

Universidade de São Paulo - USP

Instituto de Química de São Carlos - IQSC Pós-Graduação em Química Disciplina: Tópicos em Nanociências Prof. Frank N. Crespilho

SQF5850

Tópicos em Nanociência e Nanotecnologia

NANOSCIENCE AND NANOTECHNOLOGY

The ideas and concepts behind nanoscience and nanotechnology started with a talk entitled "**There's Plenty of Room at the Bottom**" by physicist Richard Feynman at an American Physical Society meeting at the California Institute of Technology (CalTech) on December 29, 1959, long before the term nanotechnology was used.

NANOSCIENCE AND NANOTECHNOLOGY

http://www.nano.gov

(Nano) Material, Science, Technology

Matter and Energy are manifestations of the universe they exist in a variety of forms and interact with each other in many ways.

Nano means 10⁻⁹. (Nanometer is one thousand Millionth of a Meter)

To understand how small one nm is let us see few comparisons

- 1. A Red blood cell is approximately 7000nm wide.
- 2. Water Molecule is almost **0.3nm** across.
- 3. Human hair which is about **80,000nm** wide

Nano Material

- 1. Nano Materials could be defined as the materials with at least one of its dimensions in the range of a Nano meter.
- 2. Thus the material need not be so small that it cannot be seen, it can be a large surface or a long wire whose thickness is in the scale of Nanometers.
- 3. Materials that are Nano scale in one dimension are layers, such as a Thin films or Surface coatings.
- 4. Materials that are Nano Scale in two dimensions include Nano wires and Nano tubes.
- 5. Materials that are Nano scale in three dimensions are particles for example precipitates, colloids and quantum dots (Small particles of Semiconductor Materials)

Nano Science

Nano Science can be defined as the study of phenomena and manipulation of materials at Atomic, Molecular and Macromolecular scales where properties differ significantly from those at a larger scale.

Nano Science is the study and understanding of properties of Nano Particles.

Why properties of Nano Materials are different ?

The properties of Nano Materials are very much different from those at a larger scale. Two principal factors cause the properties of Nano Materials to differ significantly from other materials.

1.Increased relative surface area.

2.Quantum confinement effect.

These factors can charge or enhance properties such as reactivity, strength and electrical characteristics.

Increase in a Surface Area to Volume ratio

Nano Materials have a relatively larger Surface area when compared to the same volume or mass of the material produced in a larger form.

Let us consider a Sphere of radius "r". Its Surface Area = $4\pi r^{2}$. Its volume= $4/3\pi r^3$ Surface Area to Volume Ratio= 3/r. Thus when the radius of the Sphere decreases , its Surface to Volume ratio increases.

surface area = $6 \times 1m^2 \Rightarrow 6m^2$

- Let us consider one Cubic Volume shown in figure its the Surface Area is $6m^2$.
- When it is divided into eight pieces its Surface Area becomes 12m², similarly When the same volume is divided into 27 pieces its Surface Area becomes 18m².
- Thus we find that when the given volume is divided into smaller pieces the Surface Area increases.
- Hence as particle size decreases a greater proportion of atoms are found at the surface compared to those inside.
- Nano particles have a much greater surface area per given volume compared with larger particles. It makes materials more Chemically reactive.

Quantum Confinement

In Nano Crystals, the Electronic energy levels are not continuous as in the bulk but are discrete (finite density of states), because of the confinement of the electronic Wave function to the physical dimensions of the particles. This phenomenon is called Quantum confinement and therefore Nano Crystals are also referred to as quantum dots (QDs).

Overview of Quantum Confinement

History: In 1970 Esaki & Tsu proposed fabrication of an artificial structure, which would consist of alternating layers of 2 different semiconductors with

Layer Thickness

 $\approx 1 \text{ nm} = 10 \text{ Å} = 10^{-9} \text{ m} = SUPERLATTICE}$

- *PHYSICS*: The *main idea* was that introduction of an *artificial periodicity* will "fold" the Brillouin Zones into smaller BZ's ≡ "mini-zones".
- ⇒ The idea was that this would raise the conduction band minima, which was needed for some device applications.

- Modern growth techniques (starting in the 1980's), especially MBE & MOCVD, make fabrication of such structures possible!
- For the same reason, it is also possible to fabricate <u>many other</u> <u>kinds</u> of artificial structures on the scale of nm

 $(nanometers) \equiv "Nanostructures"$

Superlattices Quantum Wells Quantum Wires Quantum Dots

- = "2 dimensional" structures
- = "2 dimensional" structures
- = "1 dimensional" structures
- = "<u>0 dimensional</u>" structures!!
- Clearly, it is not only the electronic properties of materials which can be drastically altered in this way. Also, vibrational properties (phonons). Here, only electronic properties & only an overview!
- For many years, quantum confinement has been a fast growing field in both theory & experiment! It is at the forefront of current research!
- Note that I am not an expert on it!

Quantum Confinement in Nanostructures: Overview

Electrons <u>Confined in 1 Direction</u>: Quantum Wells (thin films): ⇒ Electrons can easily move in <u>2 Dimensions</u>!

Electrons <u>Confined in 2 Directions</u>: Quantum Wires: ⇒ Electrons can easily move in <u>1 Dimension</u>!

Electrons <u>Confined in 3 Directions</u>: Quantum Dots: ⇒ Electrons can easily move in <u>0 Dimensions</u>!

Each further confinement direction changes a continuous k component to a discrete component characterized by a quantum number n. Consider the 1st Brillouin Zone for the infinite crystal.
The maximum wavevectors are of the order

$\mathbf{k}_{\mathrm{m}} \approx (\pi/\mathrm{a})$

a = lattice constant. The potential **V** is periodic with period **a**. In the almost free e^- approximation, the bands are free e^- like except near the Brillouin Zone edge. That is, they are of the form:

$\mathbf{E} \approx (\hbar \mathbf{k})^2 / (2\mathbf{m}_0)$

So, the <u>energy at the Brillouin Zone edge</u> has the form:

$$E_{\rm m} \approx (\hbar k_{\rm m})^2 / (2m_{\rm o})$$

or
$$E_{\rm m} \approx (\hbar \pi)^2 / (2m_{\rm o}a^2)$$

- <u>SUPERLATTICES</u> = Alternating layers of material. Periodic, with periodicity L (layer thickness). Let \mathbf{k}_{z} = wavevector perpendicular to the layers.
- In a superlattice, the potential V has a *new periodicity* in the z direction with periodicity L >> a
 - ⇒ In the z direction, the Brillouin Zone is much smaller than that for an infinite crystal. The maximum wavevectors are of the order: $k_s \approx (\pi/L)$
 - \Rightarrow At the BZ edge in the z direction, the energy has the form:

 $\mathbf{E}_{s} \approx (\hbar\pi)^{2} / (2\mathbf{m}_{o}\mathbf{L}^{2}) + \mathbf{E}_{2}(\mathbf{k})$

E₂(**k**) = the 2 dimensional energy for **k** in the **x**,**y** plane. Note that: $(\hbar\pi)^2/(2m_0L^2) << (\hbar\pi)^2/(2m_0a^2)$

Primary Qualitative Effects of Quantum Confinement

• Consider *electrons confined along 1 direction* (say, z) to a layer of width L:

Energies

The *energy bands are <u>quantized</u>* (instead of continuous) in
k_z & shifted upward. So k_z is quantized:

 $k_z = k_n = [(n\pi)/L], n = 1, 2, 3$

So, in the effective mass approximation (m*), *the bottom of the conduction band is quantized* (like a particle in a 1 d box) & shifted:

 $E_n = (n\hbar\pi)^2 / (2m^*L^2)$

• *Energies are quantized!* Also, the *wavefunctions are 2 dimensional Bloch functions (traveling waves)* for k in the x,y plane & *standing waves in the z direction*.

Quantum Confinement Terminology Quantum Well = QW

= A single layer of material A (layer thickness L), sandwiched between 2
macroscopically large layers of material B. Usually, the bandgaps satisfy:

$E_{gA} < E_{gB}$ <u>Multiple Quantum Well</u> = MQW

= Alternating layers of materials A (thickness L) & B (thickness L'). In this case: L' >> L

So, the e^- & e^+ in one A layer are independent of those in other A layers.

$\underline{Superlattice} \equiv SL$

= Alternating layers of materials $\mathbf{A} \& \mathbf{B}$ with similar layer thicknesses.

Brief Elementary Quantum Mechanics & Solid State Physics Review

- **Quantum Mechanics** of a Free Electron:
 - The energies are <u>continuous</u>: $\mathbf{E} = (\hbar \mathbf{k})^2 / (2\mathbf{m}_0)$ (1d, 2d, or 3d)
 - The wavefunctions are <u>traveling waves</u>:

 $\psi_k(\mathbf{x}) = \mathbf{A} \ \mathbf{e}^{\mathbf{i}\mathbf{k}\mathbf{x}}$ (1d) $\psi_k(\mathbf{r}) = \mathbf{A} \ \mathbf{e}^{\mathbf{i}\mathbf{k}\mathbf{\cdot r}}$ (2d or 3d)

- <u>Solid State Physics</u>: Quantum Mechanics of an Electron in a Periodic Potential in an infinite crystal :
 - The energy bands are (approximately) <u>continuous</u>: $E = E_{nk}$
 - At the bottom of the conduction band or the top of the valence band, in the effective mass approximation, the bands can be written:

$$\mathbf{E}_{\mathbf{nk}} \cong (\hbar \mathbf{k})^2 / (2\mathbf{m}^*)$$

– The wavefunctions are Bloch Functions = <u>traveling waves</u>:

$$\Psi_{nk}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} \ \mathbf{u}_{nk}(\mathbf{r}); \ \mathbf{u}_{nk}(\mathbf{r}) = \mathbf{u}_{nk}(\mathbf{r}+\mathbf{R})$$

Some Basic Physics

• Density of states (DoS) $DoS = \frac{dN}{dE} = \frac{dN}{dk} \frac{dk}{dE}$ in 3D: $N(k) = \frac{k \text{ space vol}}{\text{vol per state}}$ $= \frac{4/3 \pi k^3}{(2\pi)^3 / V}$

Fig. 1. Density of states for charge carriers in structures with different dimensionalities.

Structure	Degree of	dN
	Confinement	dE
Bulk Material	0D	$\sqrt{\mathrm{E}}$
Quantum Well	1D	1
Quantum Wire	2D	$1/\sqrt{E}$
Quantum Dot	3D	δ(Ε)

QM Review: The 1d (infinite) Potential Well ("particle in a box") In all QM texts!!

• We want to solve the **Schrödinger Equation for:**

$$\begin{split} &x < 0, V \rightarrow \infty; 0 < x < L, V = 0; x > L, V \rightarrow \infty \\ &\Rightarrow -[\hbar^2/(2m_o)](d^2\psi/dx^2) = E\psi \end{split}$$

• Boundary Conditions:

 $\psi = 0$ at x = 0 & x = L (V $\rightarrow \infty$ there)

• Energies:

 $E_n = (\hbar n\pi)^2 / (2m_o L^2), \quad n = 1,2,3$

Wavefunctions:

 $\psi_n(\mathbf{x}) = (2/L)^{\frac{1}{2}} \sin(n\pi x/L)$ (a standing wave!)

Qualitative Effects of Quantum Confinement:

Energies are quantized & ψ changes from a traveling wave to a **standing wave**.

In 3Dimensions...

• For the **3D infinite potential well**:

 $\Psi(x, y, z) \sim \sin(\frac{n\pi x}{L_x}) \sin(\frac{m\pi y}{L_y}) \sin(\frac{q\pi z}{L_z}), \text{ n, m, q} = \text{integer}$ Energy levels $= \frac{n^2 h^2}{8mL_x^2} + \frac{m^2 h^2}{8mL_y^2} + \frac{q^2 h^2}{8mL_z^2}$ *Real Quantum Structures aren't this simple!!*

- In **Superlattices & Quantum Wells**, the potential barrier is obviously not infinite!
- In **Quantum Dots**, there is usually ~ **spherical confinement**, not rectangular.
- The simple problem only considers a single electron. But, in real structures, there are many electrons & also holes!
- Also, there is often **an effective mass mismatch** at the boundaries. That is *the boundary conditions we've used are too simple*!

Properties of Nano Materials

Nano Materials have properties that are different from those of bulk materials. Most Nano structure materials are Crystalline in nature and they posses unique properties.

Physical Properties of Nano Particles

Crystal structure of Nano particles is same as bulk structure with different lattice parameters.

The inter atomic spacing decreases with size and this is due to long range electrostatic forces and the short range corecore repulsion.

The Melting point of Nanoparticles decreases with size.

Chemical Properties

The Electronic structure of Nanoparticles is dependent on its size and the ability of Nano cluster to react, depends on cluster size.

The large Surface area to volume ratio the variations in geometry and the electronic structure of Nano particles have a strong effect on catalytic properties.

Electrical properties

The electronic structure of Nano materials is different from its bulk material.

The density of the energy states in the conduction band changes.

When the energy spacing between two energy levels is more than K_BT , energy gap is created.

Nano clusters of different sizes will have different electronic structures and different energy level separations.

The Ionization potential at Nano sizes are higher than that for the bulk materials

Magnetic Properties

The Magnetic Moment of Nano particles is found to be very less when compared them with its bulk size.

Nanoparticles made of semiconducting materials Germanium , Silicon and Cadmium are not Semiconductors.

Applications of Nanomaterials

Chemical Industry:

Automotive Industry:

Fillers for point systems Coating Systems based on Nano composites. Magnetic fluids. Light weight construction Painting Catalysts Sensors

Medicine

Drug delivery systems Active agents Medical rapid tests Antimicrobial agents and coatings.

Agents in cancer therapy.

Electronic Industry

Data memory Displays Laser diodes Glass fibers Filters Conductive, antistatic coatings. **Energy Sources** Fuel cells Solar cells Batteries capacitors.

Cosmetics

Sun protection creams Tooth paste

Átomos e Nanopartículas

Átomos e Nanopartículas

Optical

S. Eustis, M. A. El-Sayed, Chem. Soc. Rev. 2006, 35, 209-217
Nanoparticles

Relative Sizes

Images of Nanoparticles

Monodisperse QD Synthesis

Nanoparticle Growth

Nanospheres

Monodisperse Nanoparticle (spheres)

Nanocubes

Monodisperse silver nanocubes

Nanorods

Monodisperse Nanorod (1D)

Nanorods

Nanowires

Kuykendall et al, Nature Materials, 2004

(Ng et al, APL, 82, 2003)

Differences from Growth

	20 nm Au	60 nm Au	120 nm Au
InAs NW on (111) Si (11.6% mismatch)			
InP NW on (111) Si (8.1% mismatch)		A A A	教
InP NW on (111) GaAs (4.1% mismatch)	$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1}$		

Nanotetrapods

Nanotetrapods (3D)

Growth

Absorption and Emission

Size of Nanoparticles

Size of quantum dots can be used to tune color and emission wavelength

Quantum Confinement: size of particle smaller than de Broglie wavelength of electron and hole

Emission from Colloidal CdSe Quantum Dots Dispersed in Hexane

Size: ~2 nm to 8 nm

Example 1

Find the de Broglie wavelength for an electron moving at the speed of $5.0 imes 10^6~m/s$ (mass of an electron is $9.1 imes 10^{-31}~kg$).

SOLUTION

$$\lambda = rac{h}{p} = rac{h}{mv} = rac{6.63 imes 10^{-34} \; J \cdot s}{(9.1 imes 10^{-31} \; kg)(5.0 imes 10^6 \; m/s)} = 1.46 imes 10^{-10} \; m$$

Quantum Confinement

Charges in semiconductors are a certain "size": they are really waves.

Semiconductor	Wavelength of Fundamental Excitation	
Silicon	~ 20 nm	
CdSe	~ 6 nm	
Gallium Arsenide	~ 10 nm	

Exciton Energy

Size Dependence

The most important optical feature of quantum dots is that their absorption/emission spectra shifts to shorter wavelengths as the size becomes smaller.

The luminescence spectra for InAs, InP and CdSe Quantum Dots is shown below.

ZnSe Absorption and Emission

Core-Shell Materials

Appl. Phys. Lett., 82, 2003, 1966

Effect of Shell

Core-Shell Quantum Dot refers to a Quantum-Dot surrounded by a shell of higher band-gap semiconductor.

Covering the surface of a Quantum Dot reduces non-radiative decay of electrons close to the surface and thus enhances luminescence intensity.

Mixed Materials

Mixed Materials

Core Shell Materials

Semiconductor nanoparticles coated with a second material of wider bandgap usually results in dramatic improvement in luminescence efficiency

- Si/SiO₂
- CdS/Cd(OH)₂, CdSe/ZnSe, CdSe/ZnS,CdS/HgS/CdS, CdSe/CdS
- InAs/GaAs, InAs/InP, InAs/CdSe, InAs/ZnSe, InAs/ZnS

Changes to Bandgap

Wavelength Range

Quantum Confined Lasers

Semiconductor layers also exhibit quantum confinement and can be used to coherently add intra-band emission from multiple layers

QC lasers cover entire midinfrared range (3.4 - 17 μ m) by tailoring layer thickness of the same material

In plastics

Colloidal solutions of CdSe/ZnS coreshell nanocrystals.

CdSe/ZnS core-shell nanocrystals in a polymer matrix

Nanoelectronics

Biological Applications

Bio-labeling

- Detection reagents for microscopy
- DNA chips
- flow cytometry
- immunoassays, ...

QBead[™] encoded beads

Platform for Multiplexed assays:

- proteomics
- genotyping
- gene expression)

Future applications

- Live cell imaging
- in vivo imaging,...

Strong luminescence and photostability

Nanoparticles in Solar Cells

TiO₂ nanoparticles

Ru(II) complex to absorb photons and transfer electron to conduction band of TiO_2

 I^-/I_3 redox relay

Nanoscale Confinement of Matter or Quantum-Confined Materials

Quantum-confined materials refer to structures which are constrained to nanoscale lengths in one, two or all three dimensions. The length along which there is Quantum confinement must be small than de Broglie wavelength of electrons for thermal energies in the medium.

Thermal Energy, E =
$$\frac{mv^2}{2}$$
 = kT de Broglie Wavelength, $\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mkT}}$

Material	Electron effective mass	Hole effective mass		
Group IV				
<u>Si</u> (4.2K)	1.08 me	0.56 me		
Ge	0.55 me	0.37 me		
III-V				
<u>GaAs</u>	0.067 m _e	0.45 me		
<u>InSb</u>	0.013 me	0.6 me		
II-VI				
ZnO	0.19 me	1.21 me		
ZnSe	0.17 <i>m</i> e	1.44 me		

For T = 10 K, the calculated λ in GaAs is 162 nm for Electrons and 62 nm for Holes

For effective Quantum-confinement, one or more dimensions must be less than 10 nm. Structures which are Quantumconfined show strong effect on their Optical Properties. Artificially created structures with Quantum-confinement on one, two or three dimensions are called, Quantum Wells, Quantum Wires and Quantum Dots respectively.

Density of States for Quantum-Confinement

Quantum Well: 1D Confinement

Due to 1-D confinement, the number of continuous energy states in the 2-D phase space satisfy

$$2mE_{2D} = p_x^2 + p_y^2$$

Ouantum Wire: 2-D Confinement

Quantum Wire: 2D Confinement

2D confinement in X and Z directions. For wires (e.g. of InP, CdSe). with rectangular cross-section, we can write:

$$E_{n_1,n_2,k_y} = E_C + \frac{n_1^2 h^2}{8m_e^* {L_x}^2} + \frac{n_2^2 h^2}{8m_e^* {L_z}^2} + \frac{h^2 {k_y}^2}{8\pi^2 m_e^*}$$

Quantum Dot: 3D Confinement For a cubical box with the discrete energy levels are given by:

$$E_{n_1,n_2,n_3} = E_C + \frac{h^2}{8m_e^*} \left(\frac{n_1^2}{L_x^2} + \frac{n_2^2}{L_y^2} + \frac{n_3^2}{L_z^2}\right)$$

Tópicos da Aula

- Rotas Sintéticas: Caminho Top-down (TD) e Caminho Bottom-up (BU)
- Síntese de Nanopartículas Metálicas: Parâmetros Termodinâmicos e Cinéticos
- Agentes Estabilizantes e Fatores que Alteram a Estrutura e Distribuição das Nanopartículas

Caminho Top-down

Síntese de Nanomateriais

Caminho Top-down (TD)

Em TD, a síntese é baseada em atrito ou desgaste de um material pré-selecionado.

Materiais *bulk* com grandes volumes podem ser desgastados até tamanhos reduzidos.

Exemplos:

• Nanolitografia, onde o laser é utilizado para produzir nanocavidades em um substrato.

• Síntese de NPs metálicas

Desvantagens (NPs metálicas): materiais não uniformes, baixa homogeneidade e alto grau de contaminação.
Caminho Bottom-up

Caminho Bottom-up (BU)

Dimensão do nanomaterial:

Ordem 0, 0D : pontos quânticos e nanopartículas (NP)

Ordem 1, 1D: nanofios, nanotubos, nanofitas, nanobastonetes, etc.

Ordem 2, 2D: filmes nanoestruturados (filmes finos)

Ordem 3, 3D: diamante, estruturas em blocos, matrizes porosas

Caminho Bottom-up: Materiais OD

Caminho Bottom-up (BU)

O caminho BU tem sido o mais utilizado, onde a síntese do nanomaterial 0D é baseada em dois processos progressivos, a nucleação e o crescimento (também chamado de subsequent growth).

Nucleação: Por exemplo, métodos de **supersaturação** podem ser utilizados, onde a energia livre de formação do nanomaterial é proporcional a concentração do soluto precursor e inversamente proporcional ao volume atômico.

Surface Processes in Materials Growth & Processing

When a growing sample is nearly in equilibrium with vapor, nucleation and growth is mainly governed by thermodynamics

Homogeneous nucleation: solid (or liquid) clusters nucleated in a supersaturated vapor of pressure P_0

Thermodynamic driving force --- free energy change per unit volume of condensed phase:

 $\Delta G_v = -nkT \ln \left(P_0 / P_\infty \right)$

(P_{∞} : equilibrium vapor pressure over solid, *n*: solid atomic density)

Formation of spherical cluster of radius r: energy increase due to surface energy $4\pi r^2 \gamma$, so total energy change:

 $\Delta G_{\text{homo}}(r) = (4\pi r^3/3)\Delta G_v + (4\pi r^2)\gamma$

When $r > r_{crit}$, the cluster becomes thermodynamically stable

Heterogeneous nucleation: clusters are formed on a substrate (Cluster/substrate interface energy γ_{int} , substrate surface energy γ_s)

Truncated sphere of contact angle:

$$\theta = \cos^{-1}[(\gamma_{\rm s} - \gamma_{\rm int})/\gamma]$$

When $\gamma_s \ge \gamma_{int} + \gamma$, $\theta = 0$, *complete wetting* When $\gamma_{int} \ge \gamma_s + \gamma$, $\theta = 180^\circ$, spherical ball without any wetting

Free energy barrier for stable nucleation:

$$\Delta G_{\rm het} = \Delta G_{\rm homo} (2 + \cos\theta) (1 - \cos\theta)^2 / 4$$

Hetero-nucleation barrier is significantly lower than that of homo-nucleation in general!

Epitaxy: Crystalline film growth on a crystalline substrate in a unique lattice orientation relationship

Growth proceeds as atomic layers stacking up sequentially

Three growth modes Layer-by-layer growth Layer plus island growth Island growth (Frank-van der Merve) (Stranski-Krastanov) (Vollmer-Weber) $\Theta < 1 \, \text{ML}$ $1 ML < \Theta < 2 ML$ $\Theta > 2 ML$

 $\gamma_{int} \leq \gamma_s - \gamma_f$

 $\gamma_{int} \leq \gamma_s - \gamma_f$ with misfit

 $\gamma_{int} \ge \gamma_s - \gamma_f$

Stranski-Krastanov growth of Ge on Si(001)

4% lattice mismatch between Ge & Si

pyramids huts

Wetting layer ~ 2.5 ML Ge, 475 °C, (44nm)² **3D** *islands formation* ~ 3.5 ML Ge, 475°C, (110nm)²

Atomic Processes in Nucleation & Growth

Adsorption, diffusion, incorporation, nucleation, desorption, coarsening

Si islands on Si(001)

1000/T, 1/K

Atomic Diffusion on Terrace

Thermal activated process, hopping frequency:

T, K

19

20

$$v = v_0 \exp(-E_{diff} / kT)$$

$$D = \frac{v_0 a^2}{4} \exp(-E_{diff} / kT)$$

Anisotropic diffusion

Diffusion barriers of Rh on Rh surfaces

Migration of cluster on surface

6

Islands grow in relatively compact shape at a raised T

Fractal islands obtained in hit-and-stick or diffusion-limitedaggregation (DLA) growth

> Equilibrium island shape determined by step free energy anisotropy

$$\Delta G = -(KT/\Omega) \ln (C/C_0)$$

- ΔG = variação da energia livre
- K = constante de Boltzmann
- T = temperatura
- Ω = volume atômico
- C = concentração do soluto
- C₀ = concentração de equilíbrio

Crescimento

 ocorre em várias etapa e seu controle pode ser governado por difusão, reações de superfície (adsorção). Pode ainda haver processos de incorporação irreversível.

Difusão:

$dr/dt = D(C-C_s)V_m/r$

- r = raio da nanopartícula
- t = tempo
- D = coeficiente de difusão
- C = concentração do material no seio da solução
- C_s= concentração do material na superfície
- V_m = volume molar dos núcleos

Difusão

$$dr/dt = D(C-C_s)V_m/r$$

$$\int r dr = \int D(C-C_s)V_m dt$$

$$(r^2 - r_0^2)/2 = D(C-C_s)V_m t, t_0 = 0$$

$$r^2 = 2D(C-C_s)V_m t + r_0^2$$

$$\downarrow$$

$$2D(C-C_s)V_m = K_D *$$

* Para isso temos que negligenciar as mudanças de concentrações no seio da solução

$$r^2 = K_D t + r_0^2$$

D

Consideremos duas partículas com diferentes raios iniciais. A medida que o tempo passa, a diferença entre os raios iniciais diminui, ou seja, começa haver o crescimento da partícula. Logo podemos escrever que:

$$\Delta r = \Delta r_0 r_0 / r$$

Combinando as duas equações anteriores temos que:

$$\Delta r = \Delta r_0 r_0 / (K_{\rm D} t + r_0^2)^{1/2}$$

Difusão

$$\Delta r = \Delta r_0 r_0 / (K_D t + r_0^2)^{1/2}$$

 $\downarrow \Delta r$, $\uparrow r$, $\uparrow t$

 Note que a diferença entre os raios das NPs diminui a medida que o tempo de ração passa e há um crescimento de r

 Em casos onde os processos de formação de NPs são governados por difusão ocorre a formação de partículas com distribuição uniforme

Processo de superfície

 Reações de crescimento de NPs podem ser governadas por processos de superfície, ou seja, para casos onde não existe um limite difusional e pode-se aproximar que a concentração das espécies no seio da solução é a mesma na superfície.

$$dr/dt = k_{\rm m}/r^2$$

onde *k*_mé a constante dependente da concentração das espécies

$$r^2 dr = k_m dt$$

$$1/r = 1/r_0 + k_m t$$

$$\Delta r = \Delta r_0 r^2 / r_0^2$$

$$\Delta r = \Delta r_0 / (1 - k_m r_0 t)^2$$

Processo de superfície

$$\Delta r = \Delta r_0 / (1 - k_m r_0 t)^2$$

• Implicações matemáticas e condição de contorno:

- para tempos prologados, a diferença entre os raios aumenta
- processos de superfície não favorecem a formação de nanoestruras mono-dispersas

Processo de superfície

• Implicações estruturais:

 Como as reações de superfície ocorrem com alta concentração de espécies ao redor da superfície, pode ocorrer a formação de camadas subsequentes sem que a haja a completa formação da primeira camada. Esse processo é chamado de crescimento polinuclear.

 Neste caso, a velocidade de crescimento só depende do número de choques existentes, ou seja, pode-se relacionar o crescimento em função da temperatura:

$$dr/dt = k_p$$

Crescimento de nanopartículas

 $\Delta r / r$ vesus r

Crescimento de nanopartículas

 $\Delta r / r$ vesus t

Crescimento de nanopartículas

Classes de NPs

 $\tau_{sintering} < \tau_{collision} \Rightarrow$ Spherical particle, $\tau_{sintering} > \tau_{collision} \Rightarrow$ Agglomerate.

Fig. 10. Comparison of the sintering of two nanoparticles with a radius of 22.3 Å and an initial temperature of 938 K, between two different initial lattice orientations. The time distance between two frames is not constant.

Kirkendall effect diffusion

The Kirkendall effect is the motion of the boundary layer between two metals that occurs as a consequence of the difference in diffusion rates of the metal atoms. The effect can be observed for example by placing insoluble markers at the interface between a pure metal and an alloy containing that metal, and heating to a temperature where atomic diffusion is possible; the boundary will move relative to the markers.

Kirkendall effect diffusion

Kirkendall effect diffusion

$$\tilde{D} = \mathbf{x}_{A} \mathbf{D}_{B}^{C} + \mathbf{x}_{B} \mathbf{D}_{A}^{C}$$
$$= [\mathbf{x}_{A} \mathbf{D}_{B} + \mathbf{x}_{B} \mathbf{D}_{A}] \left\{ 1 + \frac{\partial \ln \gamma_{A}}{\partial \ln x_{A}} \right\} = [\mathbf{x}_{A} \mathbf{D}_{B} + \mathbf{x}_{B} \mathbf{D}_{A}] \left\{ 1 + \frac{d \ln \gamma_{B}}{d \ln x_{B}} \right\}$$
(2)

This is referred to as **Darken's equation**.

With Darken's equation, the diffusion coefficient of A and B are correlated together, reflecting the 'cooperative' diffusion in substitutional alloys, for example as illustrated above in Kirkendall experiment performed on the zinc-copper alloy diffusion. The interdiffusion coefficient \tilde{D} is determined by both the diffusion coefficient of A and B, whereas in the case of interstitial diffusion as discussed in the last a few lectures, the diffusion coefficient as used in the Fick's law is determined only by that of A or B.

Síntese de NPs metálicas

- Via húmida: Geralmente se utiliza um sal metálico na presença de um agente redutor e um estabilizador
- Agentes redutores são compostos que "doam elétrons" para um agente oxidante, que no caso, podem ser os metais de transição.
- Ex.: ácido fórmico na presença de sal de ouro

```
\begin{array}{c} \mathsf{KAuCl}_4 + \mathsf{HCOOH} \\ \downarrow \\ \mathsf{Au}^0 \end{array}
```

Síntese de NPs metálicas

Influência do agente redutor

• Em geral um **agente redutor forte** promove um reação química rápida e favorece a formação de **partículas menores**.

• Agentes redutores fracos promovem um cinética lenta e a distribuição de tamanho pode ser maior ou menor. A explicação é que uma reação lenta promove a formação de núcleos secundários, formando assim, núcleos de tamanhos diferenciados. Por outro lado, se não há nucleação secundária e se a reação é limitada por difusão, estreitas distribuição de partículas podem ser obtidas.

• Exemplos de agentes redutores comummente usados na preparação de NPs metálicas: ácido fórmico, ácido acético, boroidreto de sódio, acetatos, ácido cítrico, hidrazina (N_2H_4) etc.

Etapas de Síntese de NPs metálicas via Botton-up
Estabilidade em Suspensão

Síntese de NPs metálicas: estabilização com polímeros

Exemplo: RhNP em solução

Condições:

RefluxoAtmosfera de argônio16h

Síntese de NPs metálicas: estabilização com polímeros

Estabilizadores

poly(allylamine hydrochloride) (PAH) 3-mercaptopropionic acid (3-AMP)

$$\begin{bmatrix} -CH - CH_2 - \\ \\ \\ CH_2 \end{bmatrix}^n$$

$$NH_3^+$$

Nanopartículas encapsuladas em dendrímero

 Cavidades servem como nanoreatores

• A molécula possui grupos períféricos que conferem alta estabilidade e solubilidade

PAMAM-Np

 Nanopartículas encapsuladas em dendrímero[†]

Síntese

 $KAuCl_4 + HCOOH^*$

*Crespilho, F. N et. al Electrochem. Commun. 2006, 8, 348.

[†]Crooks, R. M, et. al Accounts of Chemical Research 34, 181.

6.0 nm

1.0 nm

PVA-AgNP

Sistemas Híbridos Bio-nano

Sistemas Híbridos Bio-nano

Sistemas Híbridos Bio-Nano

Sistemas Híbridos Bio-nano

Sistemas Híbridos Bio-nano

100 nm

Síntese de NPs metálicas

Principais fatores que alteram as propriedades morfologias e estruturais das NPs:

- Solvente
- Concentração de agente redutor, estabilizador e percursor metálico
- Estrutura molecular do estabilizador
- рН
- Temperatura
- Pressão
- Tempo de reação

Síntese de NPs metálicas: Efeito da Temperatura

Fig. 3. Size control of THH Pt NCs and their thermal stability. SEM images of THH Pt NCs grown at (**A**) 10, (**B**) 30, (**C**) 40, and (**D**) 50 min. The insets in (A) and (B) are the high-magnification SEM images that confirm the shape of THH. Scale bars, 200 nm. (**E**) Size distributions of THH Pt NCs in (A), B), (C), and (D), respectively, after counting more than 500 particles for each sample. (**F**) In situ TEM observation on the thermal stability of THH Pt NCs. The images were recorded at various temperatures in TEM at a heating rate of 7°C/min. The NC preserves its shape to ~815°C and even higher with a slight truncation at the corners and apexes, as seen in the TEM image.

Elghanian, R. et al. Science, 1997, 277, 1078.

Síntese de NPs metálicas: Efeito do pH

Ponto isoelétrico: 5,62 pKa₁ = 2,16 pKa₁ = 9,08 $pI = \frac{pK_1 + pK_2}{2}$

 $KAuCl_4 + HCOOH$

Au⁰

pH = 9.0

pH = 9.0

<u>Sumário</u>

• Parâmetros termodinâmicos regem a formação inicial da NPs, com $\Delta G = -(KT/\Omega) \ln (C/C_0)$

 Parâmetros cinéticos rege o crescimento das NPs metálicas, onde ocorrem várias etapas e seu controle pode ser governado por <u>difusão</u>, <u>reações de superfície</u> (adsorção). Pode ainda haver processos de <u>incorporação irreversível</u>.

 Principais fatores que alteram a morfologia e distribuição de NPs metálicas: solvente, concentração de agente redutor, estabilizante e percursor metálico, pH, temperatura, pressão, tempo de reação e maturação.