
A replicated empirical study of a selection method
for software reliability growth models

Carina Andersson

Published online: 20 October 2006
Springer Science + Business Media, LLC 2006
Editor: Pankaj Jalote

Abstract Replications are commonly considered to be important contributions to
investigate the generality of empirical studies. By replicating an original study it may be
shown that the results are either valid or invalid in another context, outside the specific
environment in which the original study was launched. The results of the replicated study
show how much confidence we could possibly have in the original study. We present a
replication of a method for selecting software reliability growth models to decide whether
to stop testing and release software. We applied the selection method in an empirical study,
conducted in a different development environment than the original study. The results of the
replication study show that with the changed values of stability and curve fit, the selection
method works well on the empirical system test data available, i.e., the method was
applicable in an environment that was different from the original one. The application of the
SRGMs to failures during functional testing resulted in predictions with low relative error,
thus providing a useful approach in giving good estimates of the total number of failures to
expect during functional testing.

Keywords Replication . Software reliability

1 Introduction

Many software reliability growth models (SRGMs) have been proposed to estimate the
reliability of a software system. Software reliability, one of the most important attributes of
software quality, is closely related to defects. It is assumed to grow as defects are corrected
and removed from the software. To estimate the remaining number of defects in a software
system under test, SRGMs can be applied to guide test management in their decisions
whether to continue or stop testing. This paper reports on a replication of a study, originally
conducted by Stringfellow and Amschler Andrews (2002), where a method for selecting
SRGMs was suggested and applied to make these release decisions.

Empir Software Eng (2007) 12:161–182
DOI 10.1007/s10664-006-9018-0

C. Andersson (*)
Department of Communication Systems, Lund University, Box 118, 221 00 Lund, Sweden
e-mail: Carina.Andersson@telecom.lth.se

In the last few years, the importance of replicating research studies has received growing
attention in the empirical software engineering community. A finding cannot be established as
the “truth”, based on a single study, since small variations in the execution of a study can have a
large effect on the results. Nevertheless, to understand the fundamental principles behind the
software development phenomena studied, an attempt to run an exact replication is most often
not feasible (Robson 2002), and not even ideal. Instead, replications in a variety of environments
are a basis for obtaining more robust and generalizable results. Miller (2005) discusses the topic
and argues that to receive meaningful results, a step towards families of studies investigating a
single hypothesis is necessary. Miller focuses on replications of controlled experiments,
although replications can also be applicable to other forms of studies, either to produce
support for a particular theory, or to question the claims of the original study.

Hence, the goal of this study is to explore the applicability of the results of an original
study in a different context, rather than repeating the study under the same conditions to
verify the exact results. Stringfellow and Amschler Andrews (2002) proposed a selection
method for determining the most appropriate software reliability growth model in terms of
predictive ability, stability and curve fit. SRGMs are used to estimate the remaining number
of defects in a software system of interest to help management with release-decisions
during testing. The method is empirically evaluated in a case study on data from three
releases of a large medical record system. The results of the original study show that the
selection method worked well on the three data sets presented in the case study, although
several underlying assumptions of the SRGMs were violated, when applying the models on
the real-world data.

This paper presents a replication of the study by Stringfellow and Amschler Andrews.
The proposed selection method is implemented and applied in a different environment to
evaluate its usefulness and applicability. That is, in a new case study the method’s
applicability is validated, with failure data from three telecommunication software system
projects. The replication is one step towards a generalization of the selection method.
However, it is important to notice that one replication is not enough. In the study, some
parameters are changed, compared to the original study, while the basic ideas of the
selection method are maintained. The selection method in this case is applied to a much
larger number of failures (approximately 10 times larger), while the projects’ lead-times are
once to twice the length of the original study. This meant that the evaluation criteria in
terms of the given values of stability and curve fit used in the original study could not be
transferred to this new context without adaptation. In addition, the study by Stringfellow
and Amschler Andrews examined the method with failure data from system test, while in
this study the selection method is applied to failure data from system test, but also to failure
data from functional testing to investigate whether useful predictions could be made during
this earlier test activity.

The paper is structured as follows: Section 2 describes SRGMs and their underlying
assumptions. Also, the original study by Stringfellow and Amschler Andrews is described.
Section 3 describes our approach of the replication study, presents the failure data and the
differences compared to the original study. In addition, the findings compared to the results
of the original study are presented. Finally, in Section 4 the conclusions are presented.

2 Background

Quality, cost and schedule have been declared as the most important software project
characteristics (Musa et al. 1987). The latter two are quantitatively measurable, while

162 Empir Software Eng (2007) 12:161–182

quality is more difficult. Software quality has a wide range of attributes, such as
functionality, usability, portability, and maintainability (ISO 2000), and thus there is no
single concrete measure for software quality. Software reliability, however, could be seen as
a key factor in software quality, since it quantifies software failures. Software reliability is
defined as the probability of failure-free operation of a software program for a specified
time in a specified environment (Musa et al. 1987).

Several definitions of error, fault and failure exist in the literature. A crucial part in
applying software reliability measurements concerns separating these definitions. In this paper
we use the following terminology, as defined by IEEE (1990): an error of commission or
omission causes a fault in the code, which in turn manifests itself as a failure that can be
observed during software testing or operation. The program has to be executed for the failure
to occur. Hence, the failure is something dynamic. The failure behavior is obviously affected
by the number of faults existing in the software being executed (Musa et al. 1987).

According to the definition of reliability given above, another aspect of software
reliability measurement is time. The reliability quantities are related either to the execution
time for a software system, which is the CPU time actually spent by the computer executing
the software, or the calendar time. The third aspect of the software reliability definition
concerns the execution environment. The environment is described by the operational profile.
Musa et al. (1987) describes the concept of operational profiles. An operational profile consists
of the set of operations that a system is designed to perform and their probabilities of
occurrence. Thereby, a quantitative characterization of how the system will be used is
provided.

2.1 Software Reliability Growth Models

The assumptions of SRGMs generally state that the models are applicable during system
test, where cycles of test executions, observed failures, repair, and continued testing are
repeated. Changes in failure rate over time can be used by management to make a decision
about when to stop testing. Practical experiences of the use of reliability growth models in a
variety of contexts are published, e.g., by Musa and Ackerman (1989), Ehrlich et al. (1993),
Wood (1996, 1997), and Jeske and Zhang (2005).

Several SRGMs assume that the observed failures occur as a non-homogenous Poisson
process (NHPP). This means the failure intensity is not a constant. As faults are detected and
removed from the software, it is expected that the observed number of failures per time unit
will decrease. The expected number of failures observed by time t is given by μ(t), with the
boundary condition μ(∞)=a, where a is the expected number of failures to be observed
eventually. Four common SRGMs are used in the original study, the basic Musa or Goel-
Okumoto (G-O) model (Goel and Okumoto 1979; Musa et al. 1987), the delayed S-shaped
model (Yamada et al. 1986), the Gompertz model (Kececioglu 1991), and the Yamada

Table 1 SRGMs used in this study

Model Type Equation μ(t) Reference

G-O Concave a 1� e�bt
� �

, a≥0, b>0 Goel and Okumoto (1979)

Delayed S-shaped S-shaped a 1� 1þ btð Þe�bt
� �

, a≥0, b>0 Yamada et al. (1983)

Gompertz S-shaped a bc
t� �
, a≥0, 0 � b � 1, c>0 Kececioglu (1991)

Yamada Concave a 1� e�bc 1�e �dtð Þð Þ� �
, a≥0, bc>0, d>0 Yamada et al. (1986)

Empir Software Eng (2007) 12:161–182 163

exponential model (Yamada et al. 1986). These models are all based on a NHPP. The same
models are used in this replication study. Table 1 gives an overview of the models.

SRGMs can be classified into two major classes, concave and s-shaped models (Wood
1996). The concave models assume a pattern of decreasing failure rate, while the s-shaped
models assume that early testing is not as efficient as later testing. An s-shaped growth
curve may reflect the initial learning curve at the beginning of the test process, as test teams
become familiar with the software system and its testing procedures, followed by growth
where the failure detection rate increases, and finally leveling off when the remaining faults
become fewer and more difficult to detect.

Modeling the software failure process can hardly be expected to be precise, and underlying
assumptions are necessary for each model, some more reasonable than others. The assumptions
for each model should be evaluated in terms of the test environment from which the failure data
is obtained. Wood (1997) gives an overview of a list of assumptions and discusses their
accuracy for the test environment used in his study. For example, in general, all software
reliability models assume that the defect detection that occurs during testing follows an
operational profile (Lyu 1996; Musa 1999). In addition, with some exceptions (e.g., Fujiwara
and Yamada 2003), most reliability models assume a perfect debugging environment, i.e., the
defects are assumed to be corrected immediately without inserting any new faults. In practice,
software faults may not always be fixed during debugging, and new faults may be introduced.

Although several of the SRGMs’ assumptions might be violated, the models can be
applied to fit a curve to a set of data points representing the cumulative number of failures.
The fit to the data set is examined by evaluating the deviation between the observed
cumulative number of failures and the fitted values, by using a statistical test, e.g., χ2,
Kolmogorov-Smirnov and R2. Gaudoin et al. (2003) evaluated the power of several of this
type of tests, applied to a number of reliability models, showing that for example the simple
R2-test had as much power as the other tests and in some occasions more. More information
on the specific tests can be found in the literature by Siegel and Castellan (1988) and
Montgomery (2001).

2.2 The Original Study

The original study, conducted by Stringfellow and Amschler Andrews (2002), describes an
approach applying several SRGMs to cumulative failure data grouped by week to select the
model(s) that best fit the data. By a good fit of a model, more accurate predictions of total
number of failures are expected, thereby providing decision support for whether to stop
testing and release the software product or to continue testing for another week. The
predictions are based on test time and failure data. Stringfellow and Amschler Andrews
(2002) used calendar time to measure test time, since that was the only time measurement
available. The failure data consisted of defect reports, reported during system test.

The four SRGMs used in the study, the basic Musa or Goel-Okumoto (G-O) model
(Goel and Okumoto 1979; Musa et al. 1987), the delayed S-shaped model (Yamada et al.
1986), the Gompertz model (Kececioglu 1991), and the Yamada exponential model
(Yamada et al. 1986), were selected because they represent a range of assumptions.
Important to consider when choosing which models to apply, is simplicity. To persuade
practitioners to use a SRGM, it has to be simple in concept and allow inexpensive data
collection. A user without extensive mathematical background should be able to understand
and apply the model (Musa 1999). This makes the models in this study good candidates.

Three model evaluation criteria are used in the original study, the goodness of fit
measure (GOF), the prediction stability, and the predictive ability. Stringfellow and

164 Empir Software Eng (2007) 12:161–182

Amschler Andrews (2002) have chosen to base their GOF measure on the simple R2 test.
The choice is motivated by Gaudoin et al. (2003), who have evaluated the power of several
statistical tests for GOF for a variety of reliability models. The larger the R2 value, the
better the fitted equation explains the variation in the data. The evaluation showed that this
measure was as least as powerful as the other GOF tests compared. Stringfellow and
Amschler Andrews chose a threshold of R=0.95.

In addition to the GOF measure, the models are evaluated in terms of prediction stability.
A threshold for the stability is set; the prediction in week i should be within 10% of the
prediction of week i−1. The threshold value of 10% is subjectively chosen, motivated by a
rule of thumb given by Wood (1996).

Prediction accuracy is the last model evaluation criterion used in the study. The predictive
ability is measured in terms of error (estimate-actual) and relative error (error/actual).

The proposed method for selecting SRGMs based on the models that best fits the data
consists of several steps. Stringfellow and Amschler Andrews give a detailed description

yes

no

Collect data

Is enough
testing complete?

> 60% of planned testing complete

< 60% of planned
testing complete

Apply models
Estimate model parameters

Check rejection
criteria

Is estimate
stable?

Compare models
method estimate: max (models’ estimate)

Is estimate – actual
>= threshold?

Reject model

this week’s estimate
within > 5% last week’s

(model does not converge) OR
(fit: R < 0.99) OR
(estimate < actual)

this week’s estimate within < 5% last week’s

(model converge) AND
(fit: R > 0.99) AND
(estimate > actual)

Make release decision

Fig. 1 Flowchart for the selection method. Derived from (Stringfellow and Amschler Andrews 2002).
The rejection criteria are based on the threshold values from the replication study

Empir Software Eng (2007) 12:161–182 165

of each step of their approach. A short summary is presented below and illustrated in
Fig. 1.

The procedure for the selection method is executed once a week (on the assumption
that the cumulative number of failures are grouped by week), starting with recording the
cumulative number of failures found. The next step is considering whether it is
appropriate to apply the models. In case only a minor part of the execution of the test
plan is complete, it may not make sense yet to apply the SRGMs. Stringfellow and
Amschler Andrews recommend that at least 60% of the planned testing is complete
before applying the models, which also is motivated by Ehrlich et al. (1990). Once
testing has proceeded this far, the chosen SRGMs are applied to the data at the end of
each week, using a commercial curve fit program. The curve fit program attempts to fit
each model to the data. A model diverges if no fit can be performed to the data set. Then
the model is considered inappropriate and excluded from the selection procedure in future
weeks. However, if a fit is obtained and the model converges, the program outputs the
model’s parameters such as the estimate for the expected number of total failures. GOF of
the fitted curve is also evaluated, based on the R2 value. Models are considered
inappropriate for the data set if the R value is below the threshold value R=0.95. These
models are excluded from the selection procedure in subsequent weeks. Another criterion
could exclude the models from the selection procedure; if the estimate of expected total
number of failures given by the curve fit program is lower than the actual number already
detected, this could lead to a false sense of security, and will thereby lead to exclusion of
the model in subsequent weeks. Thereafter, the model stability is examined with the
stability threshold of 10% of the previous week’s prediction. If no model has stabilized by
giving a prediction within the 10% interval, testing should continue and failure data be
collected for another week. With at least one stable model, the final step in the approach
gives the estimate that is the maximum estimate of all stable models. A decision based on
the difference between the estimate and actual number of failures detected determines
whether testing should continue or if the developed software system has reached an
acceptable level. This threshold is decided by management and very much dependent on
type of system, e.g., whether it is safety-critical or not.

The results from the study by Stringfellow and Amschler Andrews show that the
selection method worked well. With the chosen threshold values for GOF and stability, at
least one model was acceptable by the time testing was approaching a decision point for
stopping. The selection method seemed to differentiate between the included models, and
the predictions corresponded well with the actual numbers of failures.

3 The Replication Study

The goal of our study is to replicate the study by Stringfellow and Amschler Andrews, and
to evaluate their suggested approach for selecting SRGMs. We have monitored the trends of
failures detected and attempted to predict the testing process with the selection method for
SRGMs. However, as in Stringfellow and Amschler Andrews, our study also had failure
data that violated some of the underlying assumptions.

The following section presents our approach of the selection method. A description of
the cases study is given, with detailed information of the data. Differences from the
approach taken by Stringfellow and Amschler Andrews are presented.

166 Empir Software Eng (2007) 12:161–182

3.1 Case Study

The failure data used in this replication study comes from three software development
projects conducted in the telecommunications industry. The development organization has a
high market sensitivity, which implies a strong need for early indicators of project progress
and specifically fault content in the developed products, to enable early actions to reduce
costs and to plan preventative test activities.

The software projects follow an incremental development process, with an extensive
number of iterations. Project duration is a number of months. The development projects are
divided into feature groups, each having responsibility of a specific part of the functionality
to be developed. In each iteration, the feature groups are delivering components with the
required functionality of the main software system. In addition to the developers in the
feature groups, these groups also include functional testers. The developers do the unit
testing themselves. After that the functional testers take over the testing responsibility of the
implemented software.

System test is a test organization that is independent from the feature groups. The system
test organization runs its test suites on the latest available version of the product. Testing is
performed both in the development environment and in the real operational environment.

Due to the incremental development environment, several activities occur in parallel. An
overview of the workflow is given in Fig. 2 illustrating overlapping activities. Some
important milestones used in the development process are marked. Before Alpha the main
activities are development and functional test, while the main part of system test starts at
Alpha. At ship date the first version of the system is released. After this milestone testing
and debugging continues. The versions with the corrected implementations are released at
update releases (UR).

3.2 Data

The data sets used in this replication study are obtained from a large failure report database.
Data from the three software projects is extracted from the database, classified by detection
date, and whether the failure was detected by a functional tester or a system tester. In this way,
failure reports are separated into functional test failures and system test failures. The data sets
are not limited to failures detected by system test as is the case in several other studies (Wood
1996; Stringfellow and Amschler Andrews 2002). We chose to use the full data set
available, and the subsets of it obtained through data partitioning into functional and system
test failures, since this approach enables us to do more detailed analyses. The functional test
failures are detected in testing procedures, which are considered to be feature related.

Development

Function test

System test

Technical
activities

tAlpha

t

tship tUR Management
activities

Technical

Fig. 2 Project work flow

Empir Software Eng (2007) 12:161–182 167

Combining this type of data with ordinary reliability growth testing data is quite contrary to
what is advisable (Lyu 1996), at least if the test cases are not selected randomly according
to an operational profile. In this case, no operational profile is used for test case selection,
but on the other hand, the functional tests do not proceed sequentially. The feature groups
execute functional test cases in parallel, each group focusing on its own functionality,
resulting in a mixed test suite execution of different features.

The failure data is accumulated per week, using calendar time, since execution time data is
not available in the organization. In the development projects, failures were reported in
relevance to calendar time, with a granularity of days. Hence, we use this scale. This also was
motivated by a rather constant test effort per week. However, there were holidays, such as
summer vacations and Christmas, when the test effort was less than normal. There were also
regression test periods when the test effort was more intensive than normal, which constituted
a significant percentage of the calendar time. For this reason, a modified time scale is used,
which takes into account only testing days and compensates for the non-constant test effort.

Duplicate detection of failures is not included in the data sets, that is, only one failure report
is kept per observed failure. If the same failure is detected more than once, only the first is
entered into the database. Also, if an underlying fault is causing different failures, only one
failure report is kept for the analysis. Hence, only unique faults are represented in the study. We
did not consider change requests nor problems that are not code faults in the analysis.

The predictions from the SRGMs, based on the available data sets, are compared to the
cumulative number of failures detected after tship. Hence, failures detected post-ship are also
separated into failures detected in functional test and system test, i.e., the number of failures
detected by each test activity after tship. Thus, to examine predictive ability, the predictions
obtained from the data sets, consisting of failures detected by functional test is compared to
the actual number of failures detected by the same test activity after tship. The same goes for
system test failures.

3.3 Comparison to the Original Study

Some differences exist between our study and the one conducted by Stringfellow and
Amschler Andrews. These differences are presented below with a summary of aspects
considered during the application of the suggested selection method.

& Can calendar time be used when the original models assume execution time?
Stringfellow and Amschler Andrews investigate the use of calendar time. We also use
a sort of calendar time. However, the time used is modified to avoid the reflection of
differences in test effort due to holidays and more intensive periods of testing.

& How robust are the models when the underlying assumptions are not met? As
mentioned, when applying SRGMs in practice, several of their stated assumptions
are often violated, which is the case also with the data in this case study. In this
study we can assume an imperfect debugging environment where new faults may
be introduced by the correction of detected faults. The code base is not held
constant, but grows during the test process when the developers iteratively deliver
new functionality to the main software system. In addition, we apply the SRGMs
on both failure data from system test and functional test.

& What is a good fit of the models? Analogous to Stringfellow and Amschler Andrews,
we use the R2 value as GOF measure. However, the number of data points of
detected failures is not in the same range as in their study (see Table 2), which
implies that their chosen value is not appropriate in our study. Stringfellow and

168 Empir Software Eng (2007) 12:161–182

Amschler Andrews base their threshold value on a discussion by Gaudoin et al.
(2003) who evaluate a different model, although they find the value associated with a
high confidence level. Also based on Gaudoin et al. we chose a threshold value R=
0.99, to better reflect the models’ appropriateness in this application, since the critical
value depends on the number of data points. An alternative to setting a threshold
value is to base the selection method on choosing the SRGM that has the highest R2

value, and exclude the rest. However, the purpose is to maintain the iterative
procedure in the selection method. We do want to keep more than one candidate in
the selection process, especially those which may give reasonable predictions later.
The chosen threshold value is noticeably higher than the value used by Stringfellow
and Amschler Andrews, R=0.95, which might not have resulted in any selection at all
applied to our data sets. The effect of choosing the threshold value R=0.99 is further
discussed in the subsections presenting the application of the selection method.

& What is considered a stable model? Related to the discussion of the GOF measure,
with our larger data sets in terms of data points and number of failures, the higher
number of detected failures compared to the study by Stringfellow and Amschler
Andrews implies that the stability measure may not be relevant at the 10% level.
We have chosen the threshold at 5% of the prediction of the previous week, to keep
the number of models remaining in the selection process at an appropriate level.

& Which estimate is appropriate to use when more than one model is stable?
Stringfellow and Amschler Andrews chose conservatively, i.e., the maximum
estimate when more than one model was viable. Often there is a large difference in
the estimates given by the different models and we did not find this approach
applicable in every case. We chose to evaluate the selection method on the same
aspect, the highest estimate, as in the original study. However, this should be
carefully considered when applying the selection method in an industrial context.
We noticed that further reflection on the estimates from the non-rejected models
must be done to avoid unnecessary time spent on testing.

& What should the predicted values be compared to? Stringfellow and Amschler
Andrews use the number of failures reported after release as the comparative value
to calculate predictive ability and relative error. Our corresponding value for the
calculation of relative error is based on the number of failures detected until tUR
according to Fig. 2, separated into the two categories of failures detected by system
test and functional test. Since newly corrected code is implemented after tship,
functional test failures continue to occur after this milestone. The parallel activities

Table 2 Project data for original study and replication study

Original study Replication study

Release 1 Release 2 Release 3 Project 1 Project 2 Project 3

Duration ST (weeks) 18 17 13 22 27 25
Duration FTa (weeks) – – – 35 46 41
Number of failures (ST) 231 245 83 585 1,330 3,839
Number of failures (FT) – – – 2,704 4,802 5,343

FT=functional test, ST=system test
a The functional test runs in parallel with the system test in the replication study. i.e., the end dates are
identical, although the system test starts after the functional test and the duration in number of weeks are
shorter

Empir Software Eng (2007) 12:161–182 169

of system test and functional test require this approach, although the main portion
of functional test is conducted before system test. Functional test failures are
assumed to not be detected by system test. However, the size of the fraction of
failures that could be detected both by system test and functional test is not known,
but in this study is believed to be small.

3.4 Results

In this section we present the results from the replication study. In Section 3.4.1 the selection
method for SRGMs is replicated on system test failures, while Section 3.4.2 presents the new
approach where the SRGMs are applied to the data sets of functional test failures.

3.4.1 System Test Failures

In the following we present the data from the three projects while applying the G-O,
delayed S-shaped, Gompertz, and Yamada models to failure data detected by system test,
starting at 60% of the planned testing and ending at the ship date. The columns show the
test week, the cumulative number of failures found, and for each model: the prediction of
total number of failures and the adherent GOF-value (R-value). An S indicates that the
model is stabilizing in the specific week, while a D indicates a destabilization of the model.
An R indicates the model is rejected in the selection method and not considered as an
appropriate model in future weeks.

The tables show the prediction data when applied to the failure data detected in system
test. Notice that test time is counted from the beginning of system test; in parentheses the
functional test time is given.

Project 1 system test data and the application of the SRGMs are shown in Table 3. Both
concave models are rejected because they do not converge in test week 16. The rejection is
expected when inspecting the cumulative failure curve, which clearly is s-shaped. Both
models do converge later on, although they give very high estimates and have R-values
well below the threshold value of 0.99.

The delayed S-shaped model and the Gompertz model have better fits to the curve,
although the delayed S-shaped model does not stabilize until week 21, while the Gompertz
model stabilizes in week 17, destabilizes the week after and stabilizes once more in week
19. Figure 3 illustrates the cumulative failure curve and the s-shaped models’ estimates of
total number of failures for each week, starting week 16. The appearance of the failure

Table 3 Predicted total number of failures for project 1 (ST)

Test week
ST (FT)

Failures found G-O Delayed S-shaped Gompertz Yamada

Estimate R-value Estimate R-value Estimate R-value Estimate R-value

16 (29) 226 – – (R) 1,020 0.9963 421 0.9976 – – (R)
17 (30) 249 – – 948 0.9970 423 (S) 0.9981 – –
18 (31) 252 82,300 0.9637 758 0.9965 383 (D) 0.9980 – –
19 (32) 265 151,000 0.9680 661 0.9963 367 (S) 0.9982 – –
20 (33) 279 89,300 0.9717 609 0.9965 364 0.9984 – –
21 (34) 297 90,500 0.9747 590 (S) 0.9969 373 0.9986 127,200 0.9748
22 (35) 306 114,000 0.9775 567 0.9971 376 0.9987 49,830 0.9774

170 Empir Software Eng (2007) 12:161–182

curve from system test in project 1 is obviously rather difficult to fit. According to the
original selection method, in test week 22 the delayed S-shaped model is favored, since it
gives a higher estimate than the Gompertz model, although its R-value is lower than the
Gompertz model’s.

Compared to the total number of failures reported, the predicted value of the delayed
S-shaped model had a relative error of −0.031, while the Gompertz model had a relative
error of −0.357, despite the high value for the curve fit, see Table 4.

Project 2 system test data and the results of applied SRGMs are shown in Table 5. When
applying the models to the data set, the concave models give very high estimates of the total
number of failures in the beginning of the presented test period, but have R-values above
the threshold value. During subsequent weeks, the models’ estimates are closer to more
reasonable figures, and finally also stabilize in week 27.

The delayed S-shaped model and the Gompertz model stabilize in test week 18, with
good curve fit and high R-values for both models. The delayed S-shaped model, which
gives the highest estimate of the two, predicts the total number of failures to be 1,110 in
week 18, to compare with the actual number of failures detected, 859. If the difference
between the actual number and the prediction is considered too large, the decision to
continue testing should be taken. Testing did continue for several more weeks.

In week 27, when the G-O model and the Yamada model stabilize, the original selection
method recommends the conservative choice, to follow the maximum estimate. In this case
it is the G-O model’s prediction, which is 2,320 failures to compare with the actual number
of detected failures of 1,100. The s-shaped models estimated the total number of failures to
1,160 and 1,180, rather close to the actual number of detected failures, and the estimated

Fig. 3 Plot of project 1 data (ST)
and each week’s prediction of
total number of failures, from
SRGMs not rejected

Table 4 Final estimates and error by SRGMs not rejected for project 1 (ST) at week 22

Model Estimate (true value: 585) R-value Error Relative error

Delayed S-shaped 567 0.9971 −18 −0.031
Gompertz 376 0.9987 −209 −0.357

Empir Software Eng (2007) 12:161–182 171

values had been stable for several weeks (see Fig. 4). In Fig. 4, the predictions of the s-
shaped models are shown from week 11. These stabilize already in week 15 (not presented
in Table 5, since 60% of the planned testing was not completed at that time). Figure 4 also
shows the predictions of the G-O model and the Yamada model (giving nearly the same
estimates), starting in week 23.

After week 27 and ship date, the total number of failures detected was 1330� 1100 ¼ 230.
An amount well below the prediction from the G-O model, but also a little higher than the
predictions from the s-shaped models. The values of relative error are presented in Table 6,
where also the R-values are presented. These indicated good curve fit for each model, although
the predictions were not very good.

Project 3 system test data and SRGMs model results are shown in Table 7. The selection
method did not reject any of the SRGMs for the data. However, as soon as week 17, the two
concave models have good curve fits, with the highest R-values (the G-O model and the

Table 5 Predicted total number of failures for project 2 (ST)

Test week
ST (FT)

Failures
found

G-O Delayed S-shaped Gompertz Yamada

Estimate R-value Estimate R-value Estimate R-value Estimate R-value

17 (36) 822 156,000 0.9964 1,100 0.9970 1,080 0.9981 137,900 0.9965
18 (37) 859 167,000 0.9966 1,110(S) 0.9974 1,080 (S) 0.9983 52,770 0.9966
19 (38) 880 33,300 0.9961 1,110 0.9977 1,070 0.9985 10,690 0.9961
20 (39) 899 7,280 0.9954 1,110 0.9979 1,060 0.9986 5,774 0.9954
21 (40) 925 4,420 0.9949 1,110 0.9981 1,060 0.9987 4,406 0.9950
22 (41) 950 3,370 0.9946 1,110 0.9983 1,070 0.9989 3,373 0.9946
23 (42) 992 2,980 0.9948 1,120 0.9983 1,080 0.9988 2,979 0.9948
24 (43) 1,027 2,770 0.9951 1,140 0.9982 1,110 0.9986 2,767 0.9951
25 (44) 1,043 2,560 0.9952 1,150 0.9982 1,120 0.9986 2,557 0.9952
26 (45) 1,069 2,410 0.9954 1,160 0.9981 1,140 0.9985 2,409 0.9954
27 (46) 1,100 2,320 (S) 0.9957 1,180 0.9980 1,160 0.9983 2,318 (S) 0.9957

Fig. 4 Plot of project 2 data (ST)
and each week’s prediction of
total number of failures,
of SRGMs not rejected

172 Empir Software Eng (2007) 12:161–182

Yamada model have very similar values both for predictions and curve fit for this data set).
At the end of the system test period, in week 25, the Gompertz model has the highest R-value,
indicating that a selection procedure based on just following the highest R-value would give a
different result.

Figure 5 shows the cumulative failure curve of the failures detected by system test in
project 3 and the four models’ predictions for each week. The estimates from the s-shaped
models start in week 18, when they stabilize. The G-O model and the Yamada models are
shown from test week 23.

When reaching week 25, when the two concave models have stabilized, the original
selection method recommends following these models, as they give the higher estimates (at
week 25 the G-O model and the Yamada model are giving the exact same estimate).
Making a decision to stop testing based on the estimates from the concave models, would
probably have resulted in continued testing. At week 25, only 3,263 failures had been
found, while the concave models predicted a total of 5,060 failures.

At week 25, all models had fairly good R-values. Another 576 failures were reported
after test week 25. The concave models overestimated, while the s-shaped models
underestimated. The values for relative error are presented in Table 8.

For this third system test failure data set, the original selection method suggested the
concave models. Nevertheless, it was later shown that these models had a larger relative
error than the s-shaped models. The Gompertz model’s prediction was closest to the actual
number of failures. It also had the best fit according to the high R-value, but, as in previous
cases, underestimated.

Table 6 Final estimates and error by SRGMs not rejected for project 2 (ST)

Model Estimate (true value: 1,330) R-value Error Relative error

G-O 2,320 0.9957 990 0.744
Delayed S-shaped 1,180 0.9980 −150 −0.113
Gompertz 1,160 0.9983 −170 −0.128
Yamada 2,318 0.9957 988 0.743

Table 7 Predicted total number of failures for project 3 (ST)

Test week
ST (FT)

Failures
found

G-O Delayed S-shaped Gompertz Yamada

Estimate R-value Estimate R-value Estimate R-value Estimate R-value

17 (33) 2,707 7,750 0.9989 3,000 0.9916 3,300 0.9967 7,752 0.9989
18 (34) 2,824 7,330 0.9989 3,090 (S) 0.9920 3,380 (S) 0.9971 7,325 0.9989
19 (35) 2,905 6,860 0.9989 3,160 0.9924 3,420 0.9973 6,859 0.9989
20 (36) 2,993 6,490 0.9989 3,230 0.9927 3,460 0.9976 6,348 0.9989
21 (37) 3,050 6,110 0.9988 3,270 0.9931 3,480 0.9978 6,106 0.9988
22 (38) 3,088 5,730 0.9985 3,300 0.9936 3,480 0.9980 5,733 0.9985
23 (39) 3,151 5,460 (S) 0.9983 3,330 0.9939 3,490 0.9981 5,455 (S) 0.9983
24 (40) 3,196 5,220 0.9980 3,360 0.9945 3,490 0.9983 5,223 0.9980
25 (41) 3,263 5,060 0.9980 3,380 0.9945 3,510 0.9983 5,060 0.9979

Empir Software Eng (2007) 12:161–182 173

3.4.2 Functional Test Failures

In the following we present the data from the three projects and the application of the G-O,
delayed S-shaped, and Gompertz models to failure data detected by functional testing. The
data sets, consisting of the cumulative failures detected during functional testing, all
followed an s-shaped curve, clearly seen by visual inspection. These s-shaped data sets
could not be fitted to the concave Yamada model, and the model did not converge in any of
the cases using functional test data. Thus, the model is not included in the following
section. The concave G-O model did not perform very well either, though it is included to
illustrate how the results from a concave model differed from the s-shaped models’.

Failure data from the first project and the estimates from the SRGMs are presented in
Table 9. The delayed S-shaped model and the Gompertz model perform well, as indicated
by the R-values. Figure 6 shows the plot of the failure data from project 1, together with the
estimates for each week for the delayed S-shaped model and the Gompertz model. The G-O
model was rejected as an appropriate model, due to a low R-value, 0.9429, well below the
threshold value. The Yamada model, not shown in the table, was rejected since the model
did not converge in week 22, indicating that a good fit will not be obtained later on either.

Figure 6 illustrates how the Gompertz model smoothly follows the cumulative failure
curve, while the delayed S-shaped model is closing in from higher estimates. Choosing the
less conservative alternative with the lower predicted values instead of the highest, in this
case from the Gompertz model, would result in an expected number of failures that is too

Fig. 5 Plot of project 3 data (ST)
and each week’s prediction of
total number of failures, from
SRGMs not rejected

Table 8 Final estimates and errors by SRGMs not rejected for project 3 (ST)

Model Estimate (true value: 3,839) R-value Error Relative error

G-O 5,060 0.9980 1,221 0.318
Delayed S-shaped 3,380 0.9945 −459 −0.120
Gompertz 3,510 0.9983 −329 −0.086
Yamada 5,060 0.9979 1,221 0.318

174 Empir Software Eng (2007) 12:161–182

low. Considering the failure detection after week 35, the Gompertz model underestimated
and had a relative error of −0.234 (Table 10), even though the model had the best curve fit.
The estimate from the delayed S-shaped model in week 35 was almost the same as the
actual number of failures. Thus, the original selection method would choose the most
appropriate model for the prediction of total number of failures to expect during functional
testing.

Project 2’s failure data from functional test and the estimates from the SRGMs are
presented in Table 11. Again, the concave models were rejected as appropriate models. In
this case the G-O model was rejected because the model does not reach the threshold value
for stability.

Table 9 Predicted total number of failures for project 1 (FT)

Test week Failures found G-O Delayed S-shaped Gompertz

Estimate R-value Estimate R-value Estimate R-value

22 1,460 104,000 0.9429 (R) 6,170 0.9914 1,750 0.9988
23 1,495 107,000 0.9485 4,850 0.9910 1,740 (S) 0.9989
24 1,575 173,600 0.9536 4,240 0.9912 1,760 0.9990
25 1,657 107,000 0.9576 3,940 0.9918 1,810 0.9989
26 1,707 120,000 0.9614 3,690 0.9923 1,860 0.9988
27 1,761 119,000 0.9648 3,510 (S) 0.9943 1,900 0.9987
28 1,800 107,000 0.9677 3,350 0.9931 1,940 0.9986
29 1,826 128,000 0.9703 3,200 0.9933 1,960 0.9987
30 1,861 106,000 0.9723 3,070 0.9934 1,990 0.9987
31 1,898 103,000 0.9741 2,980 0.9936 2,010 0.9987
32 1,915 122,000 0.9756 2,880 0.9936 2,020 0.9987
33 1,940 112,000 0.9765 2,810 0.9937 2,030 0.9988
34 1,971 106,000 0.9772 2,750 0.9938 2,050 0.9988
35 2,012 103,000 0.9779 2,700 0.9939 2,070 0.9988

Fig. 6 Plot of project 1 data (FT)
and each week’s prediction of
total number of failures, from
SRGMs not rejected

Empir Software Eng (2007) 12:161–182 175

The two s-shaped models both stabilize as early as week 31, with high R-values for
both models. The delayed S-shaped model is very stable, especially the last 9 weeks,
with estimates ranging from 4,850 to 4,900. Figure 7 shows the predictions of the delayed
S-shaped model and the Gompertz model for each week, specifically illustrating the
stability of the delayed S-shaped model during the last weeks of testing.

Using the originally suggested selection method, the delayed S-shaped model’s
predictions should be followed during the test period, since these are higher than the
Gompertz model’s. In week 46 the difference between actual number of failures detected
and the estimate is rather small; we cannot expect to detect many more failures. After week
46 another 4802� 4437 ¼ 365 failures were reported. This gives the delayed S-shaped
model’s final prediction a relative error of 0.020 versus −0.023 for the Gompertz model
(Table 12). Thus, the delayed S-shaped model overestimated, while the Gompertz model
underestimated.

If the stability threshold would had been set to 10% of last week’s prediction, as is the
case in the original study by Stringfellow and Amschler Andrews, the G-O model would
also have been considered appropriate for the data from functional test in project 2.
Following this larger stability threshold would imply that the G-O model’s estimate is used
for predicting the expected number of failures. Consequently, testing would probably have
continued another week, although it is unlikely the model would give estimates close to the
actual value of total number of failures. Also, by visual inspection of the cumulative failure

Table 10 Final estimates and error by SRGMs not rejected for project 1 (FT)

Model Estimate (true value: 2,704) R-value Error Relative error

Delayed S-shaped 2,700 0.9939 −4 −0.002
Gompertz 2,070 0.9988 −634 −0.234

Table 11 Predicted total number of failures for project 2 (FT)

Test week Failures found G-O Delayed S-shaped Gompertz

Estimate R-value Estimate R-value Estimate R-value

30 3,453 165,000 0.9928 4,490 0.9995 3,890 0.9987
31 3,537 148,000 0.9932 4,530 (S) 0.9995 3,960 (S) 0.9986
32 3,645 151,000 (S) 0.9936 4,570 0.9994 4,050 0.9985
33 3,740 147,000 0.9940 4,630 0.9994 4,140 0.9984
34 3,803 140,000 0.9942 4,670 0.9994 4,210 0.9983
35 3,908 106,000 (D) 0.9944 4,720 0.9993 4,300 0.9982
36 4,009 61,000 0.9946 4,780 0.9992 4,390 0.9980
37 4,054 39,400 0.9948 4,820 0.9992 4,460 0.9980
38 4,097 29,700 0.9948 4,850 0.9992 4,510 0.9980
39 4,124 23,000 0.9947 4,860 0.9992 4,540 0.9981
40 4,139 18,600 0.9945 4,860 0.9993 4,560 0.9982
41 4,196 15,900 0.9945 4,870 0.9993 4,580 0.9982
42 4,251 14,100 0.9941 4,870 0.9993 4,600 0.9983
43 4,298 12,800 0.9940 4,880 0.9993 4,620 0.9983
44 4,342 11,800 0.9939 4,890 0.9994 4,640 0.9984
45 4,386 11,000 0.9938 4,890 0.9994 4,660 0.9984
46 4,437 10,400 0.9937 4,900 0.9994 4,690 0.9984

176 Empir Software Eng (2007) 12:161–182

curve in Fig. 7, an s-shaped model would be more appropriate than a concave model.
Therefore, the rejection of the G-O model is justified for the data from functional test in
project 2, in this case based on the stability threshold.

Project 3’s failure data from functional test and the estimates from the SRGMs are
presented in Table 13. Similar to projects 1 and 2, the cumulative failure data are more
s-shaped than concave. Thus, the G-O model and the Yamada model were rejected. The
G-O model was rejected because of a low R-value in week 27, clearly below our
threshold of 0.99, although above the threshold value chosen in the original study by
Stringfellow and Amschler Andrews. Even if the more conservative threshold from
Stringfellow and Amschler Andrews was followed, the G-O model would be rejected.
The model destabilizes in week 37 and does not stabilize again, using either stability
threshold.

The s-shaped models remain in the selection procedure and both stabilize in week 28.
Again, the delayed S-shaped model gives the highest estimate in week 28, and the original
selection method tells us that decisions should be based on this model’s prediction. Figure 8
illustrates the stability of the estimates from the delayed S-shaped model. Meanwhile the
Gompertz model also has a good fit with high R-values, but is adjusting its estimates each
week to meet the changes in the failure data. Unfortunately, this behavior could lead to
misjudgment, letting management believe that the remaining number of failures is lower
than it really is. This can be avoided by having a set of models to use in the selection
procedure, and in this case the delayed S-shaped model is favored, partly because of its
higher estimate but also its stable behavior.

Table 12 Final estimates and errors by SRGMs not rejected for project 2 (FT)

Model Estimate (true value: 4,802) R-value Error Relative error

Delayed S-shaped 4,900 0.9994 98 0.020
Gompertz 4,690 0.9984 −112 −0.023

Fig. 7 Plot of project 2 data (FT)
and each week’s prediction of
total number of failures, from
SRGMs not rejected

Empir Software Eng (2007) 12:161–182 177

After week 41 and ship date, a rather large amount of failures were reported. However,
by following the suggested delayed S-shaped model, this could be predicted. The Gompertz
model underestimated the number of failures once again, see Table 14.

The application of SRGMs worked well on the failure data obtained from functional
testing. The suggested method for selecting a model could also be used on the data sets
consisting of functional test failures. It might not be appropriate as support for making a stop
test decision, although it could be useful as a guide on howmany more functional test failures
to expect. The predictions of the total number of failures for all three projects are all very
close to the actual number detected. The cumulative failure curves for the three projects were
s-shaped, and, as expected, the s-shaped models performed better than the concave. The

Fig. 8 Plot of project 3 data (FT)
and each week’s prediction of
total number of failures, from
SRGMs not rejected

Table 13 Predicted total number of failures for project 3 (FT)

Test week Failures found G-O Delayed S-shaped Gompertz

Estimate R-value Estimate R-value Estimate R-value

27 3,403 148,000 0.9847 (R) 5,090 0.9976 3,880 0.9979
28 3,510 145,000 (S) 0.9861 5,100 (S) 0.9978 3,980 (S) 0.9979
29 3,632 157,000 (D) 0.9873 5,140 0.9980 4,090 0.9978
30 3,754 150,000 (S) 0.9884 5,180 0.9981 4,200 0.9977
31 3,900 151,000 0.9893 5,270 0.9982 4,340 0.9975
32 3,954 152,000 0.9902 5,300 0.9983 4,440 0.9975
33 3,993 159,000 0.9908 5,310 0.9984 4,500 0.9976
34 4,054 150,000 (D) 0.9912 5,300 0.9985 4,550 0.9977
35 4,128 143,000 (S) 0.9914 5,290 0.9986 4,590 0.9978
36 4,207 129,000 0.9916 5,290 0.9987 4,640 0.9978
37 4,309 150,000 (D) 0.9918 5,310 0.9987 4,700 0.9979
38 4,385 65,600 0.9919 5,330 0.9988 4,760 0.9979
39 4,447 40,600 0.9919 5,350 0.9989 4,810 0.9979
40 4,511 30,200 0.9920 5,360 0.9989 4,850 0.9979
41 4,552 23,600 0.9920 5,370 0.9990 4,890 0.9979

178 Empir Software Eng (2007) 12:161–182

delayed S-shaped model and the Gompertz model both give reasonable estimates; however,
the delayed S-shaped model was considered to be the most appropriate in all cases. The
Gompertz model underestimated in all three cases. The concave G-O model was not
appropriate for any of the 3 projects. It also gave very high estimates. The Yamada model did
not converge for any of these data sets in the beginning of the selection method, indicating
that a good curve fit is not obtainable. For the six data sets in this study, the Yamada model
did not converge on several occasions and required considerable effort to use because of its
sensitivity to starting values in the fitting process. Also, the model, when converging, gave
predictions with wide confidence limits, which made the model less practical.

3.5 Findings Compared to the Original Study

Stringfellow and Amschler Andrews concluded that the selection method worked well when
applied to their empirical data. Our data differ from theirs with respect to development
environment and software system domain. In addition, our data consists of more data points,
both in terms of number of failures and test weeks. Similar to Stringfellow and Amschler
Andrews, our results show that when applying the selection method to system test data, at
least one model is applicable for the data set by the time testing was approaching a decision
point for stopping. Also, our modified calendar time, adjusted with regards to vacations and
regression periods, did not provide any obstacles. The models gave reasonable estimates.

Compared to the original study, we did obtain some diversification among the
selected models. By following the conservative choice (i.e., the highest estimate), the
delayed S-shaped model was considered most appropriate for the data set of system test
failures from project 1, and the concave models were considered appropriate for system
test failures from project 2 and 3. However, in the latter two cases a different selection
criterion would be suitable, since the concave models’ high estimate resulted in a rather
high relative error. In a situation like this, the selection method criterion should not be
followed. Rather, each accepted model’s estimate must be evaluated to find out whether
it is realistic and might be considered reliable for making a stop test decision or not.
Generally, the s-shaped models performed better than the concave models in predicting
the total number of failures, and they had a rather low relative error, often ranging in
the small amount of a couple of percents, see Table 15. However, the s-shaped models
underestimated in each prediction of the system test failures, even though the absolute value
of the relative error is lower than for the concave models. As seen in Table 15, the
Gompertz model often had a low relative error when applied to the six data sets in this
study, but in each occasion, underestimated the number of failures. For the two data sets in
the study by Stringfellow and Amschler Andrews for which the Gompertz model was
accepted, the model also underestimated more than the delayed S-shaped model, although
the GOF measure was higher than for the delayed S-shaped model.

Compared to the original study, we changed the threshold values for GOF and stability.
The GOF R-value was set to 0.99 instead of 0.95. The change manifested itself once, in
project 3 for functional test failures. If the G-O model had been accepted, the model’s very

Table 14 Final estimates and error by SRGMs not rejected for project 3 (FT)

Model Estimate (true value: 5,343) R-value Error Relative error

Delayed S-shaped 5,370 0.9990 27 0.005
Gompertz 4,890 0.9979 −453 −0.085

Empir Software Eng (2007) 12:161–182 179

high estimate would have an impact on the assessment, since the estimate is a lot higher
than the other non-rejected models. On the other hand, the G-O model was rejected anyway
since it did not stabilize for the data set from project 3 functional test failures, making it
unnecessary to address the question about the high estimate. The stability threshold was set
to 5% of last week’s estimate, instead of 10%. With the latter threshold value, generally the
models would stabilize earlier, and provide estimates that could give more confidence. For
the data sets in this study, the concave models would stabilize earlier, and affect the choice
of which estimate to follow in the selection method. This phenomenon is not entirely
eligible, shown by the results where the s-shaped models obviously provide estimates with
lower relative error. On one occasion, functional test failures from project 2, the G-O model
was rejected based on our threshold value for stability. With the threshold value from the
original study, the model would have been accepted instead and would have had impact on
the choice of which estimate to follow. The high estimate from the G-O model would
probably confuse the prediction of the total number of functional test failures to expect,
having to consider this value compared to the s-shaped models’ estimates. On their own,
the s-shaped models were shown to perform rather well in their predictions.

The results of applying the SRGMs on the data sets consisting of functional test failures
were unexpectedly positive. Despite the fact that by applying the SRGMs to functional test
data instead of system test data, basic assumptions of the SRGMs are violated, the
application of the models provided good predictions of how many failures to expect during
functional testing. The three data sets were s-shaped and thereby the two s-shaped models
fitted very well and resulted in low relative error, while the concave models did not fit very
well at all.

4 Conclusions

In this study, we replicated a selection method for software reliability growth models, and
applied the method to empirical software failure data. Replicating the original study and
comparing the results of the selection method across various types of projects, increases
confidence in the results. Hence, the replication study is one step towards generalization of the
procedure. In the replication study, the main selection method has been held constant, while
other parameters were varied compared to the original study. Parameters such as the threshold
values for the evaluation criteria have been changed. In addition, the failure data were obtained
from a different development environment. The selection method may be further evaluated by

Table 15 Relative errors for the SRGMs not rejected for the original study and the replication study

Data set G-O Delayed S-shaped Gompertz Yamada

Original study Release 1 – −0.022* −0.165 –
Release 2 – – – 0.016*
Release 3 – 0* −0.036 –

Replicated study Project 1 ST – −0.031* −0.373 –
Project 2 ST 0.744* −0.113 −0.128 0.743
Project 3 ST 0.318* −0.120 −0.086 0.318*
Project 1 FT – −0.002* −0.234 –
Project 2 FT – 0.020* −0.023 –
Project 3 FT – 0.005* −0.085 –

*Indicates which model was selected by the selection method

180 Empir Software Eng (2007) 12:161–182

varying other parameters than the ones discussed in this study, to gain even more confidence in
the selection method. One suggestion is to apply the selection method with a different set of
software reliability growth models. The decision of which parameters to change when applying
the selection method, has to be based on the environment where the application occurs. The
method has been shown to perform best while adapted to the circumstances that are specific to
each development environment.

Evidently, other selection methods for software reliability models could be used. Fenton
and Pfleeger (1997) present several procedures for comparing different models, such as
examining the basic assumptions given for each model, degree of bias, and prequential
likelihood. The selection method suggested by Stringfellow and Amschler Andrews (2002)
consists of several well-defined steps, defining a complete procedure. Its direct applicability
to an industrial case motivated our choice of further investigating this selection method.

The results of the replication confirm that the basic ideas of the selection method works well.
Generally, the failure detection pattern converges toward values predicted by the models. This
projection allows management to stop testing at an appropriate time with confidence in the
quality of the developed software. Nevertheless, the selection of which model to base the stop
testing decision upon is not always in accordance with the choice suggested by the original
study. Indicated by the data sets in this study, by following the conservative choice of trusting the
model giving the highest estimate, unnecessary amount of testing might be spent. This
replication study thus suggests that the model selection and thereby conclusions from
Stringfellow and Amschler Andrews to some extent will depend on the chosen values for
stability and GOF, and if there is more than one stable model, the maximum estimate. As shown
in this study, these criteria might need to be changed, to support the selection method in an
appropriate way and make it applicable in other development environments. Additionally, the
selection method works appropriately for selecting SRGMs in a systematic way, and often
results in predictions with a low relative error when compared to the actual values of total
number of failures. Nevertheless (this is also mentioned by Stringfellow and Amschler
Andrews), the selection method should be used with complementary techniques for assessment
of the developed software (Stringfellow 2000), and not be trusted alone.

In addition to applying the selection method and its SRGMs on system test data, the
procedure was applied to functional test data. The models provided good predictions of the
total number of functional test failures to be expected. The results show that the application
of SRGMs could be valuable to other types of data, even though several of the underlying
assumptions of the models are violated.

Acknowledgment The author would like to thank Prof. Catherine Stringfellow for being generous with her
time and willing to answer my questions about the selection method. Thanks also to Prof. Anneliese
Amschler Andrews and Prof. Per Runeson who provided valuable comments on the paper.

References

EhrlichW, Lee S, Molisanim R (1990) Applying reliability measurement: a case study. IEEE Softw 7(2):56–64
Ehrlich W, Prasanna B, Stanpfel J, Wu J (1993) Determining the cost of a stop-test decision. IEEE Softw

10(2):33–42
Fenton NE, Pfleeger SL (1997) Software metrics: a rigorous and practical approach, 2nd edn. PWS

Publishing Company, Boston
Fujiwara T, Yamada S (2003) A testing-domain-dependent software reliability growth model for imperfect

debugging environment and its evaluation of goodness-of-fit. Elec Commun Jap Part 3 86(1):11–18
Gaudoin O, Yang B, Xie M (2003) A simple goodness-of-fit test for the power-law process, based on the

Duane plot. IEEE Trans Reliab 52(1):69–74

Empir Software Eng (2007) 12:161–182 181

Goel AL, Okumoto L (1979) A time dependent error detection rate model for software reliability and other
performance measures. IEEE Trans Reliab 28(3):206–211

Huang CY (2005) Cost-reliability-optimal release policy for software reliability models incorporating
improvements in testing efficiency. J Syst Softw 77(2):139–155

Institute of Electrical and Electronics Engineers (1990) IEEE standard glossary of software engineering
terminology, IEEE Std 610.12-1990

International Standards Organisation (2000) Information technology—software product evaluation—quality
characteristics and guidelines for their use, ISO/IEC FDIS 9126-1. Geneva, Switzerland

Jeske DR, Zhang X (2005) Some successful approaches to software reliability modeling in industry. J Syst
Softw 74(1):85–99

Kececioglu D (1991) Reliability engineering handbook, vol. 2. Prentice-Hall, Englewood Cliffs, NJ
Lyu MR (ed) (1996) Handbook of software reliability engineering. McGraw-Hill, New York
Miller J (2005) Replicating software engineering experiments: a poisoned chalice or the Holy Grail. Inf

Softw Technol 47(4):233–244
Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New York
Musa J (1999) Software reliability engineering. McGraw-Hill, New York
Musa J, Ackerman A (1989) Quantifying software validation: when to stop testing? IEEE Softw 6(3):19–27
Musa J, Iannino A, Okumoto L (1987) Software reliability measurement, prediction, application. McGraw-

Hill, New York
Robson C (2002) Real world research. Blackwell Publishers, UK
Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences. McGraw-Hill, Singapore
Stringfellow C (2000) An integrated method for improving testing effectiveness and efficiency. PhD

Dissertation, Colorado State University
Stringfellow C, Amschler Andrews A (2002) An empirical method for selecting software reliability growth

models. Empir Softw Eng 7(4):319–343
Wood A (1996) Predicting software reliability. IEEE Comput 29(11):69–78
Wood A (1997) Software reliability growth models: assumptions vs. reality. Proceedings of the Eighth

International Symposium on Software Reliability Engineering, pp136–141
Yamada S, Ohba M, Osaki S (1983) S-shaped reliability growth modeling for software error detection. IEEE

Trans Reliab 32(5):475–478
Yamada S, Ohtera H, Narihisa H (1986) Software reliability growth models with testing effort. IEEE Trans

Reliab 35(1):19–23

Dr. Carina Andersson is a research associate at the Department of Communication Systems, Lund
University, Sweden. She received a Ph.D. in software engineering from Lund University in 2006 and her
M.Sc. in engineering physics with industrial management in 2001. Dr. Andersson’s main research interests are
software development verification and validation processes and software quality metrics and models.

182 Empir Software Eng (2007) 12:161–182

	A replicated empirical study of a selection method for software reliability growth models
	Abstract
	Introduction
	Background
	Software Reliability Growth Models
	The Original Study

	The Replication Study
	Case Study
	Data
	Comparison to the Original Study
	Results
	System Test Failures
	Functional Test Failures

	Findings Compared to the Original Study

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

