SCC 124 - Introdução à Programação para Engenharias

História

Professor: André C. P. L. F. de Carvalho, ICMC-USP Posdoutorando: Isvani Frias-Blanco Monitor: Henrique Bonini de Britto Menezes

1

Tópicos

- História dos Computadores
 - No Brasil
- Abacus
- Primeiras Máquinas
- Gerações Modernas
- Lei de Moore

© André de Carvalho - ICMC/USP

História do Computador

- Homens começaram contando com os seus dedos
 - Precisavam medir meses e estações para realizar festivais e cerimônias religiosas no período correto

© André de Carvalho - ICMC/USP

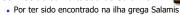
História do Computador

- Primeira " máquina de calcular":
 - Ábaco
 - Latim *abacus*, que veio do grego *abakos*
 - Tábua ou mesa de calcular
 - Criado para operações aritméticas simples
 - Contagem por meio do deslocamento de peças
 - Pedaços de madeira, ao longo de hastes ou fios.

© André de Carvalho - ICMC/USP

4

Ábaco


- Existem várias versões sobre quando e onde foi criado
 - Passou por várias civilizações
 - Azteca (Asteca), chinesa, egípcia, grega, japonesa, persa e romana
 - Com diferentes estruturas e denominações
 - Ábaco mais antigo preservado vem da Babilônia
 - Atualmente parte do Iraque
 - Cerca de 300 A.C.

© André de Carvalho - ICMC/USP

Ábaco

- Ábaco que veio da Babilônia
 - Conhecido como tábua de Salamis

- Pedra de mármore com 149 cm de altura, por 75 cm de largura e 4,5 cm de espessura
- Matemática baseada no sistema sexagesimal (base 60)
 - Escrita cuneiforme
 - Combinação de símbolos para 1 e 10
 - Mesmo símbolo para 1, 60 e 360

© André de Carvalho - ICMC/USP

Ábaco

- Não é realmente uma "máquina automática"
 - Lembrava o usuário do estado atual do seu cálculo
 - Permitia operações matemáticas mais complexas que as que poderiam ser realizadas só com as mãos (e os pés)

© André de Carvalho - ICMC/USF

7

Pascaline

- Uma das primeiras calculadores mecânicas
 - Desenvolvida por Blaise Pascal, matemático francês em 1642
 - Para ajudar o pai no cálculo de impostos
- Caixa com várias engrenagens, rodas e visores
 - Calculava as quatro operações básicas
 - Apenas 50 Pascalines foram produzidas

© André de Carvalho - ICMC/USP

Calculadora de Leibniz

- Outra calculadora mecânica, desenvolvida em 1673 pelo alemão Gottfried W. Leibniz
 - Semelhante à Pascaline
 - Mas podia também realizar multiplicações e, após uma longa sequência de passos, divisões
 - Também baseada em rodas dentadas
 - Resultado final de uma operação matemática era dado pela posição final dessas rodas
 - Ambição de Leibniz era criar uma máquina com capacidade de raciocinar

© André de Carvalho - ICMC/USP

Leibiniz

- Matemático e filósofo
- Foi um dos defensores do racionalismo
 - Junto com René Descartes e Baruch Spinoza
 - Corrente filosófica que via a razão como a principal fonte do conhecimento

© André de Carvalho - ICMC/USP

10

Leibiniz

- Tem contribuições em várias áreas:
 - Biologia, Computação, física, geologia, medicina, probabilidade, psicologia
- Reconhecido como um dos criadores do cálculo infinitesimal
 - Junto com Isaac Newton
 - Engloba cálculo diferencial e integral
- Primeiro emprego foi de alquimista

© André de Carvalho - ICMC/USP

Engenho Diferencial

- Projetado pelo inglês Charles Babbage em 1821
- Não foi projetado para executar operações aritméticas básicas
 - Diferente das primeiras calculadoras
 - Ex.: Pascaline
 - Mas para o cálculo de polinômios

© André de Carvalho - ICMC/USP

Engenho Diferencial

- Projetado para realizar cálculos usando o "método de diferenças finitas"
 - Muito utilizado na época
 - Elimina necessidade de multiplicação e divisão no cálculo de polinômios
 - Engenho diferencial usa apenas adições
 - Muito mais fácil de mecanizar do que multiplicação e divisão

© André de Carvalho - ICMC/USP

Engenho Diferencial

- Não foi completamente construído
 - Por limitações na precisão de seus componentes
 - Parcialmente construída pelo museu de ciência britânico em 1991
 - Se fosse, teria aproximadamente:
 - 25000 peças
 - 2,4 metros de altura
 - 2,1 metros de largura e
 - 0,9 metro de profundidade
 - 15 toneladas

© André de Carvalho - ICMC/USP

. . .

Engenho Diferencial 2

- Sucessor do Engenho Diferencial
- Babbage dedicou-se a este projeto no período entre 1847 e 1849
 - Mais simples
 - Utilizava 3 vezes menos peças
 - Também não foi concluído

© André de Carvalho - ICMC/USP

Engenho Diferencial 2

Parte do Engenho Diferencial 2

© André de Carvalho - ICMC/USP

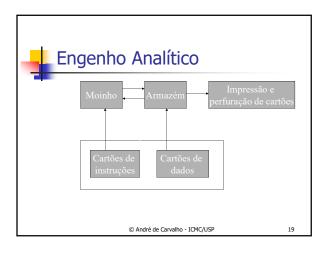
16

Engenho Analítico

- Projetado por Charles Babbage em 1830
 - Para ser uma máquina automaticamente sequenciada (programada)
 - Sequências seriam controladas por cartões perfurados
 - Poderia realizar vários cálculos
 - Precisão de até 50 casas decimais
 - Nunca foi construída
 - Não conseguiu financiamento

- Augusta Byron desenvolveu sequências sofisticadas para o Engenho Analítico
 - Primeira programadora

© André de Carvalho - ICMC/USP



Engenho Analítico

Parte do Engenho Analítico

© André de Carvalho - ICMC/USP

História do Computador

- Lord Kelvin (1872) 1⁰ computador de grande porte
 - Analógico
 - Previa a altura das marés nos portos ingleses
 - Construído com pesos e polias
 - Simulavam os efeitos do sol, da lua e dos ventos nas marés
 - Os resultados eram mostrados em gráficos

© André de Carvalho - ICMC/USP

História do Computador

- Máquina de tabulação
 - Desenvolvida em 1890 por Herman Hollerith para processar dados do censo americano
 - Censo de 1880 demorou 12 anos para ter seus resultados compilados
 - Censo de 1890, com a máquina de Hollerith, foi processado em 3 anos
 - Uma das empresas que formou a IBM

© André de Carvalho - ICMC/USP

Gerações Modernas

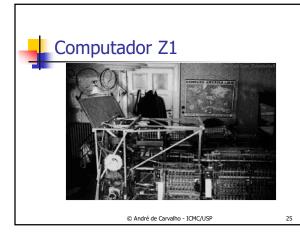
- Primeira geração
 - Circuitos eletrônicos que usavam válvulas como seus principais componentes
 - Dispositivo que conduz a corrente elétrica em um único sentido
 - Operações internas em milissegundos (10⁻³ segundos)
 - ENIAC, EDVAC, máquina Atanasoff-Berry e 71

© André de Carvalho - ICMC/USP

22

Válvula

- Também chamada de tubo de vácuo
- Dispositivo que pode ser utilizado para amplificar sinais eletrônicos
- Precisa de uma grande quantidade de energia
 - Em voltagens elevadas, pode causar choques elétricos


© André de Carvalho - ICMC/USP

Computador Z1

- Primeiro computador verdadeiramente programável
 - Construído pelo alemão Konrad Zuse em 1938
 No apartamento de seus pais
 - Destruído na II guerra mundial
 - Junto com o projeto utilizado para sua construção
 - incluía várias características dos computadores atuais
 - Unidade de controle, memória e operações de ponto flutuante

© André de Carvalho - ICMC/USP

Computador Z1

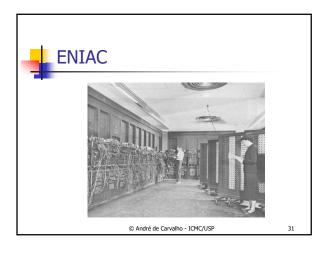
- Depois vieram:
 - ENIAC, EDVAC, máquina Atanasoff-Berry, Z2 e Z3
 - Desenvolvidos a partir de 1941
- Em 1986, Konrad Zuse decidiu reconstruir o Z1

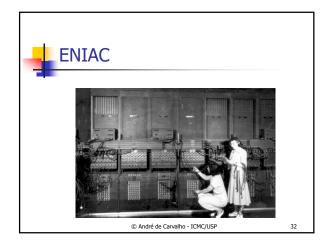
© André de Carvalho - ICMC/USP

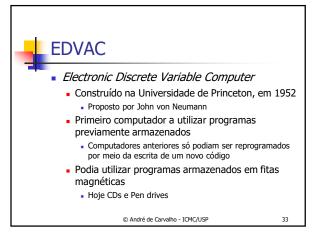
ENIAC

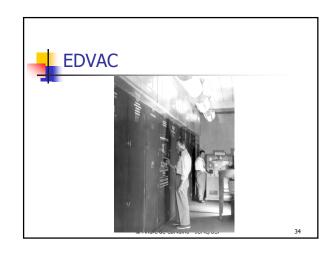
- Electronic Numerical Integrator and Computer
 - Construído na Universidade da Pensilvânia
 - Usado pela primeira vez em 1945
 - Para realizar cálculos de balística durante a II Guerra Mundial

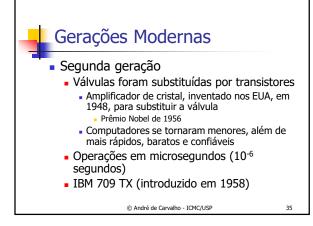
© André de Carvalho - ICMC/USP

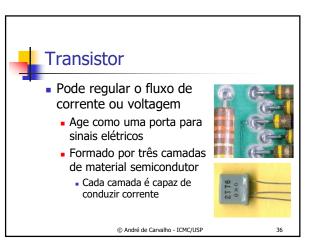



-


ENIAC


- Pesava 30 toneladas
 - Tinha 19000 válvulas
 - Ocupava uma sala de 500 metros quadrados
- Programação bem diferente da forma atual
 - Realizada ligando e desligando manualmente 6.000 cabos


© André de Carvalho - ICMC/USP



Gerações Modernas

- Terceira geração
 - Circuitos integrados (SSI e MSI)
 - Circuito eletrônico formado por um grande número de componentes
 - Organizados em um chip (uma "pastilha" de semicondutor) de poucos centímetros ou milímetros quadrados
 - SSI -integração em pequena escala menos de 10 elementos por chip
 - MSI integração em média escala 10 a 100 elementos por chip

© André de Carvalho - ICMC/USP

Gerações Modernas

- Terceira geração
 - Operações em nanosegundos (10-9 segundos)
 - IBM 360 (introduzido em 1964)

© André de Carvalho - ICMC/USP

Gerações Modernas

- Quarta geração
 - Tecnologia de firmware, integração em escalas superiores (LSI,VLSI, SCSI, ULSI)
 - Firmware: Programa (ou software de modo geral) armazenado em chip
 - LSI -integração em grande escala 100 a 500 elementos por chip
 - VLSI integração em muito grande escala 5.000 a 50.000 elementos por chip
 - SCSI integração em super grande escala 50.000 a 100.000 elementos por chip
 - ULSI integração em ultra grande escala mais de 100.000 elementos por chip

© André de Carvalho - ICMC/USP

Gerações Modernas

- Quarta geração
 - Operações em picosegundos (10⁻¹² segundos)
 - PDP-11 e IBM 370 (introduzidos em 1970 e 1971)

© André de Carvalho - ICMC/USP

40

Gerações Modernas

- Quinta geração (década de 1980)
 - Iniciativa do ministério de indústria e comércio do Japão
 - Arquiteturas massivamente paralelas
 - Suporte para Inteligência Artificial
- Avanços na computação ainda estão vindo rapidamente
 - Assim que um novo produto é liberado, sua substituição já esta na fase de projeto ou testes

© André de Carvalho - ICMC/USP

Gerações Modernas

- Se a indústria automobilística tivesse experimentado a mesma explosão tecnológica, um "carro popular":
 - Seria capaz de carregar 100 pessoas
 - Seria capaz de andar a quase 1000 quilômetros por hora
 - Seria do tamanho de uma formiga
 - Custaria 50 centavos

© André de Carvalho - ICMC/USP

No Brasil

- Em 1917, chega a primeira máquina de processamento de dados
 - Máquina *Holerith* trazida para a Diretoria de Estatística Comercial do Ministério da Fazenda
 - Em 1957, Brasil compra primeiro computador eletrônico
 - Univac-110, utilizado para calcular o consumo de água na cidade de São Paulo
 - Primeira universidade brasileira a adquirir um computador eletrônico foi a PUC-RJ

© André de Carvalho - ICMC/USP

No Brasil

- Em 1961 foi construído pelo ITA o primeiro computador brasileiro
 - Zezinho
 - Trabalho de formatura de quatro alunos
 - Computador não comercial desenvolvido para atividades de ensino
 - Utilizava transistores para o processamento de dados e podia acessar oito posições de memória de 8 bits cada
 - Em 1963, o Zezinho foi atualizado pelo então aluno Waldemar Setzer

© André de Carvalho - ICMC/USP

Zezinho

- Arquitetura tinha CPU com 20k posições de memória de 6 bits
 - 4 bits para representar um dígito decimal em código BCD
 - 1 bit para uma marca (flag), usado para:
 - Delimitar um número no dígito mais à esquerda e
 - Indicar um número negativo no dígito mais à direita
 - 1 bit de paridade, que devia ser sempre ímpar

© André de Carvalho - ICMC/USP

Zezinho

- Caracteres alfanuméricos eram representados por duas posições consecutivas
- Não usava o conceito de "palavra" de tamanho fixo)
- Tamanho era maior do que uma mesa de chefe de escritório
 - Parecia uma geladeira sem as portas

© André de Carvalho - ICMC/USP

No Brasil

- Marinha lançou uma chamada de propostas para um computador brasileiro
 - Para equipar fragatas, cujo armamento era controlado por computador
 - Unicamp
 - Cisne branco (prioridade da Marinha)
 - USP
 - Patinho feio (gozação com o outro nome)
 - Ganhou o contrato com a Marinha

© André de Carvalho - ICMC/USP

Patinho feio

- Trabalho de final de curso na Poli, em 1972
 - Ministrado por professores visitantes do exterior
 - Alunos de 18 a 24 anos
 - "Um dia, talvez, o nosso Patinho Feio se tornará um cisne"
 - Hardware e software
 - Usou botões que eram usados em sistemas telefônicos
 - 450 circuitos integrados em 45 placas de circuito impresso
 - 4 KB de memória
 - Programas carregados em fitas de papel perfurado que eram lidos por máquinas de telex

© André de Carvalho - ICMC/USP

Patinho feio

- Deu origem o computador G-10
 - homenagem ao comandante Guraranis
 - Protótipo construído para a Marinha
 - USP e PUC-Rio
 - Base para primeiro computador brasileiro comercial
 - Sistema 500 (MC 500)
 - Lançado em 1975 pela Cobra (Computadores Brasileiros S.A.)

© André de Carvalho - ICMC/USP

Cobra

- Primeira empresa brasileira a fabricar computadores
 - Empresa estatal
 - Em 1980 lançou o microcomputador Cobra 530
 - Primeiro microcomputador projetado e fabricado no Brasil
- Atualmente BB Tecnologia e Serviços (BBTS)
 - Empresa de TI que pertence ao Banco do Brasil
 - TI (Tecnologia da Informação)
 - TIC (Tecnologia da Informação e Comunicação)

© André de Carvalho - ICMC/USP

Lei de informática

- Criada em 1984
- Estimular o desenvolvimento de uma indústria brasileira de informática
 - Para que o Brasil desenvolvesse tecnologia e conhecimento nessa área
 - Mercado brasileiro apenas para empresas de capital nacional
 - Reserva de mercado

© André de Carvalho - ICMC/USP

Lei de informática

- Aspectos positivos
 - Desenvolvimento de m\u00e3o de obra especializada
 - Domínio de novas tecnologias em um curto espaço de tempo
- Aspecto negativo
 - Dificuldade das empresas para acompanhar o desenvolvimento tecnológico internacional
 - Equipamentos mais caros que os do exterior
- 1991: acabou a reserva de mercado

© André de Carvalho - ICMC/USP

5

Lei de Moore

- A cada dia, computadores mais sofisticados são desenvolvidos
- A velocidade com que novas modificações são introduzidas aumenta rapidamente
 - Capacidade dos computadores dobre em períodos cada vez menores (Lei de Moore)
 - A densidade de componentes eletrônicos (capacidade de processamento) em um microprocessador dobra a cada 18 meses
 - Custo de uma dada capacidade de processamento é reduzido em 50% a cada 18 meses

© André de Carvalho - ICMC/USP

Tendências

- Computação Natural ou Bioinspirada
- Computação Quântica
- Computação ubíqua (pervasiva)
 - Qualquer meio, hora, local, dispositivo,...
- Smartphones
- Big data
- Extinção de teclado

© André de Carvalho - ICMC/USP

Conclusão

- História dos Computadores
- Primeiras Máquinas
- Gerações Modernas
- Lei de Moore
- Novas tendências

© André de Carvalho - ICMC/USP

