

Escola Superior de Agricultura "Luiz de Queiroz" Universidade de São Paulo

LCE0130 – Cálculo Diferencial e Integral

Taciana Villela Savian
Sala 304, pav. Engenharia, ramal 237

<u>tvsavian@usp.br</u>
tacianavillela@gmail.com

Avaliação

- Método: Exercícios em classe, extraclasse e provas;
- Critério:

$$MF = \frac{(2xA1) + (3xA2) + (3xA3)}{8}$$

em que:

- Avaliação 1 (A1): Prova no dia 04/04 na sala 314 em horário de aula (90% avaliação) e Exercícios (10% avaliação);
- Avaliação 2 (A2): Prova no dia 23/05 na sala 314 em horário de aula (90% avaliação) e Exercícios (10% avaliação);
- Avaliação 3 (A3): Prova no dia 27/06 na sala 314 em horário de aula (90% avaliação) e Exercícios (10% avaliação);
- Prova Repositiva: matéria toda, no dia 04/07 sala 314, horário de aula, repor 100% da avaliação perdida.

Controle de Aula

Mês	Terça	Terça	Terça	Terça	Terça
Março	14	21	28		
Abril	04 (P1)	11 (Feriado)	18	25	
Maio	02	09	16	23 (P2)	30
Junho	06	13	20	27 (P3)	
Julho	04 (Repositiva)				

Aprovação: MF maior ou igual a 5,0 e

Frequência maior ou igual a 70% (máximo 4 faltas)

Programa resumido

- Funções/gráficos;
- Limite/continuidade de funções;
- Derivadas e aplicações;
- Integral/Técnicas de Integração;
- Integral Definida;
- Aplicações da Integral Definida;

Bibliografia de apoio

- FLEMMING, D. M.; GONÇALVES, M. B. Cálculo A: funções, limites, derivação, integração. 6ª ed. São Paulo: Pearson Prentice Hall, 2006. 464p.
- LEITHOLD, L. O Cálculo com Geometria Analítica. 3ª ed. São Paulo: Harbra, 1994. V.1.
- MORETTIN, P.A.; HAZZAN, S.; BUSSAB, W. O. Cálculo: funções de uma e várias variáveis. 2ª ed. São Paulo: Saraiva, 2011, 408p.
- Material será disponibilizado Stoa (Listas e material complementar).

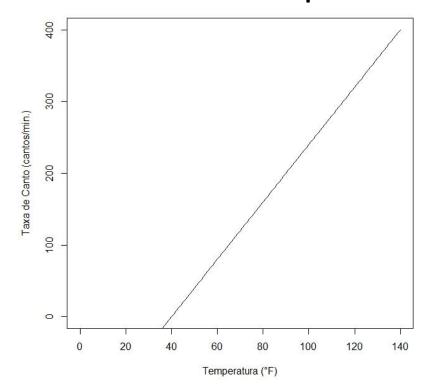
Monitoria

• Monitor:

"EU"

- Função: uma função f, definida em um conjunto X e tomando valores em Y, é uma correspondência que associa a cada elemento x de X um único elemento y de Y.
- O elemento y é denominado de imagem de x pela função f, e se denota por f(x), y=f(x).
- O conjunto X é denominado domínio da função.
- O conjunto de todas as possíveis imagens de elementos de X é denominado contradomínio.

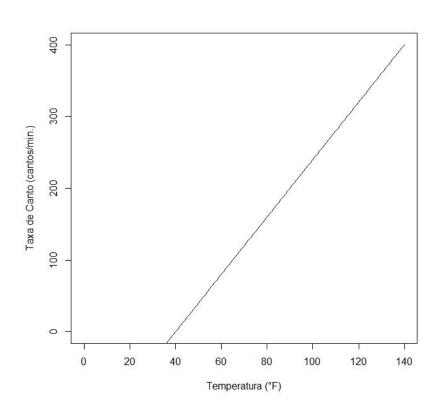
 Exemplo: A taxa do canto (cantos/minuto) em grilos é uma função da temperatura (°F) e aumenta de maneira uniforme com o aumento da temperatura.



$$C = f(T) = 4T-160$$

Exemplo:

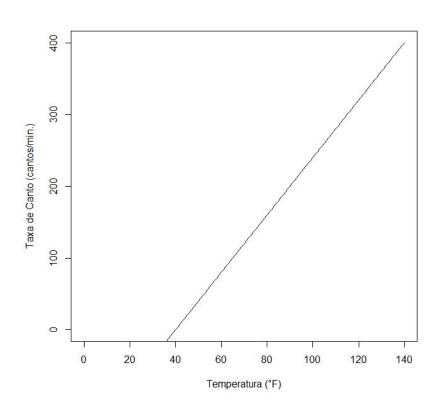
$$C = f(T) = 4T-160$$



Domínio f(T)? Contradomínio f(T)? Imagem f(T)? O que significa f(80) = 160? f(0) = -160? f(40) = 0?

Exemplo:

$$C = f(T) = 4T-160$$



Domínio f(T)?
Contradomínio f(T)?
Imagem f(T)?
O que significa f(80) = 160?

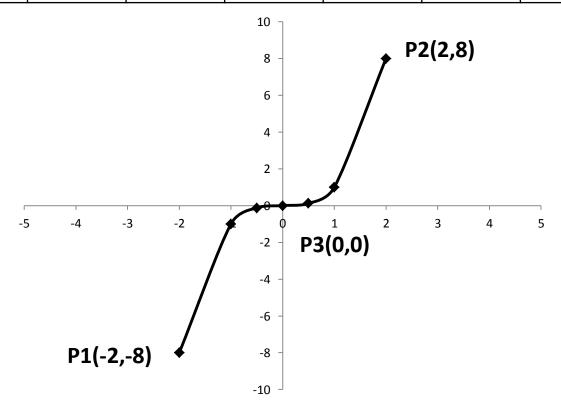
$$f(0) = -160$$
?
 $f(40) = 0$?

 Exercício: A temperatura subiu durante toda a manhã e caiu bastante, de maneira súbita, por volta do meio-dia, com a chegada de uma chuva muito forte. Depois que a chuva passou, a temperatura voltou a subir até recomeçar a cair no final da tarde. Esboce um gráfico da temperatura como função do tempo.

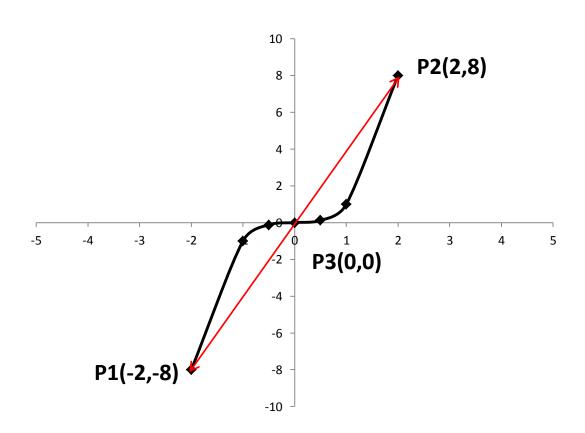
- Gráfico de uma função: o gráfico de uma função f é definido como o conjunto de todos os pontos (x, f(x)) de um plano coordenado, onde x pertence ao domínio de f.
- Exemplo: Para esboçar o gráfico da função f(x)=x³, precisamos determinar alguns valores do domínio da função e verificar qual o valor correspondente de y, ou seja, y = f(x).

Gráfico de uma função: f(x)=x³

X	-2	-1	-1/2	0	1/2	1	2
y = f(x)	-8	-1	-1/8	0	1/8	1	8

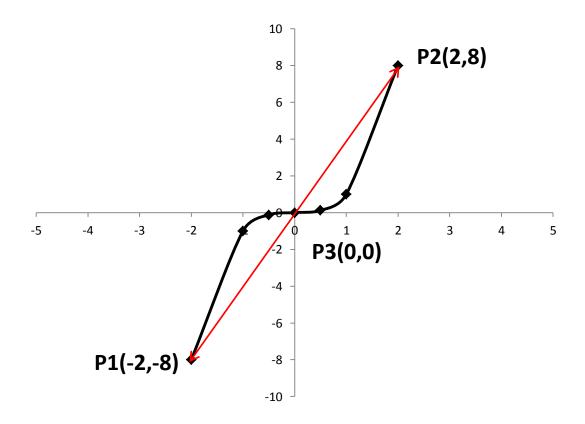


• Distância entre dois pontos de um gráfico



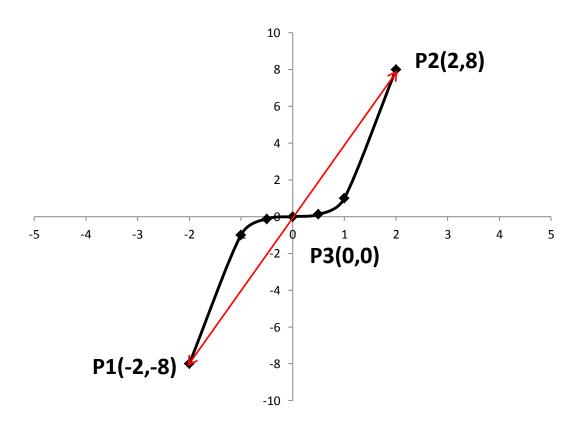
Distância entre dois pontos de um gráfico

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

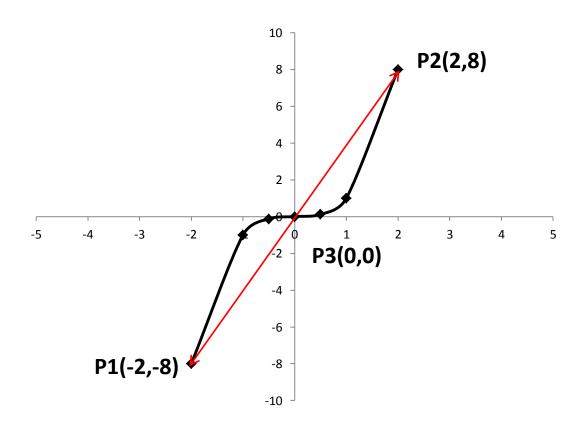


Distância entre dois pontos de um gráfico

$$d(P_1, P_2) = \sqrt{(2 - (-2))^2 + (8 - (-8))^2} = \sqrt{16 + 256} = 16,5$$



 Determinar a equação da reta que passa pelos pontos P1 e P2



 Determinar a equação da reta que passa pelos pontos P1 e P2

Para determinarmos a equação geral de uma reta utilizamos os conceitos relacionados a matrizes. Na determinação da equação aplicamos a regra de Sarrus utilizada na obtenção do discriminante de uma matriz quadrada de ordem 3 x 3. Para utilizarmos uma matriz nessa determinação da equação geral devemos ter no mínimo dois pares ordenados (x,y) dos possíveis pontos alinhados, por onde a reta irá passar.

 Determinar a equação da reta que passa pelos pontos P1 e P2

Observe a matriz geral da determinação da equação da reta:

$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x & y & 1 \end{bmatrix} = 0$$

Na matriz temos os pares ordenados que devem ser informados: (x_1, y_1) e (x_2, y_2) e um ponto genérico representado pelo par (x, y).

 Determinar a equação da reta que passa pelos pontos P1 e P2

Calcular o determinante de uma matriz quadrada aplicando a regra de Sarrus significa:

1º passo: repetir a 1º e a 2º coluna da matriz.

2º passo: somar os produtos dos termos da diagonal principal.

3º passo: somar os produtos dos termos da diagonal secundária.

4º passo: subtrair, da soma dos termos da diagonal principal, a soma dos termos da diagonal secundaria.

 Determinar a equação da reta que passa pelos pontos P1 (-2,-8) e P2 (2,8)

$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x & y & 1 \end{bmatrix} = \begin{bmatrix} -2 & -8 & 1 \\ 2 & 8 & 1 \\ x & y & 1 \end{bmatrix} = 0$$

1º passo: repetir a 1º e a 2º coluna da matriz.

 Determinar a equação da reta que passa pelos pontos P1 (-2,-8) e P2 (2,8)

$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x & y & 1 \end{bmatrix} = \begin{bmatrix} -2 & -8 & 1 \\ 2 & 8 & 1 \\ x & y & 1 \end{bmatrix} = 0$$

2º passo: somar os produtos dos termos da diagonal principal.

$$\begin{vmatrix} -2 & -8 & 1 - 2 - 8 \\ 2 & 8 & 1 & 2 & 8 = 0 \\ x & y & 1 & x & y \\ & & -16 - 8x + 2y \end{vmatrix}$$

 Determinar a equação da reta que passa pelos pontos P1 (-2,-8) e P2 (2,8)

$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x & y & 1 \end{bmatrix} = \begin{bmatrix} -2 & -8 & 1 \\ 2 & 8 & 1 \\ x & y & 1 \end{bmatrix} = 0$$

3º passo: somar os produtos dos termos da diagonal secundária.

$$\begin{vmatrix}
-2 & -8 & 1 & -2 & -8 \\
2 & 8 & 1 & 2 & 8 & = 0 \\
x & y & 1 & x & y
\end{vmatrix}$$

$$8x - 2y - 16$$

 Determinar a equação da reta que passa pelos pontos P1 (-2,-8) e P2 (2,8)

$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x & y & 1 \end{bmatrix} = \begin{bmatrix} -2 & -8 & 1 \\ 2 & 8 & 1 \\ x & y & 1 \end{bmatrix} = 0$$

4º passo: subtrair a soma total dos termos da diagonal principal dos termos da diagonal secundaria.

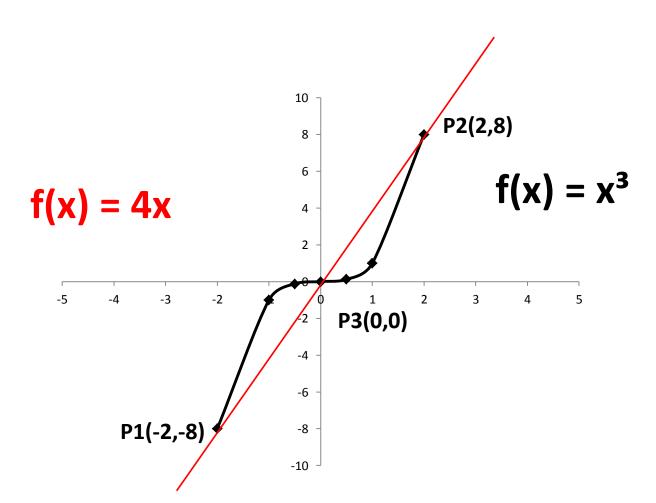
$$-16 - 8x + 2y - (8x - 2y - 16) = 0$$

$$-16 - 8x + 2y - 8x + 2y + 16 = 0$$

$$-16x + 4y = 0$$

$$4y = 16x \rightarrow y = 4x$$

Funções



- Gráfico de uma função:
- Exemplo: Esboçar o gráfico da função

$$f(x) = \sqrt{x-1}$$

Qual o domínio da função?

Existe alguma restrição?

Preciso saber trabalhar com desigualdades

$$D = \{x \in \mathbb{R} | x \ge 1\}$$

Trabalhando com desigualdades:

• Exemplo:
$$f(x) = \sqrt{x-1}$$

Sabemos que:
$$x-1 \ge 0$$

Logo,

$$x-1 + 1 \ge 0 + 1$$

$$x \ge 1$$

$$D = \left\{ x \in \Re \middle| x \ge 1 \right\}$$

Trabalhando com desigualdades:

• Exemplo:
$$-5 < \frac{4-3x}{2} < 1$$

$$-5 \times 2 < \frac{4 - 3x}{2} \times 2 < 1 \times 2$$

$$-10 < 4 - 3x < 2$$

$$-10 - 4 < 4 - 3x - 4 < 2 - 4$$

$$-14 < -3x < -2$$

$$\frac{-14}{3} < \frac{-3x}{3} < \frac{-2}{3}$$

$$\frac{-14}{3} < -x < \frac{-2}{3}$$

$$\frac{-14}{3} \times (-1) < -x \times (-1) < \frac{-2}{3} \times (-1)$$

$$\frac{14}{3} > x > \frac{2}{3}$$

Solução da desigualdade

 Fazer a lista de exercícios em dupla e entregar no final da aula!!!