos)
- Regime turbulento: Re > 400
- *Utilizar diâmetro hidráulico (D_e):
- Correlações mais utilizadas:
 - Turbulento:

$$(Nu) = 0.374 (Re)^{2/3} (Pr)^{1/3} (\eta/\eta_w)^{0.15}$$

• Laminar:

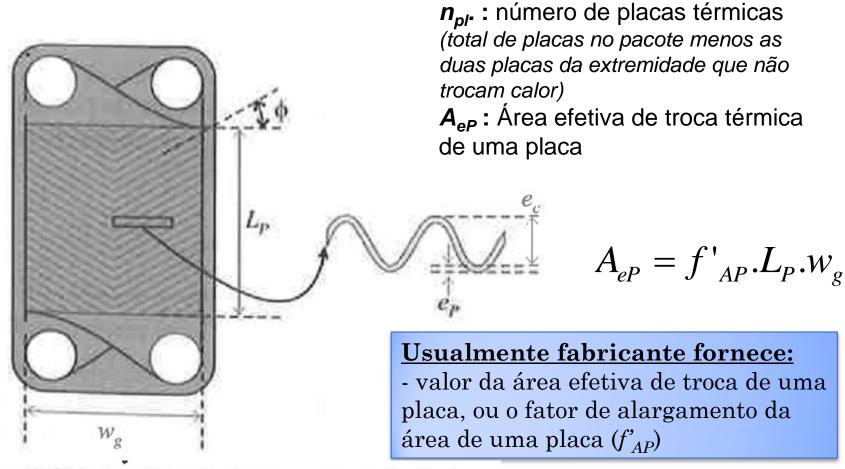
$$h = 0.742 \hat{C}_P G(\text{Re})^{-0.62} (Pr)^{-2/3} (\eta/\eta_w)^{0.14}$$

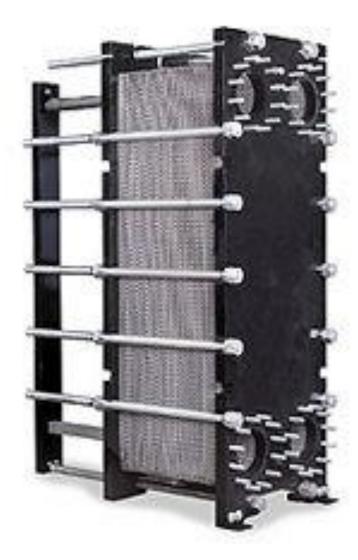
$$\left(\text{Re}\right) = \frac{\rho \ v D_e}{\eta} = \frac{G D_e}{\eta}$$

Também é possível resolver os problemas utilizando-se as correlações para escoamento interno em tubos , levando em conta o diâmetro hidráulico (seria uma aproximação).

Trocador de placas CUPLINE Product < Steam -Product -Condensate

Incrustação de leite em trocador à placas





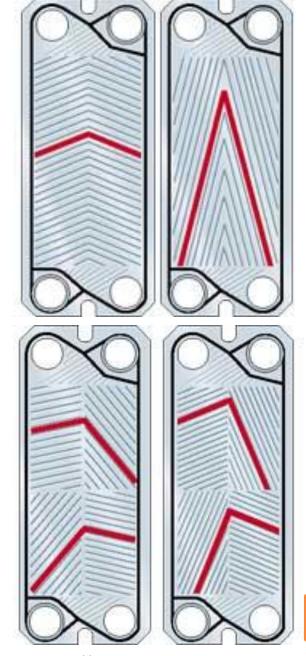

Área de troca térmica em trocadores a placas: $A = n_{pl} \cdot A_{eP}$

Figura 10.18 Principais dimensões de um trocador de calor de placas, em que L_p é o comprimento da parte corrugada; w_g é a largura entre as gaxetas; e_p é a espessura da placa; e_c é a espessura do canal e ϕ é o ângulo da corrugação.

http://www.apiheattransfer.com

http://www.swepphe.com

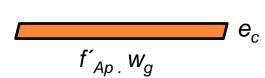
Coeficiente convectivo no canal de um trocador a placas com padrão

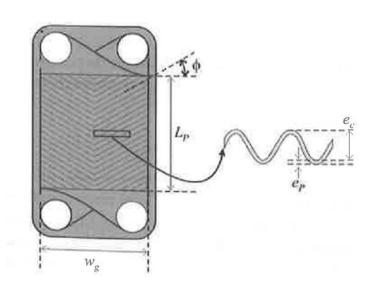
pinha de peixe":
$$Nu = b_1 (\text{Re})^{b2} (\text{Pr})^{0.33} \left(\frac{\mu}{\mu_p^{\text{Re}}}\right)^{0.14} : utilizarD_h$$
 Tabela 10.3 Parâmetros de troca térmica para um trocad $D_h = \frac{4.A_s}{P_w} = \frac{4e_c w_g}{2(f_{AP}^{'}w_g + \frac{h_s}{2})^{0.14}}$

ф	N_{Re}	b_1	b_2
< 200	≤ 10	0,718	0,349
≤30°	> 10	0,348	0,663
45°	< 10	0,718	0,349
	10 - 100	0,400	0,598
	> 100	0,300	0,663
50°	< 20	0,630	0,333
	20 - 300	0,291	0,591
	> 300	0,130	0,732
60°	< 20	0,562	0,326
	20 - 400	0,306	0,529
	> 400	0,108	0,703
≥ 65°	< 20	0,562	0,326
	20 - 500	0,331	0,503
	> 500	0,087	0,718

Fonte: Saunders (1988).

- Regime laminar: Re < 400 (o limite é diferente de tubos)
- Regime turbulento: Re > 400


Coeficiente convectivo no canal de um trocador a placas com padrão

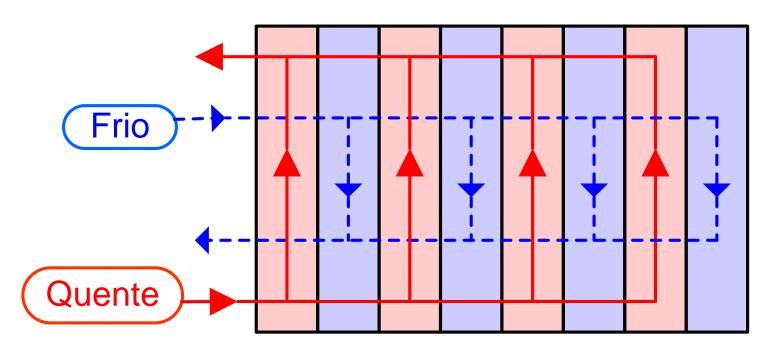

"espinha de peixe":

$$Nu = b_1 (\text{Re})^{b2} (\text{Pr})^{0.33} \left(\frac{\mu}{\mu_p}\right)^{0.17}$$

Re: utilizar diâmetro hidráulico: 4.A_s/P_w

$$D_h = \frac{4e_c w_g}{2(f_{AP} w_g + e_c)}$$

Para a velocidade média (v):


Como f'_{Ap} , $W_g >>> e_c$

$$D_h = \frac{4e_c \kappa_g}{2f_{AP} \kappa_g}$$

$$D_h = \frac{4e_c}{2f_{AP}}$$

$$\overline{v} = \frac{\mathcal{L}}{\left(\frac{n_c}{n_n}\right)A}$$

 n_c : número de canais n_p : número de passes Q: vazão volumétrica (uniformemente distribuída entre os canais de um passe)

Arranjo Paralelo Tipo U (1x4 / 1x4)

Recapitulando...

$$q = U_i.A_i.\Delta T_{ml} = U_e.A_e.\Delta T_{ml}$$

Análise térmica:

- Suposições: U constante ao longo de todo o trocador;
 - Em cada seção perpendicular do trocador, as temperaturas dos fluidos podem ser representadas por temperaturas médias;
 - Perdas de calor para o ambiente são nulas e o processo ocorre em regime permanente (equipamento já aquecido);
 - Calores específicos dos fluidos são constantes.

ANÁLISE DE TROCADORES: MÉDIA LOGARÍTMICA DA TEMPERATURA (MLDT)

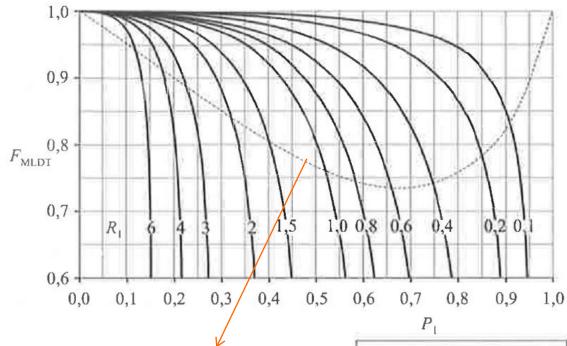
LOG MEAN TEMPERATURE DIFFERENCE (LMTD)

FATOR DE CORREÇÃO PARA GEOMETRIA E ESCOAMENTO

Trocadores com múltiplos passes e com escoamento cruzado:

As equações anteriores podem ser utilizadas caso a seguinte modificação seja efetuada na média logarítmica das diferenças de temperaturas.

$$\Delta T_{\rm ml} = F \, \Delta T_{\rm ml,CC}$$


F: Fator de correção calculado com a hipótese de escoamento em contracorrente.

Foram desenvolvidas expressões algébricas para o fator de correção F para diversas configurações de trocadores de calor casco e tubos e trocadores de calor com escoamento cruzado.

Considerações para cálculos

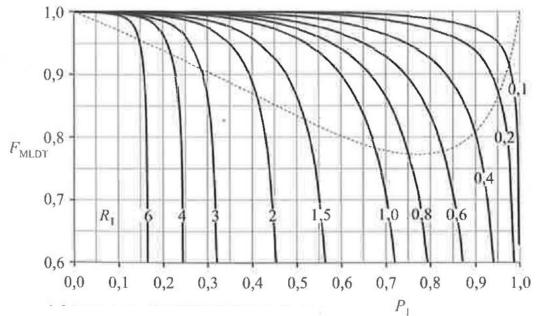
- A temperatura do fluido é a mesma em todas as secções transversais do trocador;
- A taxa de transferência é constante;
- O calor transferido é igual ao calor recebido;
- O <u>calor específico</u> do fluido é constante;
- A <u>vazão mássica</u> de cada fluido é constante;
- Não há mudança de fase (evaporação ou condensação);
- As trocas de calor para o ambiente são desprezíveis.

TROCADORES DE CALOR CASCO E TUBOS

Gráficos são cortados por uma linha pontilhada:

- Região <u>abaixo da linha</u>: "instabilidade", pois se tem grande variação no valor de F_{MLDT} com uma pequena mudança de P₁ (uma oscilação nas condições do processo pode provocar queda abrupta da F_{MLDT} e inviabilizar a troca térmica do equipamento;
- Recomendado trabalhar em F_{MLDT} ≥ 0,75 (valores abaixo estão associados a baixos potenciais térmicos).

$$T_{1e} \downarrow T_{2s}$$

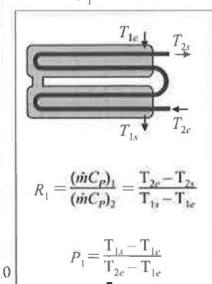
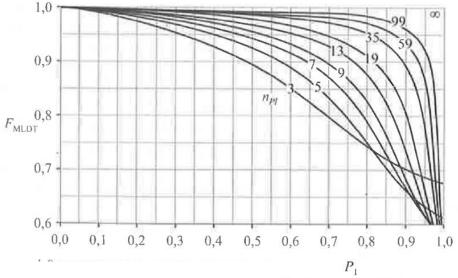
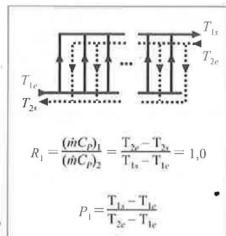

$$T_{2e}$$

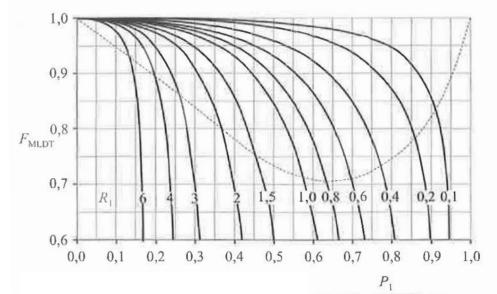
$$R_{1} = \frac{(\dot{m}C_{p})_{1}}{(\dot{m}C_{p})_{2}} = \frac{T_{2e} - T_{2s}}{T_{1s} - T_{1e}}$$

$$P_{1} = \frac{T_{1s} - T_{1e}}{T_{2e} - T_{1e}}$$

Figura 10.12 Fator de correção da MLDT (F_{MLDT}) para um trocador de calor de casco e tubos com um passe no lado do casco (índice 1) e com um número par de passes nos tubos (índice 2) (arranjos 1/2, 1/4, 1/6 etc.).

TROCADORES DE CALOR CASCO E TUBOS


Figura 10.13 Fator de correção da MLDT (F_{MLDT}) para um tro-

cador de calor de casco e tubos com dois passes no lado do casco (índice 1) e com um número de passes múltiplo de quatro nos tubos (índice 2) (arranjos 2/4, 2/8, 2/12 etc.).

Figura 10.14 Fator de correção da MLDT (F_{MLDT}) para um trocador de calor de placas contracorrente com arranjo de passes 1/1, número ímpar de placas térmicas e razão entre as capacidades térmicas $R_1 = 1,0$.

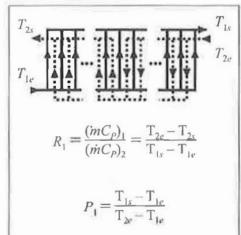


Figura 10.15 Fator de correção da MLDT (F_{MLDT}) para um trocador de calor de placas com arranjo de passes 1/2 ou 2/1 e entrada em cantos diametralmente opostos do pacote de placas. Como foi assumida a hipótese de número infinito de placas, o valor de n_{Pl} pode ser par ou ímpar.

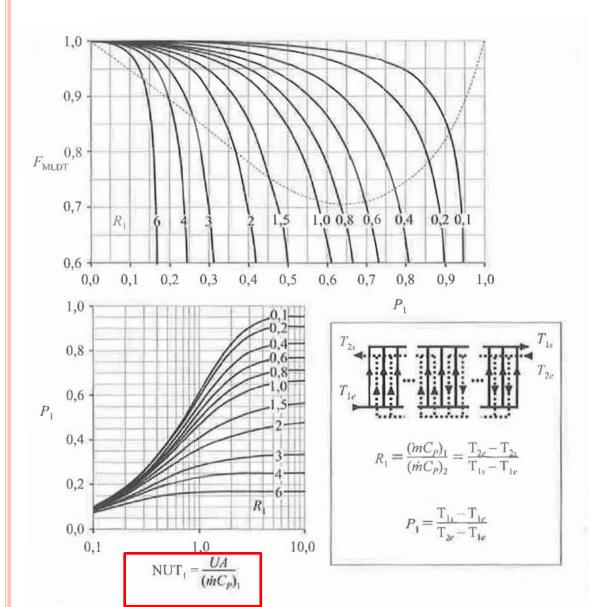


Figura 10.15 Fator de correção da MLDT (F_{MLDT}) para um trocador de calor de placas com arranjo de passes 1/2 ou 2/1 e entrada em cantos diametralmente opostos do pacote de placas. Como foi assumida a hipótese de número infinito de placas, o valor de n_{Pl} pode ser par ou ímpar.

ANÁLISE DE TROCADORES: MÉTODO EFETIVIDADE – NUT "NÚMERO DE UNIDADES DE TRANSFERÊNCIA"

- Número de Unidades de Transferência: representa o tamanho térmico de um trocador
- É o método mais adequado quando apenas as temperaturas na entrada forem conhecidas.
- Para definir a efetividade de um trocador de calor, devemos em primeiro lugar determinar a máxima taxa de transferência de calor possível em um trocador de calor.

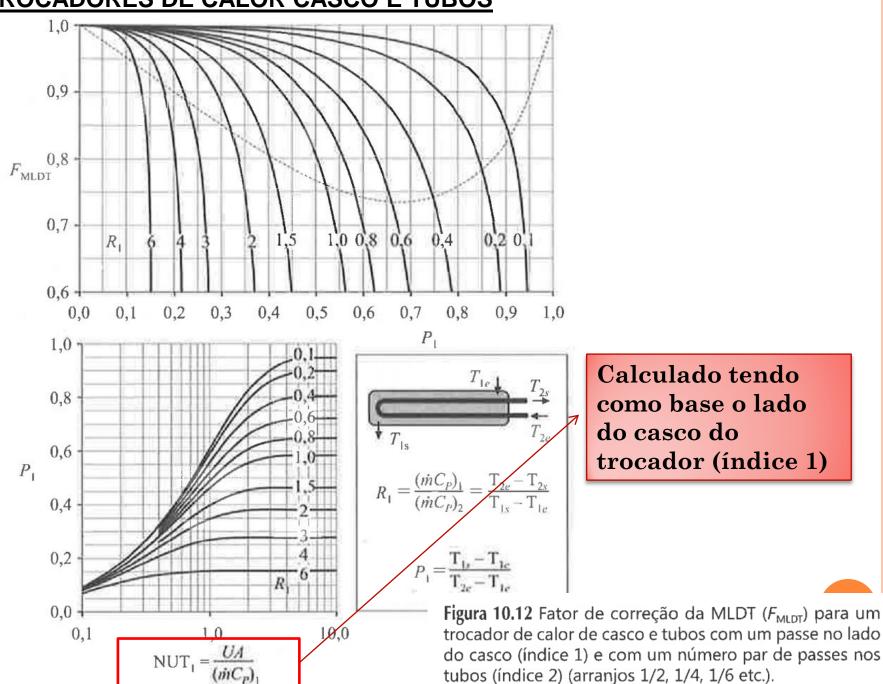
$$\dot{q}_{\text{max}} = C_{\text{min}} (T_{q,e} - T_{f,e})$$

Ou seja; $q_{max} = C_{min} \Delta T_{max}$, em que " $C_{min} = m.C_p$ "

- A <u>efetividade térmica</u> η_e (ou eficiência térmica) é definida como a razão entre a taxa real de transferência de calor em um trocador de calor e a taxa máxima de transferência de calor possível.

$$\eta_e = \frac{\dot{q}}{\dot{q}_{\mathrm{max}}}$$

$$\eta_e = \frac{U.A.\Delta T_{\mathrm{efetivo}}}{C_{\mathrm{min}}\Delta T_{\mathrm{m\acute{a}ximo}}}$$


- Se os valores de η_e , $T_{q,e}$ e $T_{f,e}$ for em conhecidos, a taxa real de transferência de calor pode ser determinada:

$$\dot{q} = \eta_e C_{\min} (T_{q_{,e}} - T_{f_{,e}})$$

- O número de unidades de transferência de calor (NUT) é um parâmetro adimensional amplamente utilizado na análise de trocadores de calor, sendo definido pela expressão:

$$NUT = \frac{U.A}{C_{\min}} = \frac{U.A}{\left(\dot{m}.C_p\right)_{\min}}$$

TROCADORES DE CALOR CASCO E TUBOS

- O número de unidades de transferência de calor (NUT) é um parâmetro adimensional amplamente utilizado na análise de trocadores de calor, sendo definido pela expressão:

$$NUT = \frac{U.A}{C_{\min}} = \frac{U.A}{\left(\dot{m}.C_{p}\right)_{\min}} \qquad \qquad \eta_{e} = \frac{U.A.\Delta T_{efetivo}}{C_{\min}\Delta T_{m\acute{a}ximo}}$$

Relações entre efetividade e NUT

RELAÇÕES EFETIVIDADE-NUT

TABELA 11.3	Relações para a	Efetividade de	Trocadores de Calor
-------------	-----------------	----------------	---------------------

Configuração do Escoamento	Relação	min ee delamin
Tubos Concêntricos	Westerlie and the commence of the state of t	Anthropy and a control
Escoamento em paralelo	$\varepsilon = \frac{1 - \exp\left[-\text{NUT}(1 + C_r)\right]}{1 + C_r}$	(11.29a)
Escoamento em contracorrente	$\varepsilon = \frac{1 - \exp[-\text{NUT}(1 - C_r)]}{1 - C_r \exp[-\text{NUT}(1 - C_r)]} \qquad (C_r < 1)$	
	$e = \frac{\text{NUT}}{1 + \text{NUT}} \qquad (C_r = 1)$	(11.30a)
Casco e tubos Um passe no casco (2, 4, passes nos tubos)	$\varepsilon_1 = 2 \bigg\{ 1 + C_r + (1 + C_r^2)^{1/2} \bigg\}$	
	$\times \frac{1 + \exp\left[-\text{NUT}(1 + C_r^2)^{1/2}\right]}{1 - \exp\left[-\text{NUT}(1 + C_r^2)^{1/2}\right]} \right\}^{-1}$	(11.31a)
n passes no casco (2n, 4n, passes nos tubos)	$\varepsilon = \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - 1 \right] \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - C_r \right]^{-1}$	(11.32a)
Escoamento cruzado (único passe)		
Ambos os fluidos não-misturados	$\varepsilon = 1 - \exp\left[\left(\frac{1}{C_r}\right)(\text{NUT})^{0.22} \left\{\exp\left[-C_r(\text{NUT})^{0.78}\right] - 1\right\}\right]$	(11.33)
C_{\min} (misturado), C_{\min} (não-misturado)	$\varepsilon = \left(\frac{1}{C_r}\right)(1 - \exp\left\{-C_r\left[1 - \exp\left(-\text{NUT}\right)\right]\right\})$	(11.34a)
C_{\min} (misturado), C_{\max} (não-misturado)	$\varepsilon = 1 - \exp(-C_r^{-1}\{1 - \exp[-C_r(\text{NUT})]\})$	(11.35a)
Todos os trocadores $(C_r = 0)$	$\varepsilon = 1 - \exp(-\text{NUT})$	(11.36a)

RELAÇÕES EFETIVIDADE-NUT

Configuração do Escoamento	Relação	
Tubos Concêntricos		till breeding provinces
Escoamento em paralelo	$NUT = -\frac{\ln\left[1 - \varepsilon(1 + C_r)\right]}{1 + C_r}$	(11.29b)
Escoamento em contracorrente	$NUT = \frac{1}{C_r - 1} \ln \left(\frac{\varepsilon - 1}{\varepsilon C_r - 1} \right) \qquad (C_r < 1)$	
	$NUT = \frac{\varepsilon}{1 - \varepsilon} \qquad (C_r = 1)$	(11.30b)
Casco e tubos		
Um passe no casco	$NUT = -(1 + C_r^2)^{-1/2} \ln \left(\frac{E - 1}{E + 1} \right)$	(11.31b)
(2, 4, passes nos tubos)	$E = \frac{2l\varepsilon_1 - (1 + C_r)}{(1 + C_r^2)^{1/2}}$	(11.31c
n passes no casco (2n, 4n, passes nos tubos)	Use as Equações 11.31b e 11.31c com	
Escoamento cruzado (único passe)	$\varepsilon_1 = \frac{F-1}{F-C_r}, F = \left(\frac{\varepsilon C_r - 1}{\varepsilon - 1}\right)^{1/n}$	(11.32b,c)
$C_{\text{máx}}$ (misturado), $C_{\text{mín}}$ (não-misturado)	$NUT = -\ln\left[1 + \left(\frac{1}{C_r}\right)\ln\left(1 - \varepsilon C_r\right)\right]$	(11.34b)
C_{\min} (misturado), C_{\min} (não-misturado)	$NUT = -\left(\frac{1}{C_r}\right) \ln \left[C_r \ln \left(1 - \varepsilon\right) + 1\right]$	(11.35b)
Todos os trocadores $(C_r = 0)$	$NUT = -\ln(1-e)$	(11.36b)

Exemplo 1

Leite recém-pasteurizado é resfriado em um trocador de calor a placas antes da etapa de embalagem. O trocador tem arranjo 2x10 e 1x21 para os fluidos quente e frio, respectivamente. A alimentação do leite é de 3800 kg/h com T = 45°C. Água de resfriamento a 2,0°C é alimentada no trocador com uma vazão de 6700 kg/h no canto oposto ao da alimentação do leite.

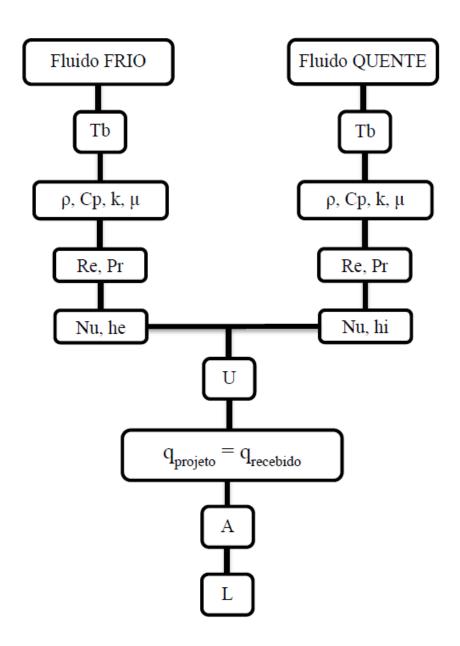
As propriedades médias do leite são:

- densidade: ρ = 1010 kg.m⁻³ - Calor específico: C_p = 3643 J.kg⁻¹K⁻¹ - Viscosidade: μ = 1,32 mPa.s - Condutividade térmica: k=0,59 W.K⁻¹.m⁻¹

As propriedades médias da água são:

- densidade: ρ = 1000 kg m⁻³ - Calor específico: C_p = 4210 J.kg⁻¹K⁻¹ - Viscosidade: μ = 1,48 mPa.s - Condutividade térmica: k=0,58 W.K⁻¹.m⁻¹

As características da placa tipo espinha de peixe ($f = 50^{\circ}$) são:


- Largura entre as gaxetas: $w_g = 42$ cm; - Espessura da placa: $e_p = 0.7$ mm; - Espessura do canal: $e_c = 3.5$ mm; - Fator de alargamento da área da placa: $f_{AP} = 1.15$; - Condutividade térmica do material da placa: $k_m = 17$ W.K⁻¹.m⁻¹

- Assumir $F_{MLDT} = 0.85$

We

Organize os cálculos, projete o trocador e responda:

- A) Desenhe a distribuição das vazões nesse trocador de calor e determine o número de placas térmicas onde ocorre escoamento em contracorrente e o número de placas térmicas onde ocorre escoamento em concorrente.
- **B)** Determine o coeficiente global de troca térmica (*U*) limpo e sujo, levando em conta um fator de incrustação de 3.10⁻⁵ K.m².W⁻¹ para a água e um valor 10x maior para o leite.
- C) Determine a carga térmica, sabendo que a temperatura de saída do leite é 14,6°C. Qual será então a temperatura de saída da água?
- D) Determine a área de troca térmica considerando as incrustações, e o comprimento da parte corrugada da placa (L_p)

