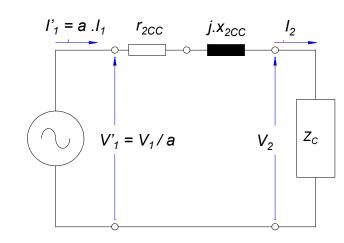
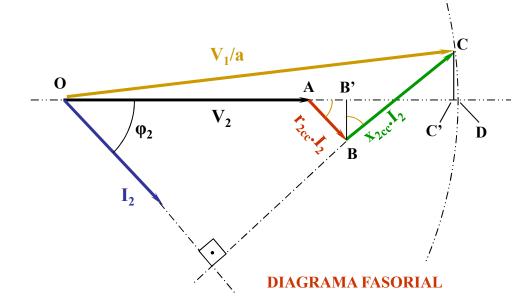

REGULAÇÃO DE TENSÃO DO TRANSFORMADOR EM CARGA

REGULAÇÃO → "VARIAÇÃO DA TENSÃO DE SAÍDA SOB CARGA, A PARTIR DE VAZIO"


$$DEFINIÇÃO FORMAL: R = (|V_{20}| - |V_{2C}|) / |V_{2C}|$$

 V_{20} : TENSÃO SECUNDÁRIA EM VAZIO ; V_{2C} : TENSÃO SECUNDÁRIA EM CARGA



- ightharpoonup $V_{2C} = V_2$: Tensão secundária imposta em seu valor nominal por V_1 para operação sob carga
- $ightharpoonup V_{20} = V_1 \ / \ a:$ tensão resultante em vazio no secundário, para alimentação do primário com V_1

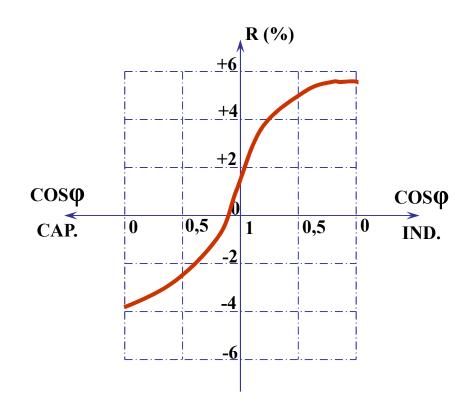
$$R = [(V_1/a) - V_2]/V_2$$

$$R = \frac{|\dot{V_1}/a| - |\dot{V_2}|}{|\dot{V_2}|} = \frac{\overline{O}\overline{C} - \overline{OA}}{\overline{OA}} = \frac{\overline{O}\overline{D} - \overline{OA}}{\overline{OA}} = \frac{\overline{A}\overline{D}}{\overline{OA}} = \frac{\overline{A}\overline{B}' + \overline{B}'\overline{C}' + \overline{C}'\overline{D}}{\overline{OA}}$$

PARA VALORES USUAIS DOS PARÂMETROS $\rightarrow \frac{C'D}{\overline{OA}} << 1 \cong 0$

$$R \cong \frac{\overline{A}\overline{B'} + \overline{B'}\overline{C'}}{\overline{OA}} = \frac{r_{2CC}I_2.\cos\varphi_2 + x_{2CC}I_2.\sin\varphi_2}{V_2}$$

$$R = r_{2CC} \cdot \frac{I_2}{V_2} \cdot \cos \varphi_2 + x_{2CC} \cdot \frac{I_2}{V_2} \cdot \sin \varphi_2 = \frac{r_{2CC}}{Z_{B2}} \cdot \cos \varphi_2 + \frac{x_{2CC}}{Z_{B2}} \cdot \sin \varphi_2$$


 $V_2/I_2 = Z_{B2} \Rightarrow$ impedância de base do secundário ; $r_{2CC}/Z_{B2} = (r_{2CC})_{p.u.}$; $x_{2CC}/Z_{B2} = (x_{2CC})_{p.u.}$

REGULAÇÃO DO TRANSFORMADOR EM p.u.
$$\Rightarrow$$
 $R = (r_{2CC})_{p.u.} \cdot \cos \varphi_2 + (x_{2CC})_{p.u.} \cdot \sin \varphi_2$

 $COSΦ_2 = 1$ \Rightarrow $R = (r_{2CC})_{p.u.}$: regulação <u>numericamente igual à resistência</u> em p.u. para carga *puramente ativa*

 $\cos \phi_2 = 0 \implies R = (x_{2CC})_{p.u.}$: regulação <u>numericamente igual à reatância</u> em p.u. para CARGA PURAMENTE REATIVA

COMPORTAMENTO DA REGULAÇÃO COM O FATOR DE POTÊNCIA DA CARGA

$COS\phi$ CAPACITIVO TAL QUE: R = O

 $\rightarrow \phi \cong \operatorname{arctg} (r_{2CC} / x_{2CC})$

VALORES USUAIS DE PARÂMETROS:

 r_{2CC} : 0,005 – 0,03 p.u.

 x_{2CC} : 0,02 – 0,1 p.u.

$$z_{2CC} = \sqrt{(r_{2CC})^2 + (x_{2CC})^2} \cong x_{2CC}$$

CARACTERIZAÇÃO DAS PERDAS E RENDIMENTO NO TRANSFORMADOR EM CARGA:

PERDAS CONSTANTES: p_C

→ INDEPENDENTES DA

CARGA

PERDAS NO FERRO (HISTERÉTICA E FOUCAULT)

EFEITO DO CAMPO MAGNÉTICO NO NÚCLEO \Rightarrow $p_{FE} \approx V^2$

PERDAS DIELÉTRICAS (POLARIZAÇÃO DOS ISOLANTES)

EFEITO DO CAMPO ELÉTRICO NO SISTEMA ISOLANTE \Rightarrow $p_{DIEL} \approx V^2$

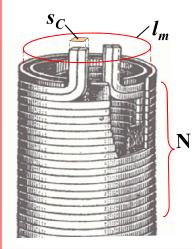
PERDAS VARIÁVEIS: p_V

→ DEPENDENTES DA

CARGA

PERDAS NO COBRE (EFEITO JOULE)

EFEITO DAS CORRENTES NOS CONDUTORES \rightarrow $p_{JOULE} \approx I^2$


PERDAS SUPLEMENTARES (EFEITO JOULE)

EFEITO DOS FLUXOS DISPERSOS NA ESTRUTURA \Rightarrow $p_{SUP} \approx I^2$

PERDAS TOTAIS EM CARGA: $\Sigma p = p_C + p_V$

CARACTERIZAÇÃO DAS PERDAS JOULE - RESISTÊNCIAS EM C.C.

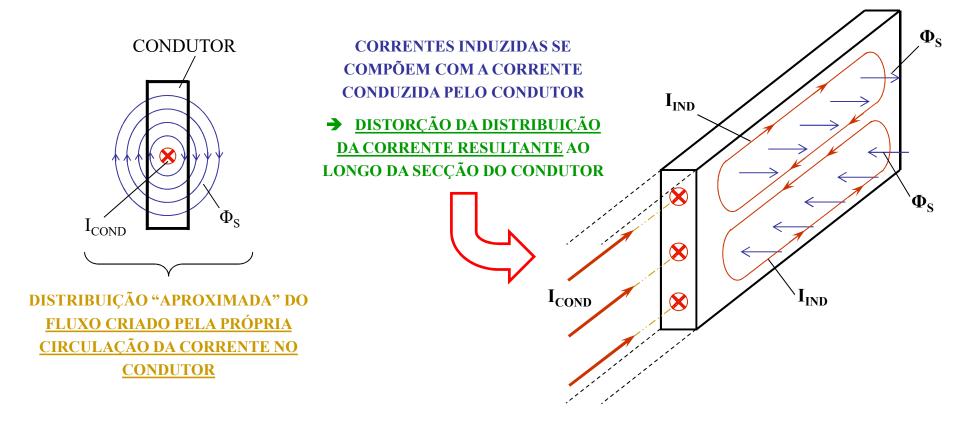
RESISTÊNCIA ÔHMICA DOS ENROLAMENTOS: (RESISTÊNCIA "C.C." OU EM CORRENTE CONTÍNUA)

$$R = \frac{\rho . l_m . N}{S_C} \begin{cases} P : \text{Resistividade do cobre } \Rightarrow 1,72 \text{ x 10° } \text{ 22.m} \\ l_m : \text{comprimento médio do condutor} \\ N : \text{ N° de espiras em } \text{série} \text{ da bobina} \\ S_C : \text{secção reta do condutor} \text{ equivalente} \end{cases}$$

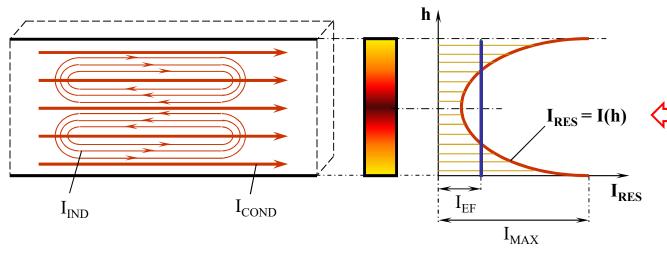
 ρ : Resistividade do cobre \rightarrow 1,72 x 10⁻⁸ Ω .m @ 20°C

$$p_J = R J^2$$

 $p_J = R . I^2$ \Rightarrow PERDA JOULE <u>PRIMÁRIA</u>: $p_{J1} = m.r_1.I_1^2$ \Rightarrow PERDA JOULE <u>SECUNDÁRIA</u>: $p_{J2} = m.r_2.I_2^2$ m: N° DE FASES DOS ENROLAMENTOS


RESISTÊNCIAS ÔHMICAS E PERDAS JOULE DEPENDEM DA TEMPERATURA DO ENROLAMENTO

$$r_{T_2} = r_{T_1}.\frac{234,5+T_2}{234,5+T_1} \begin{cases} r_{T2}: \text{ resistência na temperatura de referência } T_2 \\ r_{T1}: \text{ resistência na temperatura de medição } T_1 \\ 234,5=1/\alpha_{\text{COBRE}} \\ \alpha_{\text{COBRE}} = \text{COEFICIENTE DE VARIAÇÃO TÉRMICA DA RESISTIVIDADE} \end{cases}$$


EFEITOS ADICIONAIS DA CORRENTE - ADENSAMENTO - PERDAS SUPLEMENTARES

CONDUTOR CONDUZINDO CORRENTE ALTERNADA (I_{COND}):

- \rightarrow FLUXO MAGNÉTICO ALTERNADO DISTRIBUÍDO DENTRO E FORA DO CONDUTOR, "NORMAL" AO PLANO DO MESMO ($\Phi_{\rm S}$)
- → VARIAÇÃO DO FLUXO NO TEMPO → TENSÕES INDUZIDAS AO LONGO DO CONDUTOR (LEI DE FARADAY)
- ightharpoonup Correntes induzidas impostas no plano do condutor, em oposição à variação do fluxo (lei de lenz) (I_{IND})

CORRENTE ADENSADA NO CONDUTOR → MAIOR CONCENTRAÇÃO NAS EXTREMIDADES

DISTRIBUIÇÃO DA CORRENTE AO LONGO DA **ALTURA DO CONDUTOR**

DISTRIBUIÇÃO DA CORRENTE AFETA A DISTRIBUIÇÃO DA

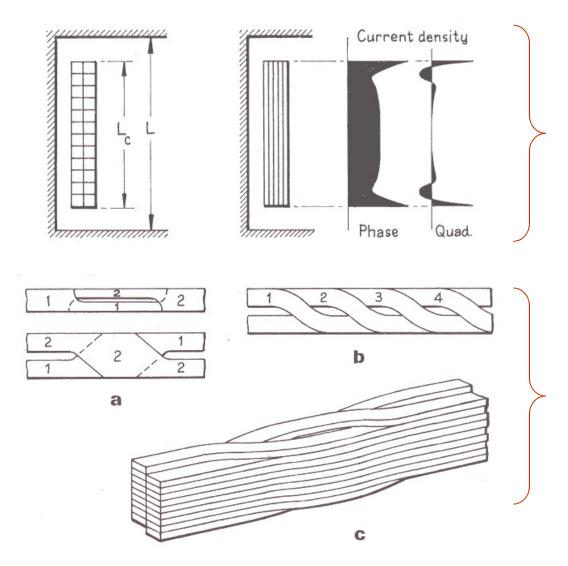
PERDA JOULE

$$p_{Jdc} = r_{dc}.I_{EF}^2$$

PERDA JOULE SEM **ADENSAMENTO**

r_{de}: RESISTÊNCIA "DC" **DO CONDUTOR**

$$p_{Jac} = \int_{0}^{h_{C}} \frac{r_{dc}}{h} J^{2}(h) . dh = r_{ac} J_{EF}^{2} > p_{Jdc} \qquad r_{ac} > r_{dc} \Rightarrow r_{ac} = r_{dc} . [g(h) . \sqrt{\frac{\mu_{0} . f}{\rho_{c}}}]$$


PERDA JOULE <u>COM ADENSAMENTO</u> DE CORRENTE

$$r_{ac} > r_{dc} \Rightarrow r_{ac} = r_{dc}.[g(h).\sqrt{\frac{\mu_0.f}{\rho_c}}]$$

1 : RESISTÊNCIA APARENTE EM "AC"

 ρ_{C} : RESISTIVIDADE DO MATERIAL DO CONDUTOR - g(h): FUNÇÃO COMPLEXA DA GEOMETRIA DO CONDUTOR

ADENSAMENTO DE CORRENTE OCORRE TAMBÉM DEVIDO À IMERSÃO DO CONDUTOR NO FLUXO DE DISPERSÃO PRESENTE NA VIZINHANÇA DAS BOBINAS

DISTRIBUIÇÃO DA DENSIDADE DE CORRENTE VARIA EM FUNÇÃO DA POSIÇÃO NA BOBINA

→ INTENSA NAS BOBINAS FEITAS EM FOLHA CONDUTORA CONTÍNUA

MECANISMOS PARA LIMITAR
EFEITOS DO ADENSAMENTO:

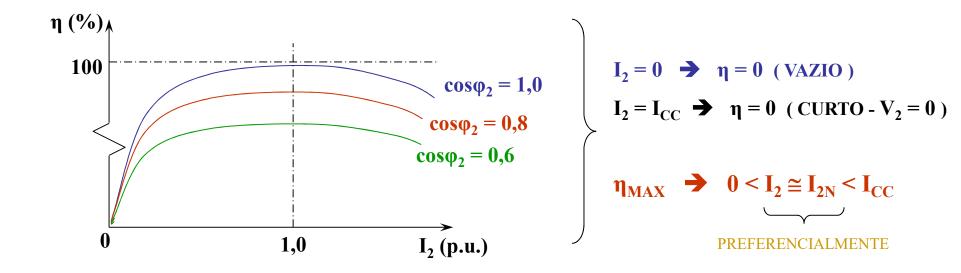
- → SUBDIVISÃO DE CONDUTORES
 DE SECÇÃO ELEVADA
- → DISTRIBUIÇÃO DE <u>BOBINAS EM</u>

 <u>PARALELO</u> ADEQUADAMENTE

 CONECTADAS
- → USO DE CONDUTORES OU BARRAS COM <u>TRANSPOSIÇÃO</u>

RENDIMENTO EM POTÊNCIA DO TRANSFORMADOR

P_U: POTÊNCIA ÚTIL (ATIVA) FORNECIDA PELO SECUNDÁRIO [kW]


P_{ABS}: POTÊNCIA TOTAL ABSORVIDA (ATIVA) PELO PRIMÁRIO [kW]

$$\eta = P_U / P_{ABS} = P_U / (P_U + \Sigma p) = P_U / (P_U + p_C + p_V)$$

$$p_C \cong p_{FE} ; p_V = r_{2CC} \cdot I_2^2$$

r_{2CC}: RESISTÊNCIA DE CURTO CIRCUITO EQUIVALENTE, COM PERDAS SUPLEMENTARES INCLUÍDAS, REFERIDA AO SECUNDÁRIO

$$\eta = \frac{V_2.I_2.\cos\varphi_2}{V_2.I_2.\cos\varphi_2 + p_{FE} + r_{2CC}.I_2^2}$$

$$\eta = \frac{V_2.I_2.\cos\varphi_2}{V_2.I_2.\cos\varphi_2 + p_{FE} + r_{2CC}.I_2^2} = \frac{1}{1 + \frac{p_{FE}}{V_2.I_2.\cos\varphi_2} + \frac{r_{2CC}.I_2}{V_2.\cos\varphi_2}}$$

$$\eta = \frac{1}{1 + f(I_2)} : \eta_{MAX} \Rightarrow [f(I_2)]_{MIN.} \Rightarrow \frac{df(I_2)}{dI_2} = 0$$

$$\frac{d}{dI_{2}} \left(\frac{1}{1 + \frac{p_{FE}}{V_{2} \cdot \cos \varphi_{2}} \cdot \frac{1}{I_{2}} + \frac{r_{2CC}}{V_{2} \cdot \cos \varphi_{2}} \cdot I_{2}} \right) = 0 \Rightarrow -\frac{1}{I_{2}^{2}} \cdot \frac{p_{FE}}{V_{2} \cdot \cos \varphi_{2}} + \frac{r_{2CC}}{V_{2} \cdot \cos \varphi_{2}} = 0$$

$$r_{2CC}.I_2^2 = p_{FE}$$

 $|r_{2CC}.I_2^2 = p_{FE}|$ condição para máximo rendimento: $p_V = p_C$

OPERAÇÃO DO TRANSFORMADOR COM CARGA CONSTANTE, $\mathbf{I_{2N}}$ (NOMINAL):

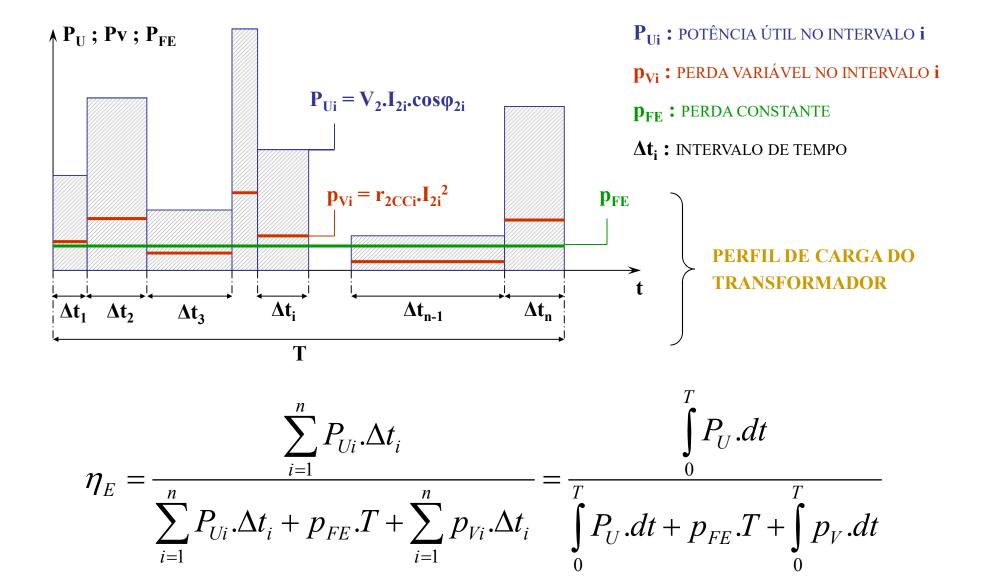
PROJETADO PARA r_{2CC} $(I_{2N})^2 = p_{FE}$ \rightarrow Maximização do *rendimento em potência*

CARGA VARIÁVEL NO TEMPO:

→ OBJETIVA-SE MINIMIZAR A POTÊNCIA DE PERDAS <u>AO LONGO DO TEMPO</u>

→ RENDIMENTO EM ENERGIA

E_{FORN}: ENERGIA FORNECIDA NUM PERÍODO T


E_{ABS}: ENERGIA ABSORVIDA NO MESMO PERÍODO T

$$\rightarrow$$
 $\eta_E = E_{FORN} / E_{ABS}$

MAXIMIZAÇÃO DO RENDIMENTO DEVE SE DAR EM UMA POTÊNCIA ÚTIL EFETIVA NO PERÍODO:

$$P_{EF} < P_N$$

 \rightarrow [p_V]_{Pef} = p_C : IGUALDADE ENTRE *PERDA VARIÁVEL* E *PERDA CONSTANTE* DEVE SE DAR PARA A POTÊNCIA EFETIVA E NÃO PARA A NOMINAL

