

Diagnóstico Energético

PEA2520 - 2014

Profs. Marco Saidel e André Gimenes

O que é Diagnóstico Energético?

Dicionário do Aurélio:

Etimologia: do grego "diagnostikós"

Significado:

- 1. conhecimento ou determinação de uma doença pelo(s) sintoma(s) e/ou mediante exames diversos (radiológicos, laboratoriais, etc.).
- 2. Conjunto dos dados em que se baseia essa determinação.

Ref: Dissertação de Mestrado: André Luiz Montero Alvarez

O que é Diagnóstico Energético?

Doença:

SER HUMANO	EDIFICAÇÕES				
Consome água, energia, etc.	Consome água, energia, etc.				
Gera resíduos	Gera resíduos				
Formado por diversos sistemas vitais:	Formado por diversos sistemas:				
 Circulatório: levar alimento (energia) às demais partes do 	 Elétrico: levar energia à todos os ambientes do edifício; 				
corpo.	 Ar condicionado: controlar as 				
 Respiratório: fornecer oxigênio necessário ao funcionamento das células. 	condições ambientais (temperatura, umidade, pureza, etc.) necessárias ao conforto dos				
 Nervoso: transportar informações vitais à sobrevivência do indivíduo. 	funcionários (e de equipamentos mais sensíveis).				
	 Informação: rede de dados, telefônico, etc., essenciais na administração do edifício. 				

Elevado consumo de energia: diagnóstico médico diagnóstico energético

Diagnóstico Energético - OBJETIVOS

⇒Características de consumo da instalação

- Consumos global e desagregado em usos finais
- Índices energéticos
- Hábitos de uso

⇒ldentificação de alternativas e soluções para os diversos usos finais

- Alternativas de reforma ("retrofit") e substituição de sistemas
- Promoção do uso racional e eficiente de energia elétrica

Contratação adequada da energia

⇒Divisão em etapas (Roteiro):

- Visita preliminar à instalação
- Levantamento de dados
- Análise e tratamento de dados
- Estudo de alternativas para os usos finais identificados
- Determinação do potencial de economia de energia
- Análise da viabilidade econômica de alternativas
- Análise tarifária e estudos de cogeração e de geração independente

Diagnóstico Energético - METODOLOGIA Visita preliminar à instalação

- ⇒ Primeiro contato com a instalação
- ⇒ Contato com o pessoal encarregado de dar apoio
- ⇒ Visão macroscópica da instalação: e estratégia de levantamento de dados
 - O primeiro contato com as instalações dá uma ideia da maneira como o levantamento deve ser conduzido: ordem de ambientes, tipo de usos finais, necessidades de autorizações etc.
- ⇒ Solicitação de documentos: faturas de energia, diagramas unifilares, planta baixa, autorizações de acesso, pessoa que vai acompanhar o levantamento etc.

Diagnóstico Energético - METODOLOGIA Levantamento de dados

- **⇒ Fase mais importante**
- ⇒ Realização de forma bastante criteriosa e exaustiva:
 - Abordar detalhadamente todos ambientes e anotar informações de forma sistemática: "planilha guia"
 - Tenha em mente as necessidades futuras para proposição de alternativas mais eficientes
- ⇒ Fontes de dados e de informação
 - ✓ Entrevistas com usuários e responsáveis
 - ✓ Inspeção
 - ✓ Levantamento de dados de usos finais
 - ✓ Fotografias gerais e específicas ajudam bastante.
 - ✓ Contas de energia elétrica e memória de massa
 - ✓ Medições diretas

Levantamento de dados: Entrevista com usuários

Contato com o pessoal encarregado de dar apoio

- Entrevista preliminar: o que eles têm a dizer x o que precisamos ouvir
- Levantamento de informações sobre os hábitos de uso da instalação
 - Horários de expediente e de almoço, por exemplo
- ■Verificação da satisfação dos usuários
 - Aspectos qualitativos dos sistemas (níveis de iluminação satisfatórios, temperaturas agradáveis, etc.)
 - Queixas de dor de cabeça e demais sintomas anormais nos usuários
- Verificação do comprometimento dos usuários com aspectos de economia de energia (suscetibilidade)

Exemplos:

- 1) questionário inicial para unidades de baixa renda
- 2) questionário sócio econômico QUESTIONÁRIO SOCIOECONÔMICO V2.doc
- 3) questionário para unidades do setor público

Levantamento de dados: Inspeção

Obtenção de informações a respeito das características físicas da instalação

• Dimensões físicas, plantas da instalação, tipo de ocupação, etc.

Levantamento dos equipamentos elétricos existentes

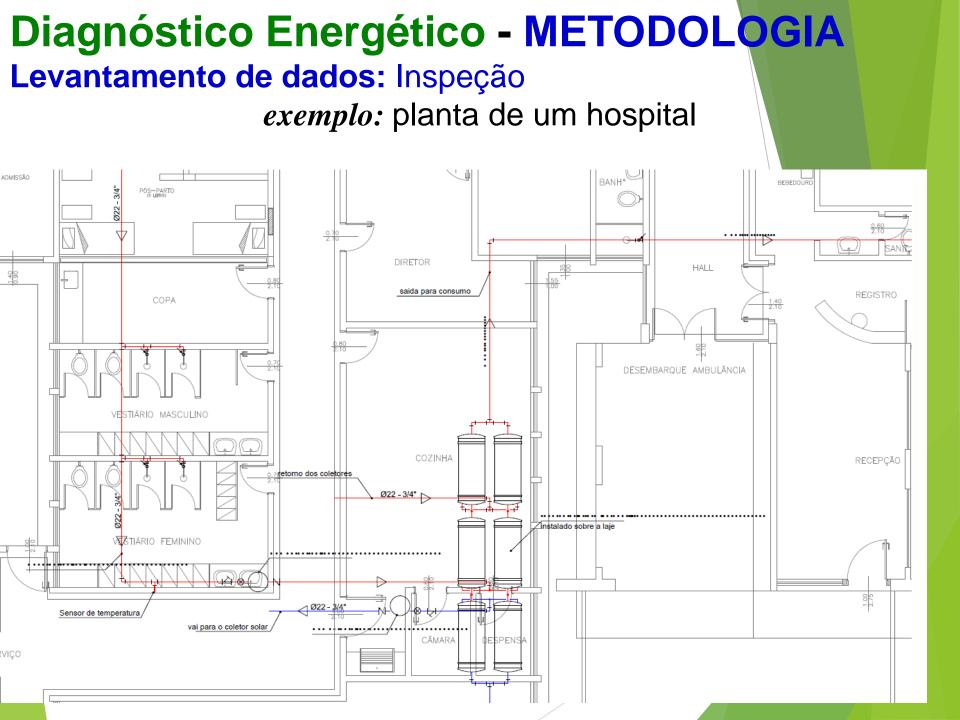
• Tipo, quantidade dados de placa e tempo de operação

Determinação das condições de operação dos sistemas

- Medição dos níveis de iluminamento, da temperatura e demais grandezas relacionadas com os usos finais da instalação
- Algumas grandezas, como p.ex. temperatura, podem ser obtidas de outras fontes (p.ex. Inmet para temperaturas)
- Inspeção visual sobre condições de idade, conservação e limpeza das instalações;
- Inspeção visual dos quadros de força/cabine
- Fotografe! (equipamentos, ambientes, faixada, áreas externas)

Levantamento de dados: Inspeção

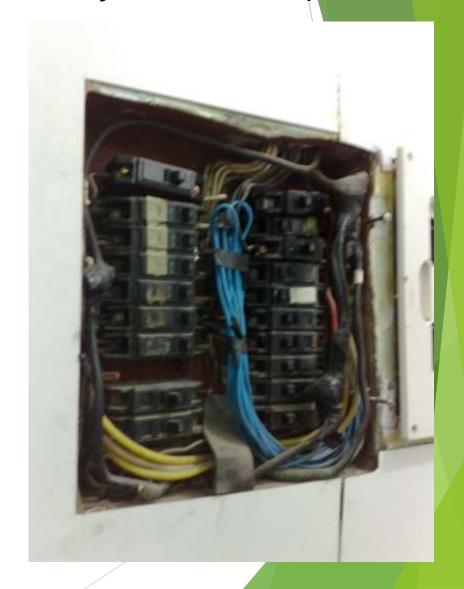
exemplo: caracterização geral de BPMs



Levantamento de dados: Inspeção

exemplo: planta de um hospital

Levantamento de dados: Inspeção


exemplo: quadros de distribuição de um BPM

Levantamento de dados: Inspeção

exemplo: quadros de distribuição de um hospital

Diagnóstico Energético – parte II

PEA2520 - 2014

Profs. Marco Saidel e André Gimenes

Levantamento de dados: Inspeção

- Características físicas do ambiente:
 - -Localização do ambiente (bloco, andar, número da sala, etc.)
 - -Finalidade
 - -Área útil total
 - -Pé direito

•Sistema de iluminação:

- -Tecnologia de iluminação (quantidade e potência das lâmpadas, tipos de luminárias, estado de conservação, etc.)
- -Área iluminada
- -Nível de iluminamento médio (medições com luxímetros)
- -Quantidade de acionamentos (interruptores)
- -Horário de operação
- -Aproveitamento da iluminação natural

•Sistema de ar condicionado:

- -Tecnologia de ar condicionado (central, aparelhos de janela, etc., potência e quantidade dos equipamentos)
- -Área climatizada
- -Temperatura do ambiente (medições com termômetros)
- -Horário de operação
- -Condições de isolamento e vedação
- •Outros equipamentos (quantidade, potência, horário de funcionamento, etc.)

Levantamento de dados: Inspeção

exemplo: Planilha para coleta de dados

A planilha guia o levantamento e não deixar que esqueça de informações relevantes que poderiam ser esquecidas no processo de coleta de dados em campo

TO DITTECHÇÃO DO AMBERTO				RESPONSAGE			()			
CARACTERÍSTICAS FÍSICAS E DE OCUPAÇÃO										
ARDA[m*] PE DRIETO TOTAL ILWINADA CLIMATICADA [m]	NIVELDE ILU MINAMENTO (N	TEMPER.		Nº DE BRRUPTORES	Мúмеко се 2 [°] л б [°] гела	USUÁRIOS FIM DE SEMANA	Нова́по реги 2 а б'гона	FM DE SEWANA		
SISTEMA DE ILUMINAÇÃO										
FOURAMENTO	ENUFAMENTO		Ротёмськи	OMINAL[W]	TEMPO DE OPERAÇÃO		Observações			
			LÁMPADA REATOR		Z'AG'rena	FIN DE SEMANA	7			
Corde Besoe Afficiation of Lucinatural:										
SISTEMA DE AR CONDICIONADO										
EQUIPAMENTO QUANTIDADE	DADE	CARACIDADE [RTU]	Tempo de operação		Oppgervações					
	TOTAL	INOPERANTE	OKNICENE (ET O)		2 46 FERA	FIN DE SEMANA				
С окру безовноваменто в уехандко во аметемен										
EQUI PAMENTOS										
EQUIPAMENTO	QUART		POTÉNCIA NOMINAL [W]	Tempo de opesação		O s servaç ões				
	TOTAL INDPRRANTS		2" A 6" FERRA	FIN DE SEMANA						
-					-					

Exemplo de planilha para coleta:

- 1) PLANILHA DE DIAGNÓSTICO_v3.xls
- 2) exemplo emae.xlsx

Levantamento de dados: Inspeção

exemplo: bombeamento de água - Sabesp

Levantamento de dados: Inspeção

exemplo: sistema de iluminação Biblioteca Central UFF

Levantamento de dados: Inspeção

exemplo: sistema de iluminação Biblioteca Central UFF – problema apontado pelo usuário em entrevista: reflexo nos monitores, cansaço e dores de cabeça

Levantamento de dados: Inspeção

exemplo: sistema de iluminação Biblioteca Central UFF

Levantamento de dados: Inspeção

exemplo: medição iluminação Biblioteca Central UFF

Levantamento de dados: Inspeção

exemplo: sistema de condicionamento ambiental - Hospitais

Levantamento de dados: Inspeção

exemplo: sistema de condicionamento ambiental – prédio administrativo

Levantamento de dados: Inspeção

exemplo: sistema de condicionamento ambiental - hospital

Levantamento de dados: Inspeção

exemplo: sistema de condicionamento ambiental - BPM

Levantamento de dados: Inspeção

exemplo: sistemas de iluminação - BPMs SP

Levantamento de dados: Inspeção

exemplo: sistemas de refrigeração – BPMs SP

Relatório fotográfico Exemplos

<u>BPM - Taubaté</u> <u>fotos uff</u>

Levantamento de dados: Contas de energia elétrica e memória de massa

⇒ Memória de massa

 Consumidores de média tensão podem dispor de memória de massa do medidor da concessionária ou efetuar medições internas sistemáticas

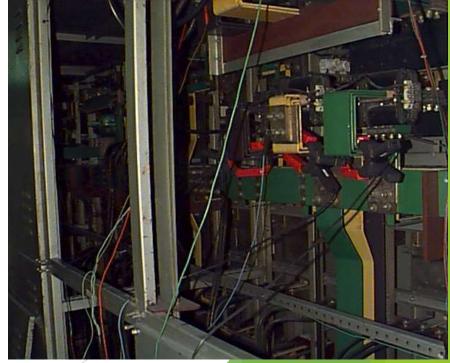
⇒ Contas de energia

- Expedidas mensalmente pela concessionária
- Valores concentrados em períodos mensais
- · Muito úteis em:
 - Consolidação das medições efetuadas
 - Análise de séries históricas e determinação de tendências
 - Previsão de demandas futuras
 - Determinação de sazonalidades
 - Acompanhamento de ações implantadas de uso racional e eficiente de energia
 - Identificação de potenciais de redução de custos com energia

Levantamento de dados: Medição direta

⇒Obtenção de informações precisas sobre o perfi<mark>l de consumo da instalação ou de usos finais específicos</mark>

⇒Monitoração de pontos selecionados


- Cabinas primárias (trafos de potência)
- Quadros de força
- Equipamentos específicos

⇒Uso de equipamentos analisadores de energia

- Equipamento microprocessado
- Medição contínua e registro periódico das grandezas elétricas de interesse

Exemplo de equi<mark>pamento</mark> analisador de ene<mark>rgia</mark>

Levantamento de dados: Medição direta

⇒ **Registros**

- Compostos pelas seguintes informações:
 - Tempo (hh:mm:ss)
 - Tensões de fase (V_A, V_B, V_C)
 - Correntes de fase (I_A, I_B, I_C)
 - Potências ativas (P_A, P_B, P_C)
 - Potências reativas (Q_A, Q_B, Q_C)
 - Fator de Potência por fase (FP_A, FP_B, FP_c)
- Armazenados na memória de massa e descarregados no PC
- Exemplo de memória de massa: marica_ex_post_acs.txt

⇒ Resultados

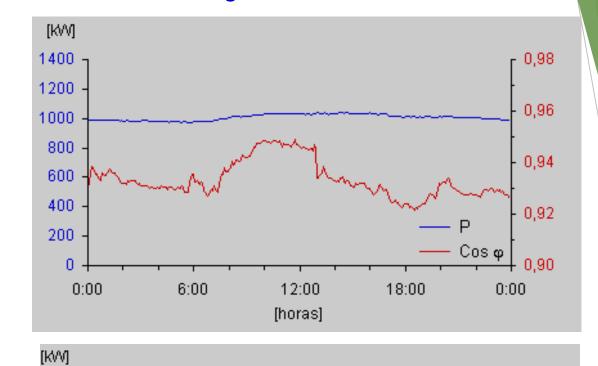
- Fator de potência por fase (ou diretamente por medição)
- Consumo de ativos por fase
- Demanda máxima trifásica
- Demanda média trifásica
- Fator de carga trifásico
- Tabelas e curvas de carga
- Análise de harmônicos

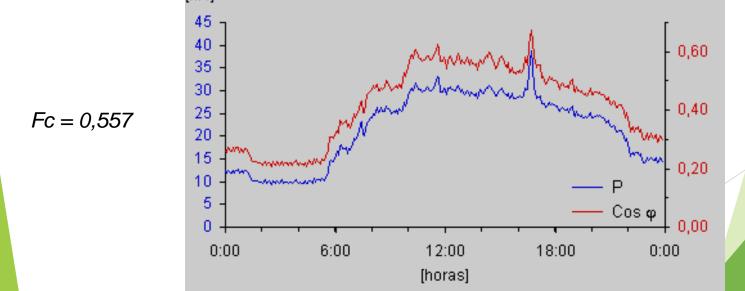
Levantamento de dados: Medição direta

⇒Demanda média

Calculada através da divisão do consumo do período pelo respectivo intervalo de tempo

⇒Fator de carga


Obtido através da divisão demanda média pela demanda máxima registrada


lembrando que...

O fator de carga indica a uniformidade no uso de energia elétrica Geralmente, quanto maior o fator de carga, mais uniforme é a curva de carga de uma instalação (Fc = 1 ⇒ demanda constante)

Observação sobre o fator de carga

Fc = 0.969

Levantamento de dados: Medição direta

escolha dos pontos de medição

⇒Necessidade de diagramas unifilares

⇒Caso não se disponha dos diagramas, avaliar quadros e respectivas cargas

Cabinas primárias

- Cálculo do consumo global e desagregado em usos finais
- Verificação das condições de utilização dos transformadores de potência (carregamento e desequilíbrio)
- Medições realizadas no secundário

Quadros de força específicos

Determinação das características de consumo de usos finais específicos

Equipamentos específicos

 Determinação das características de consumo de equipamentos específicos

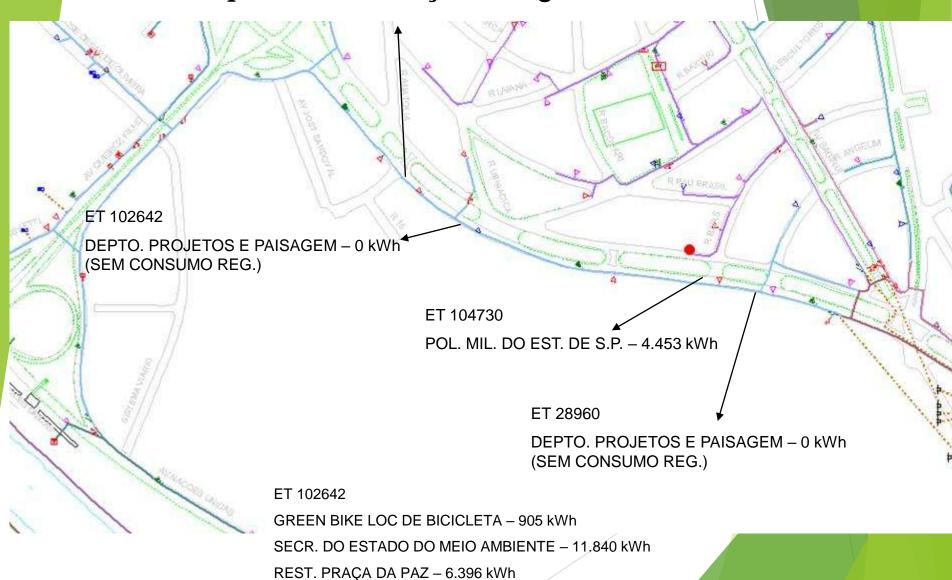
A escolha dos locais de medição dependerá dos objetivos da medição e deverá seguir os critérios de um plano de M&V quando for o caso. No trabalho, vocês determinarão local, usos e grandezas a serem medidas segundo o PIMVP

Levantamento de dados: Medição direta

escolha dos pontos de medição: Cabina Primária

Levantamento de dados: Medição direta

escolha dos pontos de medição: Quadro de força


Levantamento de dados: Medição direta

escolha dos pontos de medição: diagrama unifilar Villa Lobos

Levantamento de dados: Medição direta

escolha dos pontos de medição: diagrama unifilar Villa Lobos

Levantamento de dados: Medição direta

Levantamento de dados: Medição direta

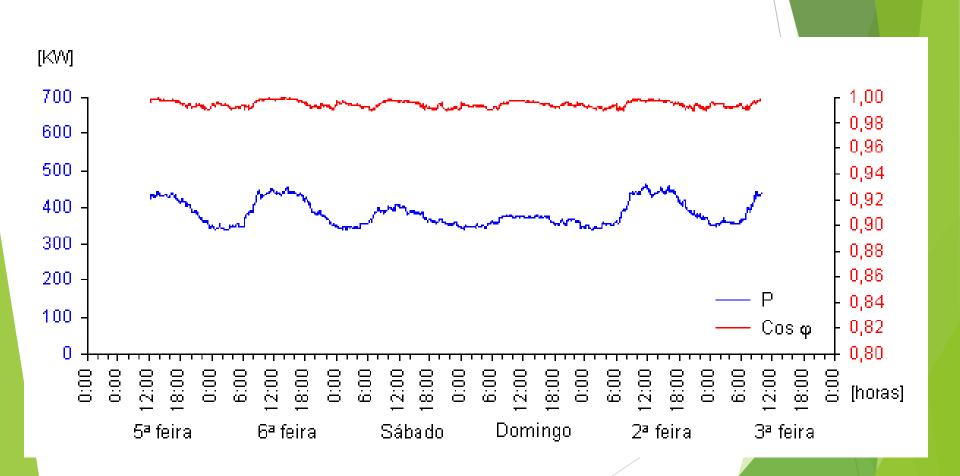
Levantamento de dados: Medição direta

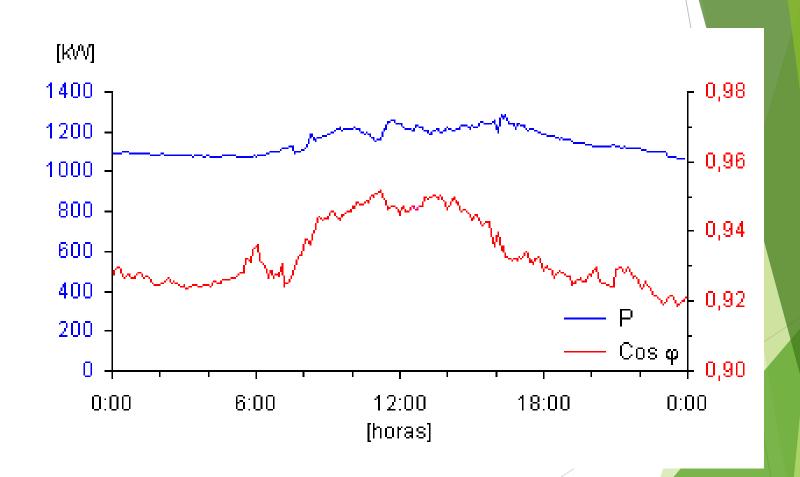
Levantamento de dados: Medição direta

Levantamento de dados: Medição direta

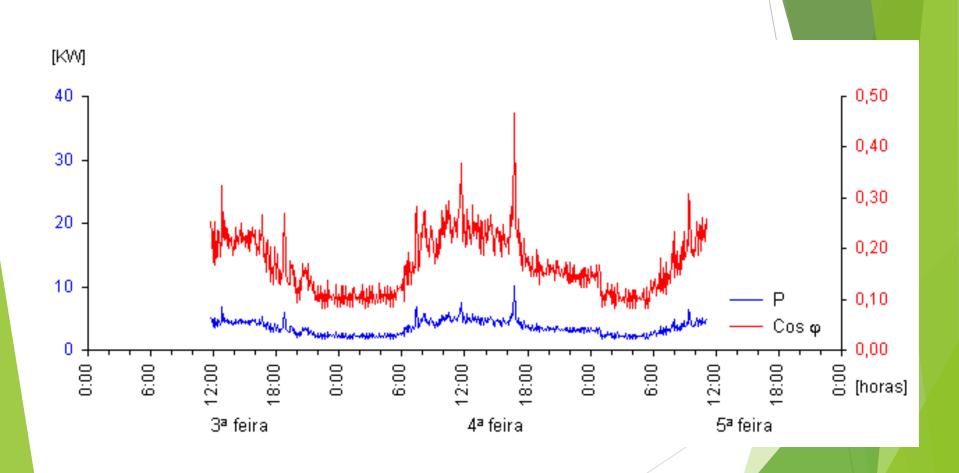
escolha dos pontos de medição: Equipamentos específicos

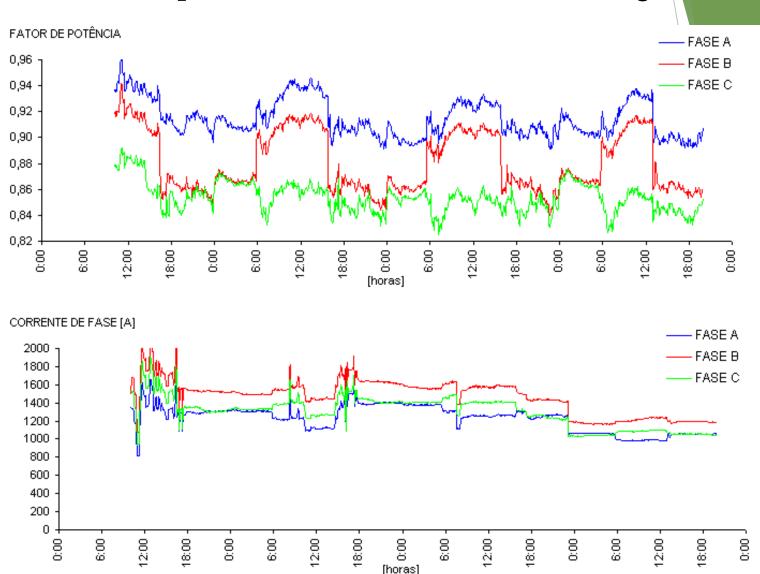
Levantamento de dados: Medição direta


escolha dos pontos de medição: Equipamentos específicos



Semáforos em SJC e USP


Levantamento de dados: Medição direta


Levantamento de dados: Medição direta

Levantamento de dados: Medição direta

Levantamento de dados: Medição direta

Levantamento de dados: Medição direta

exemplos de resultados: Tabelas

DIA	00:00 à	s 06:00	06:00 à	ıs 18:00	18:00 às 00:00		
	P [kW]	cos φ	P [kW]	cos φ	P [kW]	cos φ	
2° FEIRA	30,1	0,89	78,5	0,94	52,1	0,91	
3° FEIRA	33,4	0,90	71,4	0,94	52,4	0,92	
4° FEIRA	32,6	0,90	75,9	0,94	50,0	0,91	
5° FEIRA	34,4	0,90	70,7	0,93	49,9	0,91	
6° FEIRA	31,1	0,89	38,1	0,90	39,2	0,90	
SÁBADO	29,0	0,87	32,6	0,89	35,5	0,90	
Domingo	31,1	0,90	36,0	0,90	37,2	0,91	

Levantamento de dados: Medição direta

exemplos de resultados: Tabelas

Темро	V MÉDIA	Consumo		P [kW]		Q [kvar]		COS φ				
		[kWh]	[kvarh]	Α	В	С	Α	В	С	Α	В	С
00:45	131,8	9,2	4,5	14,6	11,0	11,1	6,3	8,1	3,4	0,92	0,81	0,96
01:00	131,8	8,8	4,3	13,4	10,4	10,0	5,9	6,9	3,7	0,91	0,83	0,94
01:15	132,0	8,4	4,0	13,5	9,2	10,5	6,6	4,8	3,9	0,90	0,89	0,94
01:30	132,0	8,2	3,9	12,9	9,5	10,0	6,6	5,1	4,5	0,89	0,88	0,91
01:45	132,5	8,0	4,1	12,6	9,3	9,5	6,2	6,0	4,7	0,90	0,84	0,89
02:00	132,6	7,9	4,3	12,2	9,5	10,2	6,5	5,4	5,2	0,88	0,87	0,89
02:15	132,3	7,8	4,3	11,8	9,0	9,5	6,9	5,7	5,0	0,86	0,84	0,88
02:30	132,5	7,8	4,5	12,9	9,1	9,8	7,3	6,4	4,7	0,87	0,82	0,90
02:45	132,6	8,1	4,7	12,9	10,4	9,9	7,0	7,2	5,0	0,88	0,82	0,89
											4	

Levantamento de dados: Medição direta

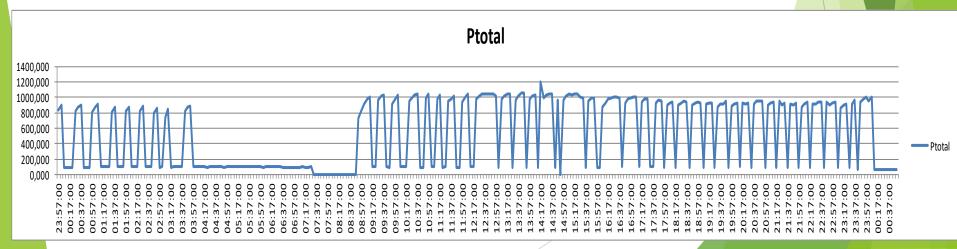
outras observações

Período de análise conveniente

- Semanal, quinzenal, etc.
- Sazonalidades

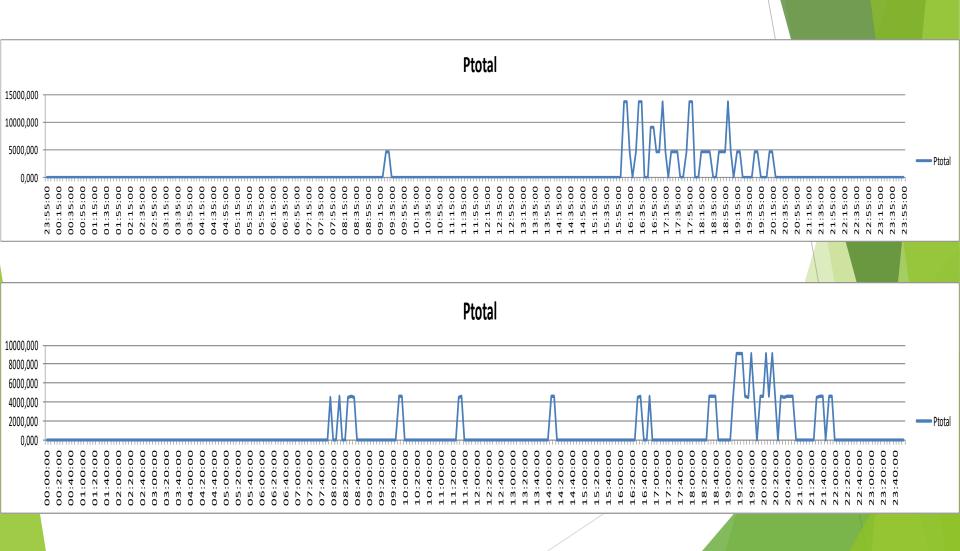
Escolha de frequência amostral adequada


- Valor mínimo: 15 minutos (valor adotado no faturamento da concessionária)
- Caso geral: 5 minutos
- Casos específicos: 1 minuto


Precisão dos resultados

- Verificar consistência com as contas de energia
- Considerar perda nos trafos
- Adotar o mesmo número de dias úteis e de fim de semana que os considerados no faturamento
- Erros devidos à medições não simultâneas e à sazonalidades

Levantamento de dados: Medição direta


Medição de equipamentos de ar condicionado isolados – 5 min

Levantamento de dados: Medição direta

Medição de chuveiros - 1 min

Levantamento de dados: Contas de energia elétrica e memória de massa

- ⇒Contas de energia (continuação)
 - Principais informações:
 - Consumo de energia ativa [kWh]
 - Consumo de energia reativa [kvarh]
 - Demanda registrada [kW]
 - Demanda faturada [kW]
 - Fator de carga
 - Valor da fatura [R\$]

Verificar como os dados levantados se relacionam com a fatura de energia

Análise dos dados

Diagnóstico Energético - METODOLOGIA Análise e tratamento de dados

Objetivos

- Caracterização da instalação em relação ao uso de energia elétrica
- Obter as informações necessárias à determinação dos potenciais de conservação da instalação

Resultados fornecidos

- Consumo global da instalação e consumos individuais por usos finais
- Indicadores do uso de energia
- Anomalias verificadas

Análise e tratamento de dados: Determinação do consumo global

- Parâmetros de faturamento considerados pela concessionária
- A partir do consumo global, obtém-se a demanda média (cálculo do fator de carga)

Cálculo do consumo global

- Diretamente nas contas de energia elétrica ou na memória de massa
- A partir dos dados fornecidos pelos analisadores de energia (medição)
- Através das potências instaladas e dos respectivos hábitos de uso (tempos de utilização) levantados durante a inspeção da instalação

Análise e tratamento de dados: Determinação do consumo global

 Cálculo do consumo global a partir dos dados fornecidos pelos analisadores de energia:

$$C_{\textit{CORRIGIDO}} = N_{\textit{DIA \'UTIL}} \cdot C_{\textit{DIA \'UTIL}} + N_{\textit{FIM}-\textit{DE}-\textit{SEMANA}} \cdot C_{\textit{FIM}-\textit{DE}-\textit{SEMANA}}$$

onde:

 $C_{CORRIGIDO}$

 $C_{DIA\ UTIL}$

C_{FIM-DE-SEMANA}

N_{DIA ÚTIL}

N_{FIM-DE-SEMANA}

: consumo corrigido obtido por medição direta

: consumo médio dos dias úteis medidos

: consumo médio dos dias de fim-de-semana medidos

: número de dias úteis dentro do período de medição da concessionária

: número de dias de fim-de-semana dentro do período de medição da concessionária

Análise e tratamento de dados: Determinação do consumo desagregado em usos finais

 Necessidade do conhecimento do potencial de conservação de cada uso final para a determinação do potencial de conservação total da instalação

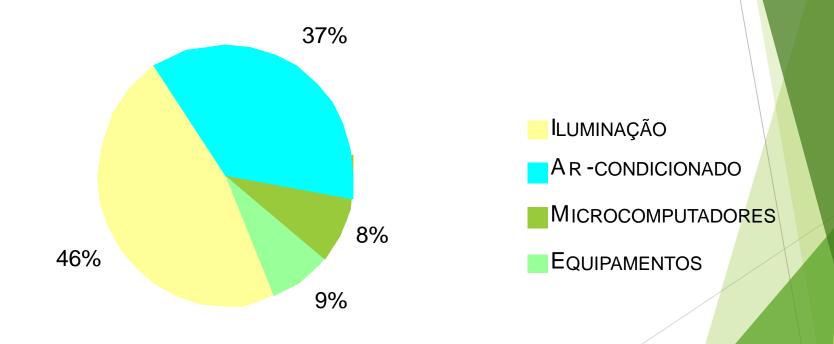
■Formas de desagregar o consumo global por usos finais

- Medição de circuitos de alimentação independentes
- Através do fator de carga e do fator de demanda da instalação
- Através das potências instaladas e dos respectivos hábitos de uso (tempos de utilização) levantados durante a inspeção da instalação

Análise e tratamento de dados: Determinação do consumo desagregado em usos finais

 A partir dos fatores de carga e de demanda de cada uso final na instalação:

$$F'_{CARGA} = \frac{P'_{M\acute{A}XIMA}}{P'_{M\acute{A}XIMA}} \qquad \qquad F'_{DEMANDA} = \frac{P'_{M\acute{A}XIMA}}{P'_{INSTALADA}}$$


obtém-se o consumo de cada uso final:

$$C' = F'_{CARGA} \cdot F'_{DEMANDA} \cdot P'_{INSTALADA} \cdot \Delta t$$

Análise e tratamento de dados: Determinação do consumo desagregado em usos finais

Resultado

•Pizza de consumo desagregado por uso final

O trabalho deverá conter essa análise

Análise e tratamento de dados: Indicadores energéticos

- Descrição macroscópica das características de consumo da instalação
- Determinação do potencial de conservação de energia através da comparação com índices típicos de outras instalações semelhantes
- Acompanhamento, no tempo, das ações implantadas para o uso racional e eficiente de energia elétrica na instalação

Indicadores energéticos sugeridos

- Fator de carga
- Consumo mensal por área útil
- Consumo mensal em iluminação por área iluminada
- Consumo mensal em ar condicionado por área climatizada
- Potência instalada em iluminação por área iluminada
- Potência instalada em iluminação por número de interruptores
- Potência instalada em ar condicionado por área climatizada
- Porcentagem de luminárias defeituosas ou inoperantes
- Consumo mensal por usuário equivalente

O trabalho deverá ao menos 4 destes indicadores

Diagnóstico Energético - METODOLOGIA Estudo de alternativas para os usos finais identificados

Objetivo

 Determinar todas as soluções tecnológicas ou não que maximizem a eficiência energética da instalação

Classificação das ações para o uso racional e eficiente de energia

- Medidas de intervenção
 - Mudança de tecnologia
 - Reforma de sistemas (retrofit)
 - Substituição completa de sistemas
 - Controle do uso (sensores)
- Medidas de conscientização e formação
 - Educação dos usuários
 - Campanhas publicitárias
 - Cursos de treinamento

Diagnóstico Energético - METODOLOGIA Estudo de alternativas para os usos finais identificados

Realização

- Simulações dos sistemas considerando as alternativas selecionadas
- Técnicas de análise e simulação distintas para cada uso final
- Uso de softwares específicos (internet)
- Formulação de hipóteses
- Análise de sensibilidade
- Adoção de valores conservativos

Resultados

 Dados sobre consumos, índices energéticos e demais parâmetros de interesse para cada alternativa analisada

Diagnóstico Energético - METODOLOGIA Determinação do potencial de conservação de energia

Estimativa do potencial de economia

- Comparação dos consumos e dos índices energéticos dos sistemas atuais com os valores obtidos via simulação na etapa anterior
- Estimativa do potencial de economia de cada alternativa (uso de valores conservativos)
- Estimativa do potencial de economia total da instalação (cuidado com os potenciais de alternativas mutuamente exclusivas)

OBSERVAÇÃO: Não desprezar o aumento de qualidade dos sistemas (muitas vezes não mensurável)

Determinação do potencial de conservação de energia

Benefícios diversos

Exemplo: LEDs semafóricos evitam uma média de3 20 trocas de lâmpadas por foco semafórico

Diagnóstico Energético - METODOLOGIA Análise de viabilidade econômica das alternativas propostas

Objetivos

- Determinar a viabilidade econômica das alternativas propostas
- Classificar as alternativas economicamente viáveis segundo suas "vantagens" financeiras
- Deverá ser feita análise de viabilidade mediante avaliação dos custos e benefícios segundo figuras de mérito da matemática financeira.
- Os benefícios energéticos da eficientização se traduzem em energia economizada e demanda
- A conversão destas duas variáveis em R\$ depende do enquadramento tarifário

Análise de viabilidade econômica das alternativas propostas

Estudos Específicos de ações

- Modulação de carga
- Geração própria na ponta
- Controlador de demanda

Análise de viabilidade econômica das alternativas propostas

Estudos Específicos

Modulação de Carga

- Deslocamento de carga no horário de ponta
 - Redução da demanda (THS Azul)
 - Redução do consumo (THS Verde)
- Redução da demanda geral
 - Identificar horário de maior pico e retirar cargas não essenciais de forma a reduzir a demanda máxima registrada.

Análise de viabilidade econômica das alternativas propostas

Estudos Específicos

Metodologia para Análise de Modulação de Carga

- Identificar consumo de ponta;
- Verificar qual percentual é possível ser deslocado para fora de ponta;
- Fazer as simulações tarifárias com a nova situação

Análise de viabilidade econômica das alternativas propostas

Estudos Específicos Geração Própria na Ponta

- Substituição da rede no horário de ponta por geradores próprios
 - Atendendo toda a carga, ou
 - Atendendo parcialmente a carga.

Análise de viabilidade econômica das alternativas propostas

Estudos Específicos

Controlador de Demanda

- Instalação de equipamento para controlar o valor máximo de demanda com o objetivo de evitar ultrapassagens do valor contratado.
- Possibilidade de reduzir a demanda máxima registrada através do controle das cargas principais.

Diagnóstico Energético - METODOLOGIA Conteúdo de um relatório de Diagnóstico - Exemplo

- 1. OBJETIVO
- 2. ESCOPO DO PROJETO
- 3. DIAGNÓSTICO ENERGÉTICO
 - 3.1 Sistemas de Climatização
 - 3.2 Sistemas de Iluminação, Refrigeração e outros
 - 3.3 Sistemas de Iluminação Pública
 - 3.4 Resultados Consolidados Energia Elétrica
- 4. CONCLUSÕES

Diagnóstico Energético - METODOLOGIA Exemplos de resultados

- Diagnóstico unidades comerciais em Paraisópolis
 Full report nexant GEPEA 30 11.doc
- Diagnóstico unidades de escritórios EMAE
 EXER_EMAE_47_unidades_diagnóstico_2012_V_II.docx

Diagnóstico Energético - METODOLOGIA Conteúdo de um relatório de Diagnóstico e Proposição de Medidas - Exemplo

- 1. OBJETIVO
- 2. ESCOPO DO PROJETO
- 3. IDENTIFICAÇÃO E QUANTIFICAÇÃO DE OPORTUNIDADES DE EFICIENTIZAÇÃO E ECONOMIA DE ENERGIA
 - 3.1 Sistemas de Climatização
 - 3.2 Sistemas de Iluminação, Refrigeração e outros
 - 3.2.1 Sistemas de Aquecimento de Água para Banho e Refrigeração
 - 3.2.2 Sistemas de Iluminação
 - 3.3 Sistemas de Iluminação Pública
 - 3.4 Resultados Consolidados Energia Elétrica
 - 3.5 Sistemas de Uso da Água
- 4. IDENTIFICAÇÃO E QUANTIFICAÇÃO DE OPORTUNIDADES DE GERAÇÃO
 - 4.1 Necessidades Energéticas
 - 4.1.1 Necessidades Energéticas Atuais Síntese:
 - 4.1.2 Necessidades Energéticas com Eficientização Síntese;
 - 4.2 Geração
 - 4.2.1 Modalidades em Sistemas de Geração de Energia Solar/Fotovoltaica:
 - 4.2.2 Sistema de Geração Fotovoltaica Proposto
 - 4.2.3 Dimensionamento do Sistema de Geração Fotovoltaica Proposto
- 5. CONCLUSÕES

Diagnóstico Energético - METODOLOGIA Conteúdo de um relatório de Diagnóstico e Proposição de Medidas - Exemplo

Oportunidades em unidades de escritórios EMAE

<u>EXER_EMAE_Oportunidades_Orçamento_viabilidade_</u>

<u>Eficiencia_Energia_Renovavel_09.2012_rev_II.docx</u>