12 COMPUTER SIMULATION IN BIOLOGY

The recent technological development of the personal computer has

made available to practically every biologist and biélogy student a con-

venient tool for developing and implementing a wide range of complex

simulations. The graphical capability of most personal computers is par- |

ticularly attractive for many simulations. BASIC is the most widely used

and understood computer language. It was developed specifically as an

easily learned language, and has no equals for this. The generic BASIC

used in this text is designed for easy implementation on most machines
using most dialects of the language.

. PART ONE
SIMPLE MODEL EQUATIONS

‘e critical assumption behind all biological simulation is that an equa-
| Inay serve as an analog or model of a simple biological process. The
lmption seems reasonable because almost any biological process may
escribed by a cause-effect or stimulus-response curve (Figure P1.1).
o curve will relate the intensity or amount of some causative or stimu-
ling agent to the intensity or amount of a biological response or effect.
itionally, the measure of the agent, called the independent variable
, I recorded along the horizontal axis of a graph, and the measure of the
lological effect or response, called the dependent variable y, is expressed
plong the vertical axis. It is possible to arrange the axes differently, but
will try to retain the conventional arrangement as far as possible.
The response of a biological system may be studied experimentally un-
i different conditions, and the resulting data may be used to construct
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Figure P1.1. Graph of the simple cause-and-effect relationship.
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14 COMPUTER SIMULATION IN BIOLOGY

a cause-effect curve. The curve will show the quantitative perf

of the system under a given set of conditions s o i
matic model of the system. Curves are also.
of equations that relate one variable to anot
one way or another,
that resemble mathe
The equation, therefore, also becomes i i

The equation can stand in place of or s:blsl:;?t?lel et
in terms of its relationship to other com
in the process. Mathematically, the e
process, as illustrated in Figure P1.2.

to find an equation which will generate output d
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F'igure. P1.2. Stepwise replacement of a component of a
biological system with a model equation.

idg‘}?;y ?;(;csﬁ:;e fort .ﬁndlinglan appropriate model equation first involves
unctional relationship of the system involved i
cess we are modeling. By examinin ellpctiet
. g the data we are usually abl
up a simple function that describes the i st ooy
: . output variable y, as a functio
of the input variable z. Conventionally, the general form <;f the functiorI:

;2;13:;1:13 3i‘lslyt= t]: (a:)fu Sometimes the output variable Y is determined ex
Y to be a function of more than a single j i :
b ' gle input variable, so that
equation has the form y = f (x,2). Most of the biological p,rocesses

considered in this book i i i
i involve only a single independent variable other

It is therefore a diagr: »
used to show the behayi
her. Thus it is possible,

matically the data produced by the biological syste;

te for the biological systel
ponents of the system involve
quation is interchangeable with the
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finding an equation that effectively mimics the biological re-
 we still must find appropriate values for the constants, coefficients,
anents of the model equation. These may be estimated with trial
jor, or by more formal procedures such as curve fitting. With very
models, trial and error may be the only available technique. Af-
ming values, it is possible to implement a simulation program on
suter. The computer program may be verified to make sure it is
Ming as expected. The model equation may be validated or corrob-
| by comparing simulation data with data obtained by observation
iment.
| One of this text considers the two principal techniques used to
e functional relationship between z and y. The analytical tech-
glves rise to theoretical or mechanistic model equations, while the
tleal technique results in descriptive or empirical equations.
ypirical models are obtained using statistical methods to fit one of
| generalized equations to experimental data. Such models do not
ud upon any insight the modeler may have about the workings of the
cal system or process. In contrast, analytical or mechanistic mod-
s based on equations that are derived from conceptual models of the
ppical process. The distinction is not completely clear, because empir-
| fechniques may play a role in the initial formation of the conceptual
lel, The theoretical basis for an analytical model is corroborated when
rimental data and simulation data correspond more or less closely.
i the five chapters making up Part One of this book, you will be in-
luced to several of the more common mathematical models in biology,
| to methods that are used in almost all biological simulations. You
ould be able to accomplish the following:

" (1) Learn how to write BASIC programs to produce simulation data
from simple model equations;

(2) Learn how to produce graphs of simulation data;

(3) Know the steps used to produce mechanistic equations from simple
conceptual models;

(4) Understand the usefulness and derivation of models produced from
assumptions of stable systems;

(5) Become familiar with the form of curves produced by several func-
tion equations that are found frequently in biological work;

(6) Know how to find values for constants of both theoretical and
empirical model equations, using curve fitting techniques;

(7) Learn about programming flowcharts and about some simple tech-
niques for testing computer programs;

(8) Know how to program some elementary Euler techniques for nu-
merical integration of simple equations.
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When you have accomplished these goals, you should be ready to pro-
ceed to Part Two of the book, which involves application of these methods
to a number of models from a variety of biological fields.

CHAPTER 1

. ANALYTICAL MODELS
i BASED ON
DIFFERENTIAL EQUATIONS

palytical models are often expressed as differential equations that de-
u 0 rate of change of some dependent variable with respect to some
lopendent variable. In biological models, the independent variable is
y time, distance or concentration. To show how models may be
voloped using differential equations, we will look at a model for bio-
sal growth, with time as the independent variable and growth as the
ppendent variable. Several other simple analytical models based on dif-
srential equations will also be presented as further illustrations. These
imple models can be used in writing short computer programs for sim-
lating biological processes. Even though they are brief, these programs
yill let you become familiar with techniques used for the remainder of the

il
.1 A Model of Biological Growth

A major reason for using differential equations to develop models is
that these equations are easily obtained from common sense “function
squations”. For the purpose of developing this growth model, we will be
Interested in a population of cells, perhaps cells in a tissue culture dish,
or yeast cells or bacteria cells in a culture flask. We observe that cell
growth rate (number of cells added per hour) depends on the number of
cells already present. That is, if we have one culture with 10 cells and
another with 100, the culture with 100 cells will produce more new cells
in an hour than the culture with just 10 cells. Likewise, we note that a
culture with 0 cells will not produce any new cells. From these general
observations, we can write a simple function equation for growth of cell
numbers:

G = f(N) (1.1)
where G is the growth rate and N is number of cells.
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18 COMPUTER SIMULATION IN BIOLOGY

If we assume that growth is a direct function of N (i.e. that growth
depends directly on N, or that it is directly proportional to N ), and if we
also assume no other factors are involved, then the growth rate equation

will take this form:

G =kN (1.2)

where k is a constant of proportion. If you were to graph this equation,

showing N (population number) on the z-axis and G (growth rate) on |

the y-axis, the result would be a straight line with a slope of k. That is,
as N increases, G would increase in direct proportion.

The equation has limited value in this form, because just now we are
interested in population numbers during the time of growth, rather than in

the rate of growth. We need to convert our equation to a form giving this
information. To do this, first we define growth rate G as dN/dt. This new
expression symbolizes the instantaneous rate of change of number with ‘

respect to time. Our equation is now written as

dN

F i kN (1.3)
Equations 1.2 and 1.3 have identical meanings, but Equation 1.3 is in
terms of the two variables we want, N and ¢. Now we can find the equation
for growth of the population by integrating Equation 1.3. Mathematicians
know how to perform integrations as a result of their experience with
the reverse process of differentiation. From their experience they have
developed a large number of integration rules, which are found in most
textbooks of calculus.

If we use these rules, several useful forms of the equation will be ob-

tained following integration:

In Ny — In Ny = kt (1.4)
and N
Nt okt
N, e (1.5)
and
N; = Nye*t (1.6)

The intermediate steps in this integration may be found in most text-
books of calculus and of population ecology (e.g. Hutchinson 1978). For
biological purposes, Equation 1.6 is extremely useful and will occur in
many different contexts. Here it describes the number of cells in the pop-
ulation at any time (IV;), based on the initial population size (Ny) and
the growth constant (k). The base of natural logarithms is given as e.
The form of the curve of numbers over time is shown in Figure 1.1. Over
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range of population sizes and time periods, this equation may
model to describe growth of bacteria, rabbits, people, money,

quantities.

i Rppvileemafrmer et 6
Time

Figure 1.1. Exponential growth curves.

cise 1-1: When Equation 1.6 is used to describe growth of bacterial
populations, it is often given in the form

Nt = Noe/‘t (16A)

is the specific growth constant. . .
Wh\‘;;t‘; 1: %ASFC comiruter program that uses this equatlofn to
simulate unlimited growth of a bacterial culture. A351.1111e1 or 3
very rapidly multiplying bacterium tliz:,t u = 0.092 mmf : a.r;u
that initial density No = 2 bacteria ml ..To find powers OBZ’SyIC
may either use the EXP(X) function which is bulljc into - ai
or raise 2.71828 to the appropriate powers. A}};};esnltélx 1 provides

i essentials of programming in :
re\ﬁflv;l:rfnz(:lrtn;our program on a computer. Your program should
have the computer print the results in. two parallel colu(;r.ms,bonei
indicating time (t) and the other showing the corresponding bac
terial density (N;) at each minute, 0,1,2,3,...,50.

Fxercise 1-2: Rewrite your program from Exercise 1-1 so that it usels1
the graphical capabilities of your computer to produce a grap
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100 REM SIMULATION OF EXPONENTIAL GROWTH

110 REM
120 LPRINT "TIME",,"POPULATION SIZE"
130 LPI L 5
RINT 0 5 10 15 20
140 U = .1 4
150 NO = 2

160 FOR T=0 TO 25
170 NT = NO * EXP (UsT)

180 Y = INT(NT*60/30)

190 LPRINT T; TAB(5); "+"; TAB(Y45); "s"

200 NEXT T

210 LPRINT" 0 5 by o

220 END 20 25"

-
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POPULATION SIZE
. L 20 25

o

CONDABWN O

K
© ++ :
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F;egl;'re 1.2.. Program and output for Exercise 1-2, set up for a sim-
gAsnlrge _pnnter. (The program was written for the IBM-Microsoft
o andm;ell;;)rete; The LPRINT statements in Lines 120 130
send output to the “line printer’. Th ' ’

_ : ' : e LP
stat'ement is not available in all versions of BASIC. alth I:'NhT
equivalent exists in all BASICs.) driioeeia
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1 bacterial density as a function of time from 0 to 120 min-

Set up the output so that bacterial density is plotted on

o y-axis and time is plotted on the z-axis. Appendix 2 gives a

ting of graphical programs for some microcomputers. Figure 1.2

shows the growth model used in a sample program that produces
\ ‘phlca.l output for computers equipped with simple printers.

( xponential Decay

wort of converse to the growth process described above, some bio-
il wystems will show a decline in concentration of a certain substance
uh time, with the loss rate proportional to the concentration of the
fance present at any time. Following the same procedure as above,
‘arrive at a differential equation describing this process of decline:

LAY, (1.7)

dt
_‘ @, €' is the concentration of the substance being used up, and k is the
constant. The negative sign is needed to indicate the reduction in C.

equation integrates to
C; = Coe™™ (1.8)

Plils is the classical model for exponential decay used to describe processes
¢h as weight loss during starvation, excretion of drugs or a radioisotope

an organism, light absorption in a liquid, radioactive decay, and

ther phenomena. Note that in each of these examples the dependent

nriable will approach zero as t approaches infinity.

ixercise 1-3: Write a program using Equation 1.8 to simulate the decay
of the radioactive isotope 32Phosphorus. Begin your simulation
with a specific activity of 500 pcuries, and use a value of k =
0.04847 day~!. Produce graphical output that shows remaining
activity from 0 to 100 days. Use a pencil and straightedge to
estimate the isotopic half-life (time for activity to be reduced by

50%).

1.3 Distribution of Organisms

The exponential decay model has been used in a variety of biological

ch areas to describe the distribution of plants and animals. The
a central location of maximum concentra-

hat point is assumed to follow a classical

resear
organisms are assumed to have

tion. Their density away from t
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diffusion pattern, which will result in a negative exponential decline in
density away from the central locus. Two such situations are given in the

following pair of exercises.

Exercise 1-4: Aquatic crustaceans and immature insects that inhabit
flowing water will at times release themselves from the streambed
and drift downstream. McLay (1970) used the following model

based on exponential decline to describe downstream densities:

N, = Nye Rz

where Ny is population density at the source of animals, N, is
the density at a distance z meters downstream from the source,

in a

and R is a constant that applies uniquely to the organism
given stream. Write a program to simulate stream drift for larval
chironomid insects in a stream, where R = (.13 m—1.
density of these animals is 1200 meter—2

of 60 meters downstream from the source.

Exercise 1-5: Van Dover et al. (1987) used this same exponential model
to describe distribution of a deepwater crab, Bythograea, that lives
around hydrothermal vents in the Pacific Ocean. The animals were
observed to be most abundant immediately around the vents, with
a density of about 100 per unit of camera viewing area (about 845
m?). In any direction from a vent, their density decreased, with
R = 8.56 km~!. Write and implement a program to find density
of crabs as a function of distance from a hydrothermal vent. As
output, produce a graph that shows their symmetrical distribution

along a line running through a vent, from 600 meters on one side
to 600 meters on the other.

1.4 Newton’s Law of Cooling

The basic form of exponential decline given in Equation 1.8 has been
modified slightly to provide the basis of numerous biological models. An
example is Newton’s Law of Cooling as a model for loss of heat from a
cooling object. This law states that temperature of an object drops at a
rate proportional to the difference between the temperature of the ob ject
and the temperature of the environment. The rate of temperature change
with time is given by

dT

- =—k(T-0)

(1.10)

(19)

Assume
at their source. Your
graphical output should show density at each meter for a distance
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the environmental temperature and k is a cooling rate consta.?t.
1,10 integrates to an equation describing the temperature of a

ot through time:

T, =C+ (To — C)e™* (1.11)
1 j t time t and (Tp — C) is the

is the temperature of the object a . ;
; between the initial temperature and the environmental tem:
10, with C' held constant throughout the cooling process. .The r.ela,-
'of Equation 1.11 to Equation 1.8 for exponential decay 13 obv1c?us
' |4 set to zero. (Note that Equation 1.11 also holds for “negative
" when C exceeds Tp.)

plse 1-6: Use Equation 1.11 to write a program foi ISiml}lll'a;mE
the cooling of a human corpse with £ = 0.06 hour ,lw. r1lcsti1ll
the approximate value for an average clothed :—.:)dullt m:;x1 ;3 i (e
alr. Assume a normal body temperature of 37°C initially a
t constant environmental temperature of 8°C. Set up youlf p:g_g}:;rlr:
to produce a graph showing body temperature during the
period following death.

Passive Diffusion Across a Membrane

1l equation similar to Equation 1.10 may be used to _model the .proceZi
sive diffusion. The rate of change of concentration of an mtt.am
of a cell, caused by passive diffusion into an environment with a
ant solute concentration, is given with

dC

(1.12)
dt

= —k(C - Cy)

hore ' is the internal concentration for a cell of unit volume and unit

Ct = (C() - Cz)e_kt 4 Cz (113)

where C, is the concentration in the cell at time ¢, Cp is the im.tla.l 1nte1;—
nnl concentration, and Cj is concentration of the exjcernal environment,
mssumed to be constant for the duration of the diffusion process.

Exercise 1-7: Write a program using Equation 1.13 to simu.late diﬁ"u.mf);
from a cell of unit volume and unit surface area having an llll.tl
internal solute concentration of 100 units per unit volume. At time
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zero the cell is put into an environmental solute with a concentra-
tion of 50 units per unit volume. The diffusion rate constant is
0.20 minute~!. The graphical output from your program should

show the concentration of internal cell solute fi
first 120 minutes.

1.6 Von Bertalanffy’s Model of Fish Growth
This classical model describes fish length as a function of age, based

on the assumption that fish growth is proportional to the difference be-
tween the length and a theoretical maximum length. That is, fish grow

more rapidly when they are smaller, with growth rate declining as their
size approaches the maximum. The differential e
process is

dL
= = FIm - L) (1.14)

where L is fish length, L,, is the theoretical maximum length, and k is
the growth rate constant. This equation integrates to

Li=(Li—Lp)e ™+, (1.15)

where L, is length at time ¢ and L; is length measured at ¢ = 0.

Exercise 1-8: DeMarais (1985) studied growth of a small flatfish, Bu-
glossidium luteum, in a bay of the Mediterranean Sea. During the
first year of their life these fish follow the Von Bertalanffy growth
model, and may obtain a maximum length of 51.6 mm. Assum-
ing an initial length of 8.2 mm and a growth rate constant of 0.23

month~!, write a program that simulates growth of this species
over a period of 12 months.

1.7 Model of Inhibited Growth

A model of population growth that is slightly more realistic than that
considered in Section 1.1 can be developed by assuming that a population

does not grow beyond some upper limit, L. One form of this model is
given in the following differential equation:

a _ kN(L — N)

= (1.16)

where N is population number or density as before. (In this model the
rate constant k will have different dimensions than the constant as defined

or a period of the

quation describing this
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" ) Note that as N approaches the limit L, the term insil(liieS
' approaches zero, as does the rate of growth, dN/dt. T
an be integrated to give the following:

NoL

Ny = No + (L — No)e—L¥t

(1.17)

4 the population number at time ¢, and N is the initial pcl)lpulaé
™ { = 0. This equation for limited growth prod(;uiels1 anbs;sn z:,l;;zd
.I lon s i i This model has
sopulation size plotted against time. : . )
‘ the spread of disease, for growth ob.tal.ned with a gl;/::
| of nutrient, and other processes that are limited by resources.
lon 1.16 will be discussed further in Chapter 7.

1-9: Using Equation 1.17, writ.e a program thattsu::;:!t::

lensity of a population growing in a hmlted' envxronémtank._ i

* u limiting density of 800 individuals per um.t area. edat; Sl.lould
individual—! week~!. Your graph .of the 51'mu.lat10n. howd

: depict density over a 52-wee%{ period, beginning with an in:

~ density of 5 organisms per unit area.

Kinetics of Bimolecular Reactions

ume that two chemical reactants, A and B, interact to form a prod-
{ P, as described in the following reaction:

k
A+B —> P

s rate at which reactant B is used up depends upon the concentrations
both A and B:
dBl _ _na8] (1.18)
indi i f reactants A and B re-
A] and [B] indicate the concentr.atxons o '
w:ilgv[el}]' Z.?ld }c i']s the constant for reaction rate. The re.zactlon bettweg:) I.;;
:.‘!,ld B wil,l proceed differently depending upon the relative concentra;
f A and B.
; If [A] = [B], then Equation 1.18 becomes

dBl _ _(B|[B] = —k[B? (1.19)
dt
This equation may be integrated to obtain the equation

L T (1.20)
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concentration or from being maintained at constant leve

where [B]; is the concentration of B at time t, and [B] is the initial o8, First-order reactions will be encountered frequently

concentration at ¢ = (0. This equation may be rearranged to solve for
[Bl::

L hianli
18] = i ([B(])okt)

Equations 1.20 and 1.21 are model equatiors for the kinetics of “second-
order reactions”, in which the rate is proportional to the product of the
concentration of two reactants (or the square of either one, because [A4] =
[B]). When data are collected from such reactions and are plotted with .
1/[B] on the y-axis and ¢ on the Z-axis, the result will be a straight line |
with slope equal to k and a y-intercept equal to 1 /[Blo. This is easily
seen from Equation 1.20 which has the form y=a+bzx. '

In contrast to the above, if the concentration of reactant A is much A
greater than that of B, then the concentration of A will not change sig- lusion
nificantly as the reaction proceeds. [A] may be considered constant in
this case, and can be combined with k& to produce a new constant, k’.
The differential equation describing this is obtained from Equation 1.91
as follows:

1-10: Write a program that uses Equgtion 1.21 to mzr.mlat;

| socond-order reaction. Start with B having a concentra 1onnd

M, and set k = 0.20. Your program should find [B] at one-secoh

! ' 8 from 0 to 20 seconds. Have your computer prpduce graphs

' both [B] and 1/[B] over the 20—secfond period. b(Itfhyc[);?
phical capabilities permit, it is instructive to shf)wl o.S L)

l 1/[B] on the same graph. In this case, the vertical axi

» to be labeled as arbitrary “units”.)

(1.21)

M chapter has briefly introduced some fundamel.ltal a.n(;lytl(():zl.eltr;c;i;
it have been developed from differentla:l equ.atlons. 1 .nedes (_:]ribing
n to show that this important technique is usefu gl i
phenomena. Another objective has b.een t.o provi i z:n n:p 4
B e uaad o conwert Jiflrential
i iques of calculus wer :

| nzt?;tzhis?;llzanrlr?odels. In subsec;uent .chapters glfferent methods
orking with differential equations will be introduced.

dB] _ 3 gy
~ = —klA|[B] = —¥[B] (1.22)

This equation will integrate to:
In[B]; = —k't + In[B), (1.23)

and can be solved for [B];:

(Bl = [Bloe~*"t (1.24)

You should recognize this last equation as that of exponential decay
(Equation 1.6). Equations 1.23 and 1.24 are the model equations for
the kinetics of “first-order reactions”, where the rate depends upon the
concentration of only one reactant. When data obtained from first-order
reactions are plotted with In[B] on the y-axis and ¢ on the z-axis, the
result will be a straight line with a slope of —k’ and a y-intercept of
ln[B]o.

The terms zero-order, first-order and second-order were first employed
to describe the kinetics of chemical reactions. However, they are now
generally used to describe any rate process which is constant (zero-order),
or is dependent on the concentration of a single variable (first-order), or
is dependent on the product of two variables or the square of one variable
(second-order).

Equations 1.22 and 1.24 are important because they show that reaction
order is affected when one reactant is held constant, whether from a high




