1

Silvia M. Franciscato Cozzolino FCF-USP 2017

2 Sumário

- Introdução
- Definição e Importância dos Biomarcadores
- · Escolha do Biomarcador
- Biomarcadores para Micronutrientes
- · Resultados de Estudos
- Conclusões
- · Referências Bibliográficas

Biomarcadores

✓ Em pesquisas na área de saúde há necessidade de se desenvolver estudos clínicos baseados em evidências, que sejam validados e que possam servir de base para sua aplicação em programas de políticas públicas, para manutenção da saúde e redução do risco de doença .

4 1) Conhecimento da Exposição ao Nutriente

2) Avaliar o estado nutricional do indivíduo em relação ao nutriente específico

3) Avaliar o efeito funcional

5 Definições

No contexto de alimentos e nutrição:

- 1) O que é biomarcador nutricional?
- 2) O que ele mede?

•

6 Marcadores Nutricionais

Definição

✓ Medidas bioquímicas, que indicam a quantidade do nutriente disponível ao tecido celular após sua absorção e metabolismo.

✓

✓ Também pode ser utilizado como uma medida da mudança de dieta em estudos de intervenção alimentar ou em novos regimes alimentares.

Principais razões para se usar Marcadores Nutricionais

- ✓ Erros de medição de consumo alimentar
- ✓ Erros com a utilização de tabelas de composição de alimentos de outros países
- ✓ Biodisponibilidade dos alimentos ingeridos simultaneamente
- ✓ Processamento influência no conteúdo e absorção

8 Seleção do Biomarcador

9 Fisiologia do Tecido e Excreção (1)

Antes de selecionar o biomarcador é necessário conhecer:

- 1. Variação na distribuição do nutriente nos tecidos (*Pode estar relacionado à idade e sexo*)
- 2. O nível de saturação renal e dos tecidos em relação ao nutriente (Pode explicar sua absorção e excreção)
- 3. Transferência de nutrientes de um compartimento para outro

10 Escolha do biomarcador

Deve-se considerar o objetivo do estudo e se a medida é factível.

Ex. $Zn \rightarrow armazenado$ no músculo e no fígado \rightarrow difícil amostragem. Pequena % encontrada do sangue \rightarrow não é um marcador sensível. Entretanto, se utiliza esta medida associada a outras

11 Indicadores e Relação Temporal

✓ Curto-Prazo:

Respondem a ingestão alimentar dentro de horas.

✓ Médio-Prazo:

Respondem dentro de semanas ou meses.

Ex. uso de glóbulos vermelhos → média dos últimos 120 dias da ingestão

✓ <u>Longo-Prazo</u> : Respondem dentro de meses ou anos.

Ex. Cabelo ou unhas para medir conteúdo de microelementos (Estudos epidemiológicos)

12 Escolha do Material Biológico

Componentes fecais → importante para medir fibras ou ácidos biliares (câncer de cólon)

Urina → útil para investigar nutrientes solúveis em água. (alguns componentes da dieta não passam pela urina ex. Ferro)

Cabelo e Unhas \rightarrow úteis para microelementos.

13 Escolha do Material Biológico

Tecido Adiposo → ácidos graxos e componentes solúveis em gordura Células Bucais → estudos epidemiológicos que envolvem DNA, mas tem utilidade limitada para fatores nutricionais (contaminação)

Sangue Venoso → simplicidade logística.

Sangue (gota) \rightarrow vitamina A ou folato , insulina.

14 Cuidados com o armazenamento da amostra e com a análise no Laboratório Instabilidade das amostras:

Ex. muitas vitaminas são instáveis quando expostas a luz, calor ou O2

Ex. Riboflavina é sensível a luz e Folato necessita vitamina C (como conservante) para armazenagem a longo-período.

15 Controle de Qualidade no Laboratório

- ✓ Variações de até 9 vezes em testes de Folato com o mesmo material em laboratórios diferentes.
- ✓ Normalmente, os laboratórios clínicos se preocupam em concentrações de substancias <u>fora</u> da faixa de normalidade.
- ✓ Em estudos de pesquisa, o interesse está na obtenção de resultados dentro da faixa normal → alto grau de precisão.

16 Vantagens

Biomarcadores fornecem medidas precisas que podem ser correlacionadas a ingestão alimentar \rightarrow menos erros que estimativas de ingestão.

Medidas objetivas→ independem:

da memória

- · da capacidade de descrever alimentos,
- da capacidade de estimar ingestão media em um período de tempo.

Combinação de estimativas de ingestão do nutriente obtidas por questionários com medidas séricas do mesmo nutriente.

17 Limitações

Muitos componentes da dieta ainda não são conhecidos.

Ex. é inseguro afirmar que um risco de uma doença é relacionado a um constituinte da dieta como se fosse o único fator.

Analises de questionários podem ser mais informativos em termos de associações com riscos de doenças.

Com biomarcadores é fácil acreditar que um único elemento está fazendo efeito porque é facilmente medido, caracterizado, e com menos erros associados . *Ex. licopeno e câncer de próstata.*

18 Como utilizar os biomarcadores para avaliar o estado nutricional de um indivíduo relativo a micronutrientes?

✓ Como já definido um biomarcador é um indicador biológico distinto ou derivado biológicamente (ex: um metabolito bioquímico no organismo) de um processo, evento, ou condição, que possa predizer uma condição relacionada a um nutriente específico.

19 Biomarcadores em Nutrição Clínica (1)

- Um biomarcador em nutrição clínica tem uma característica biológica que pode ser medida objetivamente:
- · Sendo indicador de:
 - 1) processo biológico normal
 - 2) processo patogênico
 - 3) ou resposta a intervenções terapêuticas.

20 Biomarcador em Nutrição Clínica (2)

Pode ser caracterizado em 3 grupos:

- 1) os que medem características físicas ou genéticas (índices antropométricos, polimorfismos em genes)
- 2) os que medem agentes químicos e bioquímicos do sistema biológico (retinol no plasma, ferro e zinco) e
- 3) aqueles que acessam as funções fisiológicas mensuráveis (teste de visão noturna, desempenho cognitivo) ou risco clínico futuro.

21 Exemplos para alguns minerais

(Ca, Fe, Zn e Se)

22 Biomarcadores para Avaliação Nutricional do Indivíduo em relação ao CÁLCIO

23 24

Biomarcadores para Ca

26 Biomarcadores para Ca

- ✓ Não existe padrão ouro para medir o conteúdo mineral do osso ou a retenção de Ca.
- ✓ Técnicas de Balanço: limitadas
- ✓ DXA (dual energy x-ray absorptiometry) mudanças no tempo (útil para crianças)
- ✓ Isótopo único: utilizado para adultos
- ✓ Traçador duplo: reconhecido como padrão atualmente
- ✓ Isótopos estáveis e radioativos
- ✓ Os parametros bioquímicos utilizados são relativamente arbitrários

√ Atualmente se recomenda o estudo de grupos de risco da população de forma controlada para avaliar a dose resposta

27

Biomarcadores para Avaliação Nutricional do Indivíduo em relação ao FERRO

28 Biomarcadores para Fe
30 Biomarcadores para Fe

32 Indices de estado nutricional de indivíduos com relação ao Zn

- Diagnóstico da deficiência de Zn em nível individual é prejudicado pela falta de um biomarcador específico e sensível.
- Em nível populacional a medida da concentração de Zn no soro ou plasma é útil para identificar subgrupos em risco de deficiência.

33 Concentração de Zn soro (3)

Fatores que interferem neste parametro:

 idade, sexo, gestação, infecção / inflamação, turnover muscular (durante rápido crescimento), doenças crônicas, jejum/fome, variação diurna (valores >manhã), preparações com estrogenos (anticoncepcionais) <conc.

Marcadores adicionais:

• prevalência baixo crescimento, ingestão alimentar.

34 Zn no eritrócito (4)

Aproximadamente 10 vezes > plasma

- Anidrase carbonica (80-88%), SOD (5%), e Ligantes de baixo PM (2 a 3%).
- Até o momento não existe critérios de interpretação definidos para estes resultados.

35 Outros Biomarcadores Zn (5)

Zn urina

- Sensível apenas em casos extremos de ingestão (muito baixa ou muito alta)
- Geralmente varia de 300 a 600µg/d.
- Zn cabelo

Crianças – baixa concentração pode indicar deficiência (Valores de ponto de corte: <1,68µmol/g (11µg/dL) para crianças são associadas a deficiência)

36 Outros Biomarcadores Zn (6)

- Zn saliva
- Zn é componente da gustina, proteína envolvida na acuidade ao sabor. Resultados conflitantes.
- · Enzimas dependentes Zn
- Não tem proporcionado bons resultados
- Segundo Gibson, o melhor meio de avaliar a deficiência é associar Zn soro, com crescimento, e com ingestão
- (Gibson, R. 2005,908p.)

37 Deficiência Zn

38

39

40

41 DRIs for Selenio (IOM)

42 Biomarcadores Se

- · Conc. Plasma ou sangue total
- GPx plasma
- GPx eritrócito
- Atividade selenoperoxidases em celulas sangue (plaquetas, linfócitos, neutrófilos)
- Selenoproteína P
- · Concentração hormonios tireóide
- **Valores propostos Se**
- 44 AVALIAÇÃO SANGUÍNEA

Selênio plasmático (adultos)

Laboratório de Nutrição-Minerais

45 Suplementação com Castanhas do Brasil como fonte de Se e Doenças

Estudos realizados no Laboratório de Nutrição - Minerais

54 Selenium

68 Fontes de Variabilidade e de Incertezas

- Variabilidade
- Inter-individual Diferenças de:
- Adaptação
- Funcionalidade
- Polimorfismos
- · Programing
- Idade
- Sexo
- · Maturação fisiológica

.

5

Incertezas

- · Fatores desconhecidos ou imprecisos
- Dieta
- Exposição
- Dose
- Biodisponibilidade
- Medidas avaliadas (metodologia utilizada)
- Extrapolações

69 TESTES NUTRIGENÔMICA?

70 71

72 Riscos Potenciais

73

74 Referências Bibliográficas

- COZZOLINO, S.M.F Biodisponibilidade de Nutrientes, 5 ed., 2016.
- · GERMAN Nutrition Society, Bonn, Germany- New Reference Values for Calcium. Ann Nutr Metab 2013;63:186-192- DOI: 10.1159/000354482
- GIBSON,R.S. Principles of nutritional assessment, 2005.
- GROSSMANN,R.E. & TANGPRICHA,V. -Evaluation of vehicle substances on vitamin D
- DUNTAS, L.H & BENVENGA, S. Selenium: an element for life. Endocrine (2015) 48:756-775- DOI 10.1007/s12020-014-0477-6
- IOM (Institute of Medicine) DRIs- Dietary Reference Intakes: for Vitamin C, Vitamin E, Selenium and Carotenoids. Washington, D.C., National Academy Press, 2000, 506 p. Disponível em http://www.nap.edu
- IOM (Institute of Medicine) Dietary Reference Intakes: Applications in Dietary Assessment. Washington, D.C., National Academy Press, 2000. Disponível em http://www.nap.edu
- MASON,P. Symposium 8: Drugs and nutrition- Important drug-nutrient interactions. Proceedings of the Nutrition Society (2010), 69, 551–557 doi:10.1017/S0029665110001576

75 smfcozzo@usp.br

FCF-USP