Polyhedral Boranes and Wade's Rules

Dr. Heather A. Spinney

Massachusetts Institute of Technology

February 17, 2009

Outline

- Polyhedral Boranes
- Wade's Rules
- 3 Heteroboranes
- 4 Molecular Orbital Picture

An Important Class of Electron-Deficient Borane Compounds

- Electron-deficient species possess fewer valence electrons than are required for a localized bonding scheme
- In a cluster atoms form a cage-like structure
- There are a great number of known neutral and anionic hydroborane clusters
- These structures are often described as being polyhedral or deltahedral
- A deltahedron is a polyhedron that possesses only triangular faces, e.g., an octahedron

An Important Class of Electron-Deficient Borane Compounds

- Electron-deficient species possess fewer valence electrons than are required for a localized bonding scheme
- In a cluster atoms form a cage-like structure
- There are a great number of known neutral and anionic hydroborane clusters
- These structures are often described as being polyhedral or deltahedral
- A deltahedron is a polyhedron that possesses only triangular faces, e.g., an octahedron

An Important Class of Electron-Deficient Borane Compounds

- Electron-deficient species possess fewer valence electrons than are required for a localized bonding scheme
- In a cluster atoms form a cage-like structure
- There are a great number of known neutral and anionic hydroborane clusters
- These structures are often described as being polyhedral or deltahedral
- A deltahedron is a polyhedron that possesses only triangular faces, e.g., an octahedron

An Important Class of Electron-Deficient Borane Compounds

- Electron-deficient species possess fewer valence electrons than are required for a localized bonding scheme
- In a cluster atoms form a cage-like structure
- There are a great number of known neutral and anionic hydroborane clusters
- These structures are often described as being polyhedral or deltahedral
- A deltahedron is a polyhedron that possesses only triangular faces, e.g., an octahedron

An Important Class of Electron-Deficient Borane Compounds

- Electron-deficient species possess fewer valence electrons than are required for a localized bonding scheme
- In a cluster atoms form a cage-like structure
- There are a great number of known neutral and anionic hydroborane clusters
- These structures are often described as being polyhedral or deltahedral
- A deltahedron is a polyhedron that possesses only triangular faces, e.g., an octahedron

B_2H_6 The Simplest Hydroborane

- This is an electron-deficient compound held together by two 3c-2e bonds.
- Higher boranes are prepared by pyrolysis of B_2H_6 in the vapor phase.

B_2H_6 The Simplest Hydroborane

- This is an electron-deficient compound held together by two 3c-2e bonds.
- Higher boranes are prepared by pyrolysis of B_2H_6 in the vapor phase.

$[B_6H_6]^{2-}$ and $[B_{12}H_{12}]^{2-}$ Selected Examples of Polyhedral Boranes

• What are the point groups of these two anions?

$[B_6H_6]^{2-}$ and $[B_{12}H_{12}]^{2-}$ Selected Examples of Polyhedral Boranes

• What are the point groups of these two anions?

Deltahedral Cages With Five to Twelve Vertices

Can Be Used to Rationalize Borane Cluster Structures

n = 5 Trigonal bipyramid

n = 6Octahedron

n = 7 Pentagonal bipyramid

n = 8Dodecahedron

n = 9 Tricapped trigonal prism

n = 10 Bicapped square-antiprism

n =11 Octadecahedron

n = 12Icosahedron

Naming Polyhedral Boranes Closo, Nido, Arachno...

Families of Polyhedral Boranes The Closo Structures Are The Parent Structures

Wade's Rules

A Classification Scheme For Polyhedral Borane Clusters

- Classification of structural types can often be done more conveniently on the basis of valence electron counts.
- Most classification schemes are based on a set of rules formulated by Prof. Kenneth Wade, FRS, in 1971.

Wade's Rules

A Classification Scheme For Polyhedral Borane Clusters

- Classification of structural types can often be done more conveniently on the basis of valence electron counts.
- Most classification schemes are based on a set of rules formulated by Prof. Kenneth Wade, FRS, in 1971.

Wade's Rules

A Classification Scheme For Polyhedral Borane Clusters

- In a *closo* polyhedral borane structure:
- The number of pairs of framework bonding electrons is determined by subtracting one B-H bonding pair per boron.
- The n+1 remaining framework electron pairs may be used in boron-boron bonding or in bonds between boron and other hydrogen atoms.

Example: $[B_6H_6]^{2-}$ Understanding Wade's Rules

- Number of valence electrons = 6(3) + 6(1) + 2 = 26 or 13 pairs of electrons.
- Six pairs of electrons are involved in bonding to terminal hydrogens (one per boron).
- Therefore seven (n + 1) pairs of electrons are involved in framework bonding, where n = number of boron atoms in cluster.

Example: $[B_6H_6]^{2-}$ Understanding Wade's Rules

- Number of valence electrons = 6(3) + 6(1) + 2 = 26 or 13 pairs of electrons.
- Six pairs of electrons are involved in bonding to terminal hydrogens (one per boron).
- Therefore seven (n + 1) pairs of electrons are involved in framework bonding, where n = number of boron atoms in cluster.

Tabular Summary of Wade's Rules Classification and Electron Count of Boron Hydrides

Туре	Formula	Skeletal Electron Pairs
Closo	$[B_nH_n]^{2-}$	n + 1
Nido	B_nH_{n+4}	n + 2
Arachno	B_nH_{n+6}	n + 3
Hypho	B_nH_{n+8}	n + 4
Klado	B_nH_{n+10}	n + 5

 Closo comes from the Greek for cage, Nido the Latin for nest, Arachno the Greek for spider, Hypho the Greek for net, and Klado the Greek for branch.

Tabular Summary of Wade's Rules Classification and Electron Count of Boron Hydrides

Туре	Formula	Skeletal Electron Pairs
Closo	$[B_nH_n]^{2-}$	n + 1
Nido	B_nH_{n+4}	n + 2
Arachno	B_nH_{n+6}	n + 3
Hypho	B_nH_{n+8}	n + 4
Klado	B_nH_{n+10}	n + 5

 Closo comes from the Greek for cage, Nido the Latin for nest, Arachno the Greek for spider, Hypho the Greek for net, and Klado the Greek for branch.

Examples

Understanding Wade's Rules

- Classify the following polyhedral boranes according to their valence electron count:
- B₅H₉
- B₄H₁₀
- $[B_2H_7]^-$

Heteroboranes

Inclusion of Other Atoms in the Hydroborane Cage

- Many derivatives of boranes containing other main group atoms are also known.
- These heteroboranes may be classified by formally converting the heteroatom to a BH_x group having the same number of valence electrons.

Heteroboranes

Inclusion of Other Atoms in the Hydroborane Cage

- Many derivatives of boranes containing other main group atoms are also known.
- These heteroboranes may be classified by formally converting the heteroatom to a BH_x group having the same number of valence electrons.

Considering Other Atoms in the Context of Wade's Rules Classification of Heteroborane Clusters

Heteroatom	Replace With
C, Si, Ge, Sn	ВН
N, P, As	BH ₂
S, Se	BH ₃

 These represent the most common main group heteroatoms incorporated into hydroborane clusters.

Considering Other Atoms in the Context of Wade's Rules Classification of Heteroborane Clusters

Heteroatom	Replace With
C, Si, Ge, Sn	ВН
N, P, As	BH ₂
S, Se	BH₃

 These represent the most common main group heteroatoms incorporated into hydroborane clusters.

Examples

Understanding Wade's Rules

- Classify the following polyhedral heteroboranes according to their valence electron count:
- $C_2B_7H_{13}$
- SB₉H₁₁
- CPB₁₀H₁₁

Bonding in $[B_6H_6]^{2-}$

Frontier Orbitals for Each BH Unit

Bonding in $[B_6H_6]^{2-}$ Frontier Orbitals for Each BH Unit

- Choose z-axis to point to center of polyhedron
- Consider s and p_z to form two sp hybrid orbitals: one bonds to H 1s and the other points into center of cluster.
- The p_x and p_y orbitals on boron are unhybridized and are called tangential orbitals.
- The six hybrids not used in bonding to hydrogen and the unhybridized 2p orbitals of the borons remain to participate in bonding with the B_6 core.

Bonding in $[B_6H_6]^{2-}$

Radial and Tangential Bonding Molecular Orbitals

Bonding in $[B_6H_6]^{2-}$

Radial and Tangential Bonding Molecular Orbitals

- When the six B-H units come together, a total of $18 (6 \times 3)$ atomic orbitals combine to from 18 molecular orbitals.
- There are seven orbitals with net bonding character delocalized over the skeleton.
- All of the bonding orbitals are filled (n+1 framework bonding pairs), so seven pairs of electrons are used to hold the cluster together. The bonding cannot be interpreted using a localized electron model.
- There is a considerable energy gap between the bonding MOs and the remaining largely antibonding MOs, contributing to the stability of the cluster.

Bonding in $[B_6H_6]^{2-}$ Full Molecular Orbital Diagram

