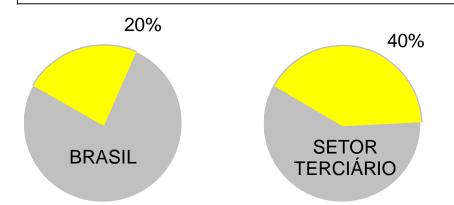
PEA 2520

Usos Finais - **Iluminação**


Prof. Marco Antonio Saidel

Prof. André Gimenes

Arq. Juliana Iwashita

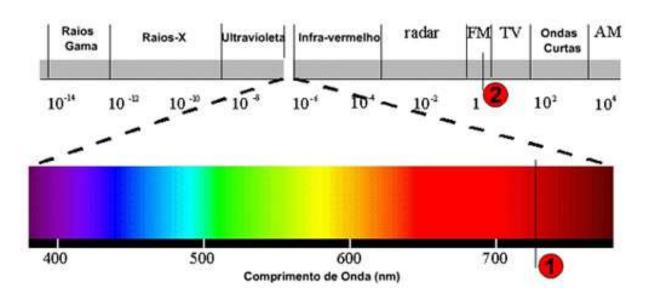
Introdução

- Visão → um dos sentidos mais importantes
- Influencia profundamente no desempenho de usuários
- Existência de sistemas inadequados
 - Mal dimensionados
 - Falta de manutenção
 - Energeticamente ineficientes
- Elevada participação no consumo de edificações

Existência de considerável potencial de conservação

- Luz
- Intensidade luminosa
- Fluxo luminoso
- Iluminância
- Luminância
- Refletância
- Eficiência luminosa
- Índice de reprodução de cor
- Temperatura correlata de cor

Fluxo Radiante


Uma fonte luminosa é na verdade uma fonte de radiação eletromagnética, caracterizada pelo fluxo radiante φR, medido em Watt (W), que corresponde à energia total por unidade de tempo irradiada em todos os comprimentos de onda (todo o espectro)

é a medida da potência total da radiação eletromagnética total, ou apenas visível, emitida a partir de uma fonte ou incidente em uma determinada superfície

Unidade: Watt

Luz

Radiação eletromagnética compreendida entre os comprimentos de onda de 380nm a 760nm, capaz de estimular a retina do olho humano, produzindo sensações visuais.

Fluxo luminoso

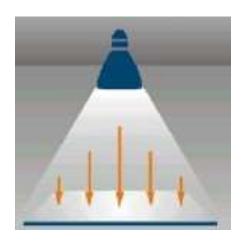
 "Grandeza derivada do fluxo radiante pela avaliação da radiação de acordo com a sua ação sobre um receptor seletivo, cuja sensibilidade espectral é definida pelas curvas de eficácia luminosa espectral padrão C.I.E." [ABNT]

O fluxo luminoso é a quantidade total de luz emitida por uma fonte em sua tensão nominal de funcionamento.

Unidade: lúmen (lm)

Intensidade luminosa

"Limite da relação entre o fluxo luminoso em um ângulo sólido em torno de uma direção dada e o valor desse ângulo sólido, quando esse ângulo sólido tende a zero". [ABNT]



É a radiação luminosa emitida em um determinado ângulo sólido e numa determinada direção.

Unidade: candela (cd)

Iluminância

 "Limite da razão do fluxo luminoso recebido pela superfície em torno de um ponto considerado, para a área da superfície quando esta tende para o zero." [ABNT]

Fluxo luminoso incidente por unidade de área iluminada

Unidade: lux (lx)

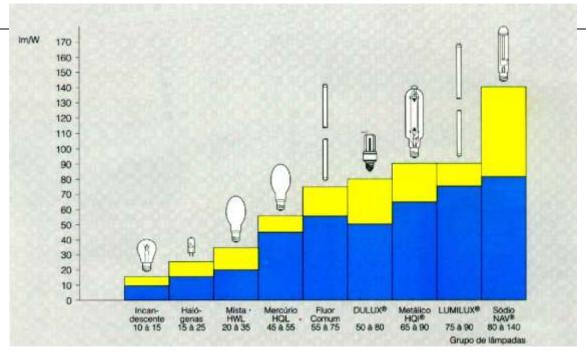
Luminância

 "Limite da relação entre a intensidade luminosa com a qual irradia, em uma direção determinada, uma superfície elementar contendo um ponto dado e a área aparente dessa superfície para uma direção considerada, quando essa área tende a zero." [ABNT]

É a intensidade luminosa de uma fonte de luz produzida ou refletida por uma superfície iluminada, sendo função da iluminância e das características de reflexão das superfícies.

Unidade: cd/m²

Refletância ou Fator de reflexão


- "Razão do fluxo luminoso ou radiante refletido, para o fluxo incidente" [ABNT]
- Estes fatores são dados geralmente em tabelas, cujos valores são função das cores e dos materiais utilizados

Cores	%	Materiais	%
Branco	75-85	Espelho de vidro	80-90
Creme claro	70-75	Plástico metalizado	75-85
Amarelo Claro	65-75	Alumínio polido	65-85
Cinza claro	55-75	Branco sintético	70-85
Verde Claro	50-65	Concreto novo	40-50
Azul claro	50-60	Estuque novo (branco)	70-80
Cinza médio	40-55	Ferro esmaltado	60-80
Verde médio	40-50	Asfalto	4-10
Azul médio	35-50		
Vermelho	10-20		

Refletâncias típicas com luz branca [Moreira]

Eficiência luminosa

- Relação entre o fluxo luminoso total emitido por uma fonte e a potência por ela consumida.
- Unidade: lúmen / watt (lm/W)

Eficiência Energética das principais fontes de luz [Osram]

Conceitos e grandezas Índice de reprodução de cores

- É a medida de correspondência entre a cor real de um objeto ou superfície e sua aparência diante uma fonte de luz.
- O índice de reprodução de cor corresponde a um número abstrato, variando de 0 a 100.
- Lâmpadas com IRC próximos de 100 apresentam as cores com a fidelidade e precisão da luz natural.
- Quanto mais baixo o IRC, mais deficiente é a reprodução de cores.
- Varia de 0 a 100

excelente: maior que 75


■ bom: entre 65 a 75

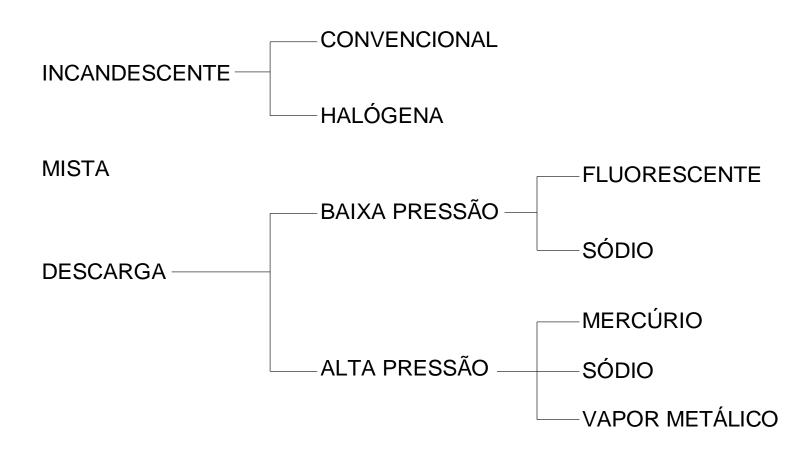
• regular: entre 55 e 65

pobre: menor que 55

Temperatura Correlata de Cor

- É a grandeza que expressa a aparência de cor de uma luz.
- Quanto mais alta a temperatura de cor, mais branca é a cor da luz, enquanto que quanto mais baixa a temperatura de cor mais amarelada é a sua cor.
- Unidade: Kelvin (K)

A temperatura de cor não possui nenhuma relação com o índice de reprodução de cores


Tonalidade de cor e reprodução de cores [Osram]

Tecnologias

- Componentes mais comuns de sistemas de iluminação
 - Lâmpadas
 - Incandescentes
 - Mistas
 - Descarga
 - Reatores
 - Eletromagnéticos
 - Eletrônicos
 - Luminárias
 - Convencionais
 - Reflexivas
 - Dispositivos de controle
 - Sensores de presença
 - Sistemas de gerenciamento

Classificação genérica:

Lâmpadas INCANDESCENTES CONVENCIONAIS

- Menor rendimento luminoso (entre 12 e 17 lm/W)
- •Inadequadas para ambientes climatizados (lâmpadas de 100W: 5% luz e 95% calor = 1 pessoa)

•Menor vida-média (800 a 1.000 horas

·Vantagens:

- Muito baratas
- Fácil manutenção
- Excelente IRC

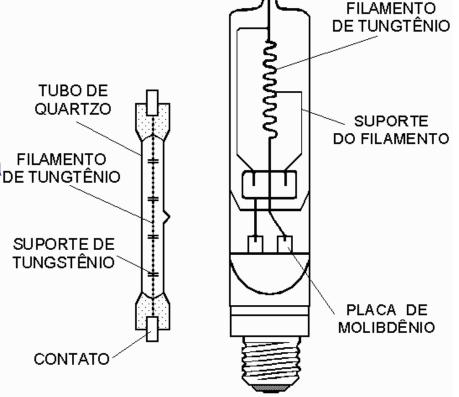
·Uso:

- •Lugares de pouco uso
- •iluminação decorativa
- •iluminação "quente"

Lâmpadas INCANDESCENTES HALÓGENAS

- Presença de radicais de composto halógenos
- Pequena depreciação luminosa

•Rendimento luminoso pequeno (entre 12 e 22 lm/W)


Vida média de 2.000 horas

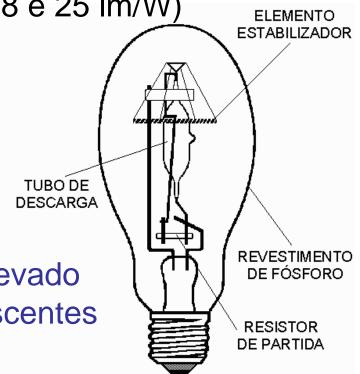
•Vantagens:

- Excelente IRC
- •Alta intensidade luminosa FILAMENTO DE TUNGTÊNIO

·Uso:

- •lluminação decorativa
- Vitrines de lojas
- •Iluminação intermitente

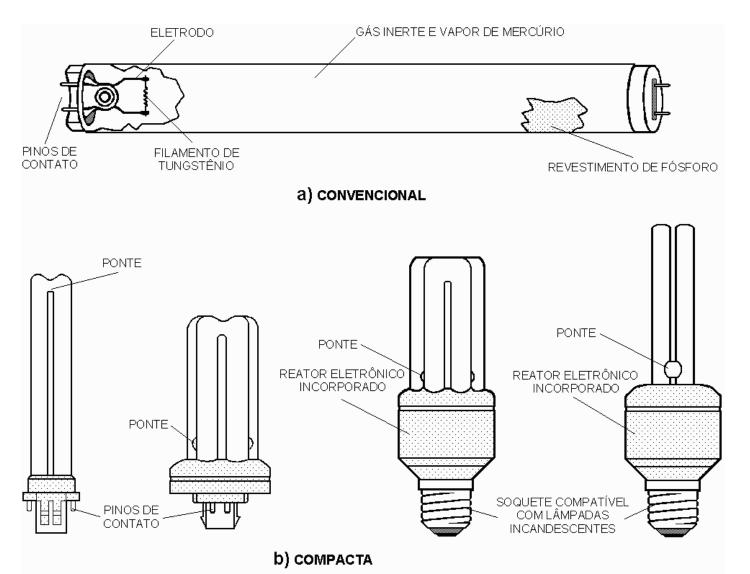
Lâmpadas MISTAS


- Tecnologia híbrida
- •Elemento resistivo (filamento) limita a corrente de descarga

•Baixo rendimento luminoso (entre 18 e 25 lm/W)

- Boa vida média de 6.000 horas
- •IRC regular (60)
- Tempos de estabilização e reacendimento: ~ 5 minutos

•Vantagens:

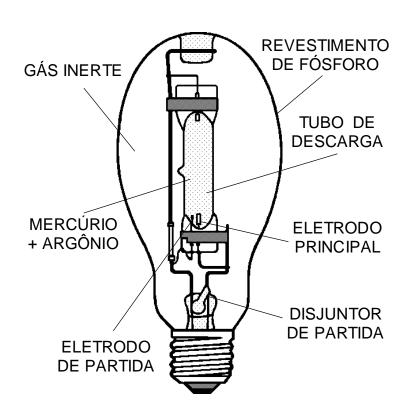

- Fluxo luminoso relativamente elevado
- Substituição direta das incandescentes
- Disponíveis em potências altas

Lâmpadas FLUORESCENTES

- Tecnologia mais utilizada nos edifícios comerciais
- Convenientes para ambientes climatizados
 (1 lâmpada de 40W: 25% radiação visível 75% calor)
- Desenvolvimento de lâmpadas mais eficientes (a base de terras raras) não apresentam esse inconveniente
- Rendimento luminoso
 - •entre 30 e 73 lm/W para reatores eletromagnéticos
 - atinge 93 lm/W para reatores eletrônicos
- •Excelente IRC (85) e vida média de 7.500 horas
- •Lâmpadas T5 (5/8"):
 - •mais eficientes e menos agressivas ao ambiente (80% menos Hg) mas ainda assim impactantes

Lâmpadas fluorescentes - aspectos construtivos

Lâmpadas FLUORESCENTES COMPACTAS

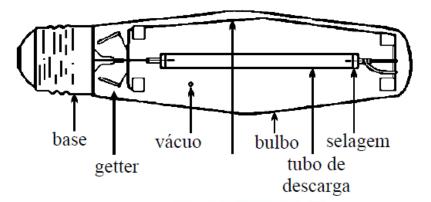

- Apareceram em meados da década de 80 (desenvolvimento dos trifósforos)
- Substitutas diretas das lâmpadas incandescentes convencionais:
 - possuem reator eletrônico incorporado
 - soquete compatível
- Até 5 vezes mais eficientes
- Dez vezes mais duráveis
- Excelente IRC (85)
- Existência de modelos com baixo TCC (2.700 K)

•Desvantagem:

Contém Hg e o descarte impacta o meio ambiente

Lâmpadas DE MERCÚRIO DE ALTA PRESSÃO

- Eficiência luminosa ligeiramente inferior a das lâmpadas fluorescentes convencionais
- Tonalidade verde-azulada
- •Pobre IRC (45)
- Tempos de reacendimento e estabilização: ~5 minutos
- Rendimento luminoso:
- 45 a 55 lm/W
- •Uso típico:
 - Estacionamentos
 - Quadras esportivas
 - •Iluminação pública

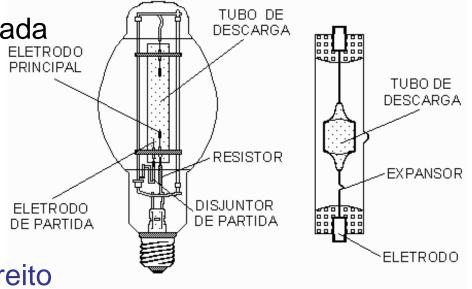


Lâmpadas DE SÓDIO DE ALTA PRESSÃO

- •Elevada eficiência luminosa (entre 102 e 117 lm/W)
- •Grande durabilidade (vida média = 16.000 horas)
- •IRC muito pobre (23), existindo modelos com IRC mais elevado (70)
- •Existência de modelos que substituem diretamente lâmpadas de Mercúrio (250 W e 400W)
 - •economia de energia (15% e 12%)
 - •aumento do fluxo luminoso (50% e 127%)

•Uso típico:

- Estacionamentos
- •lluminação pública
- Monumentos
- Túneis
- Certos tipos de indústria
- Aplicações que não necessitem fidelidade cromática



Lâmpadas **DE MULTIVAPORES METÁLICOS**

- •Eficiência luminosa semelhante a das lâmpadas fluorescentes eficientes
- Boa durabilidade (vida média = 10.000 horas)
- •Excelente IRC (80 85)
- •Elevado fluxo luminoso por lâmpada

•Uso típico:

- Shopping centers
- Estádios
- Quadras esportivas
- Instalações de elevado pé direito
- Aplicações que exijam fontes de luz intensas e com fidelidade cromática

Lâmpadas comerciais mais comuns no mercado

TIPO DE LÂMPADA	POTÊNC LÂMPADA F	IA [W] REATOR ⁽¹⁾	TCC [K]	IRC	VIDA MÉDIA [horas]	FLUXO LUMINOSO [Im]	RENDIMEN LÂMPADA	ITO [Im/W] GLOBAL
Incandescente Convencional (OSRAM)	60 100 150 200 300 500	n n n n	3.000 3.000 3.000 3.000 3.000 3.000	100 100 100 100 100 100	1.000 1.000 1.000 1.000 1.000	730 1.380 2.220 3.150 5.000 8.400	12 14 15 16 17	12 14 15 16 17
Halógena (GE)	300 500 1.000 1.500 2.000	n n n n	2.900 2.950 3.050 3.050 3.050	100 100 100 100 100	2.000 2.000 2.000 2.000 2.000	5.000 9.500 21.000 33.000 44.000	17 19 21 22 22	17 19 21 22 22
Mista (SYLVANIA)	160 250 500	n n n	3.500 3.500 3.500	60 60 60	8.000 8.000 8.000	2.900 5.200 12.500	18 21 25	18 21 25

TIPO DE	POTÊN	ICIA [W]	TCC [K]	IRC	VIDA MÉDIA	FLUXO	RENDIMEN	ITO [lm/W1
LÂMPADA	LÂMPADA	REATOR ⁽¹⁾	[]		[horas]	LUMINOSO [Im]		GLOBAL
Fluorescente	20	12	5.250	72	7.500	1.060	53	33
convencional	40	11	5.250	72	7.500	2.700	68	53
(OSRAM)	110	25	5.250	72	7.500	8.300	75	62
,								
	16	15	4.000	85	7.500	1.200	75	39
Fluorescente	18	10	4.000	85	7.500	1.350	75	48
eficiente	32	15	4.000	85	7.500	2.700	84	57
(OSRAM)	36	11	4.000	85	7.500	3.350	93	71
,	58	13	4.000	85	7.500	5.200	90	73
	11	i	4.000	85	10.000	600	55	55
	15	i	4.000	85	10.000	900	60	60
Fluorescente	18	5	4.000	85	10.000	1.200	67	52
compacta	23	i	4.000	85	10.000	1.500	65	65
(OSRAM)	26	7	4.000	85	10.000	1.800	69	55
	36	11	4.000	85	10.000	2.800	78	60
\	405	15 ⁽²⁾	4.000	4.5	40.000	5.000	40	4.4
Vapor de mercúrio	125	15\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4.000	45	12.000	5.800	46	41
	250	24 ⁽²⁾	4.000	45	12.000	12.100	48	44
(SYLVANIA)	400	26` ′	4.000	45	15.000	21.700	54	51
Vapor de sódio	250	21	2.000	23	16.000	27.500	110	102
alta pressão	400	43	2.000	23	16.000	48.000	120	108
(PHILIPS)	1.000	70	2.000	23	16.000	125.000	125	117
,								
	70	15	3.000	80	10.000	5.000	71	59
	70	15	4.300	85	10.000	5.500	79	65
Multivapor	150	20	3.000	80	10.000	11.000	73	65
metálico	150	20	4.300	85	10.000	11.250	75	66
(OSRAM)	250	25	3.000	80	10.000	20.000	80	73
	250	25	4.300	85	10.000	20.000	80	73
	400	40	4.300	85	10.000	38.000	95	86

Outras fontes de luz menos comuns

⇒Lâmpadas de vapor de sódio de baixa pressão

- São as mais eficientes (convertem ~ 35% da energia elétrica em radiação visível)
- •Luz praticamente monocromática
- Aplicações em iluminação pública

⇒LEDs - diodos emissores de luz

- •Uso em sinais de trânsito e aviso de saída de emergência
- •Rendimento luminoso: entre 60 e 80 lm/W
- •Economia de energia atinge 85% em sinais de trânsito
- •Vida média entre 30.000h e 50.000h (componentes eletrônicos associados duram menos, p.ex. fonte)
- Mais confiáveis e imunes à falhas

Reatores

⇒Necessários à operação de lâmpadas de descarga

- Limitam a corrente de descarga
- Elevam a tensão à níveis adequados (em alguns casos)
- Fornecem a tensão impulsiva para a partida de lâmpadas fluorescentes

⇒Principais parâmetros de análise

- Perdas
- Fator de potência
- Fator de reator ("ballast factor")

Huminação – Componentes

Reatores

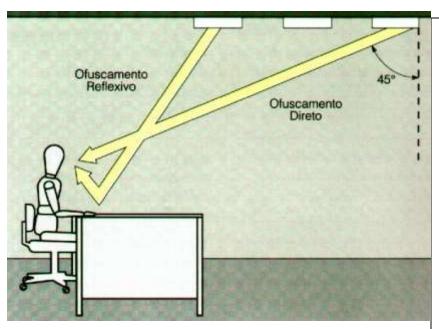
⇒Classificação

- Eletromagnéticos
 - Convencionais
 - Partida rápida
- Eletrônicos
 - Normais
 - Dimerizáveis

Reatores **ELETRÔNICOS**

- ⇒Operação em frequências superiores a 25 kHz
- •Menor ruído (redução de 75%), sem cintilação e sem "flicker"
- ⇒Dissipam 25% menos energia que os equivalentes eletromagnéticos
- ⇒Operação mais eficiente da lâmpada (economia de até 30%)
 - → Fator de Reator entre 0,85 e 1,00 (geralmente)
- ⇒Partida instantânea
- ⇒Possibilidade de dimerização e controle individualizado (tecnologia Dali Digital Addressable Lighting Interface)
- ⇒Elevado fator de potência (até 0,95 capacitivo)
- ⇒Mais leves e de menores dimensões
- ⇒Dependendo da qualidade, DHT atinge os 25% (com filtros → DHT < 5%)

Requisitos de um projeto eficiente


- Nível de iluminância adequado
- Limitação de ofuscamento
- Uniformidade
- Reprodução de cor
- Temperatura de cor
- Utilização da iluminação natural
- Segmentação de circuitos
- Manutenção dos equipamentos

Requisitos de um projeto eficiente Nível de iluminância adequado

- Deve-se atender às recomendações da norma NBR 5413: Iluminância de interiores;
- Sistemas com nível de iluminamento fora da faixa recomendada podem reduzir o desempenho do usuário e, em alguns casos, comprometer sua saúde.
- No caso de superdimensionamento ocorre acréscimo desnecessário do consumo de energia elétrica:
 - por excesso de iluminação e
 - por aumento do ciclo de trabalho do sistema de ar condicionado.

Requisitos de um projeto eficiente Limitação de ofuscamento

•Ofuscamento: "condição de visão na qual há um desconforto ou uma redução da capacidade de distinguir objetos, ou ambos, devido a uma distribuição desfavorável das luminâncias ou a luminâncias elevadas, ou a contrastes excessivos no espaço ou no tempo." [ABNT]

Tipos de ofuscamento [Osram]

- Ofuscamento direto: ocasionado através de fontes de luz direcionadas diretamente ao campo visual
- Ofuscamento reflexivo: ocasionado através da reflexão da luz em uma superfície e posteriormente direcionada ao campo visual.

Requisitos de um projeto eficiente Limitação de ofuscamento

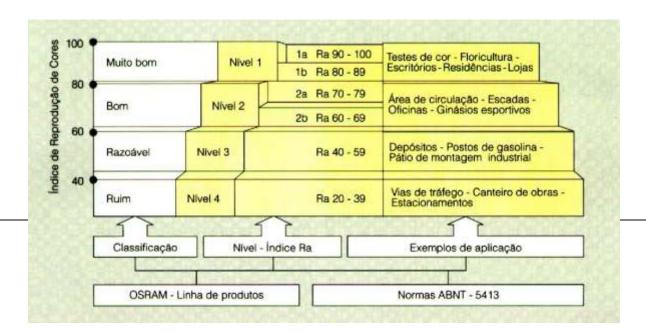
- Pode-se limitar o ofuscamento através:
 - da escolha de luminárias com curvas de distribuição adequadas.

A luminância da própria luminária é incômoda a partir de 200 cd/m², desta forma, os ângulos críticos (45º a 85º) não devem possuir valores acima deste.

- da utilização de superfícies não reflexivas, como vidros e superfícies brilhantes.
- do posicionamento adequado da luminária, evitando prejudicar as atividades dos usuários.

Requisitos de um projeto eficiente Uniformidade

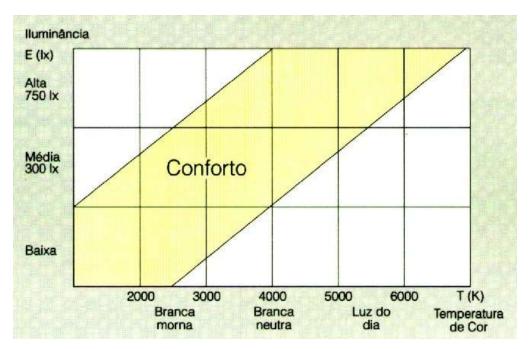
- Acentuadas diferenças entre as luminâncias de diferentes planos causam fadiga visual, devido ao excessivo trabalho de acomodação da vista, ao passar por variações bruscas de sensações de claridade.
- Relação de luminâncias recomendadas:


Entre a tarefa visual propriamente dita e o campo visual central 3:1

Entre a tarefa visual e seu entorno imediato 10:1

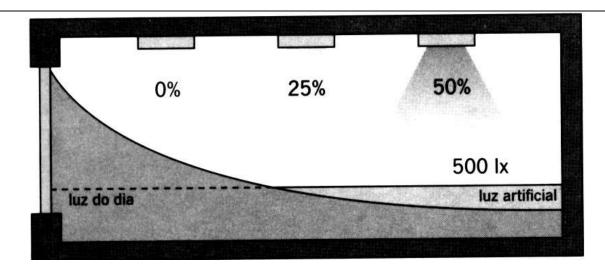
Entre a fonte de luz e o fundo sobre o qual se destaca 20:1

Requisitos de um projeto eficiente Reprodução de cor


- Uma boa reprodução de cor está diretamente ligada à qualidade da luz incidente.
- Dependendo da atividade a ser desempenhada recomendase um nível de índices de reprodução de cor.

Índice de reprodução de cores e exemplos de aplicação [Osram]

Requisitos de um projeto eficiente Temperatura de cor


 Para uma iluminação de alta qualidade, recomenda-se que quanto maior a iluminância, utilize-se temperaturas de cor mais elevadas.

Relação de conforto ambiental entre nível de iluminância e tonalidade de cor da lâmpada [Osram]

Requisitos de um projeto eficiente Utilização da iluminação natural

- Iluminação artificial suplementar à natural
- Utilização de sistemas de controle: interruptores segmentados, sensores de luminosidade, dimmers, reatores eletrônicos dimerizáveis.
- Economia de energia de até 75%

Projeto integrado de iluminação natural e artificial [Moreira]

Requisitos de um projeto eficiente Segmentação de circuitos

- É recomendável uma distribuição de circuito que possibilite o acendimento do menor número de luminárias possível.
- Utilização de endereçamento Dali
- Soluções do tipo" ou tudo ou nada" podem levar a grandes desperdícios de energia, obrigando, às vezes, a utilização da iluminação de um andar inteiro para atender apenas um usuário.
- Na medida do possível, os circuitos de alimentação devem ser paralelos ao sentido das janelas do ambiente, de modo que durante o dia, as luminárias próximas das janelas possam ser desligadas, aproveitando-se a luz natural.

Requisitos de um projeto eficiente Manutenção dos equipamentos

 A iluminância diminui progressivamente durante o seu uso, devido:

ao acúmulo de poeira nas lâmpadas e luminárias ao decréscimo do fluxo luminoso das lâmpadas.

- Uma luminária hermética típica, pode pode chegar a ter uma depreciação de emissão de luz numa razão de 4 a 5% ao ano.
- Para reduzir a depreciação da luminária deve-se adotar uma manutenção periódica dos sistemas, através da limpeza de lâmpadas e luminárias.

Requisitos de um projeto eficiente Manutenção dos equipamentos

- No cálculo luminotécnico a depreciação do fluxo luminoso é considerado, através do fator de depreciação (Fd) ou fator de perda de luz (LLF)
- O Fator de depreciação ou fator de perda de luz considera:

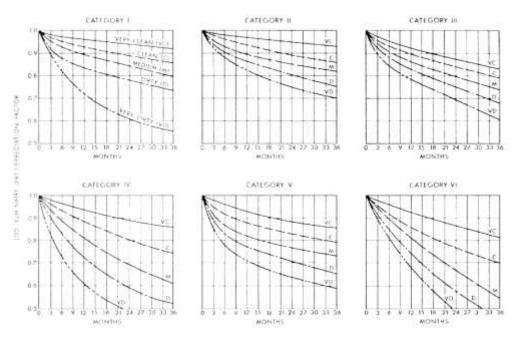
Depreciação da luminária;

Depreciação da lâmpada;

Depreciação das superfícies do ambiente;

Fator do reator

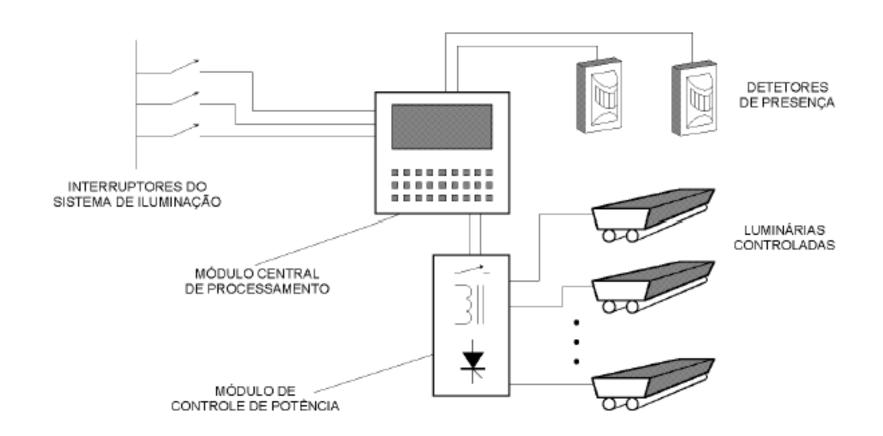
outros


Requisitos de um projeto eficiente Manutenção dos equipamentos

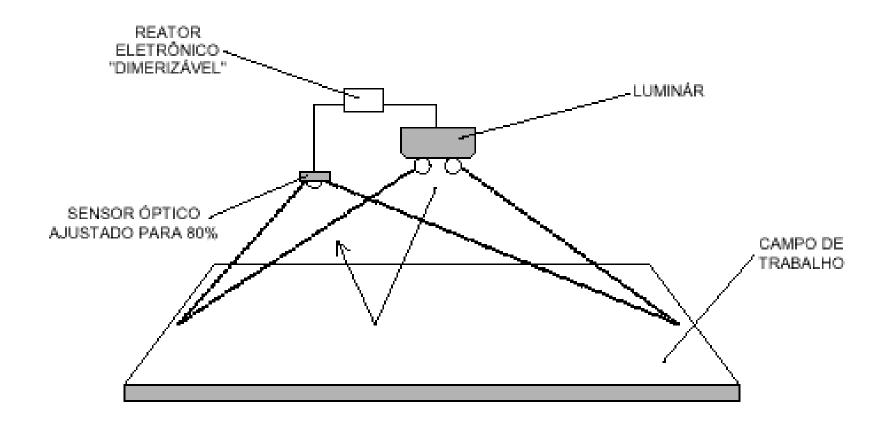
Simplificadamente podemos adotar:

Fatores de depreciação de luminárias. [Procel]

Tipo de luminária	Condição do ambiente	Fator de depreciação	
	Muito limpo	0,95	
Aberta para iluminação de interiores	Limpo	0,89	
	Médio	0,81	
	Sujo	0,72	
	Muito sujo	0,61	
Fechada para iluminação de interiores	Muito limpo	0,94	
	Limpo	0,88	
	Médio	0,82	
	Sujo	0,77	
	Muito sujo	0,71	
Fechada para iluminação de áreas externas		0,87	


Requisitos de um projeto eficiente Manutenção dos equipamentos

- •l: luminárias abertas na parte inferior e superior
- •II: luminárias abertas por baixo ou com colméias, sendo mais de 15% de seu fluxo emitido para cima
- •III:luminárias abertas por baixo ou com colméias, com menos de 15% de seu fluxo emitido para cima
- •IV: luminárias abertas ou com colméias por baixo e sem aberturas superiores
- •V: luminárias com fechamento inferior por lentes ou difusores e sem aberturas superiores
- •VI: luminárias de iluminação totalmente direta ou totalmente indireta


Dispositivos de Controle

- Detetor de Presença: infra vermelho, ultra som;
- Scheduling Controls: Horários programados, desligamento parcial ou total;

Dispositivos de Controle

• Dimerização: principalmente próxima à janelas;

