UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA

SEM 533 – Modelagem e Simulação de Sistemas Dinâmicos I

Aula # 1 – Introdução

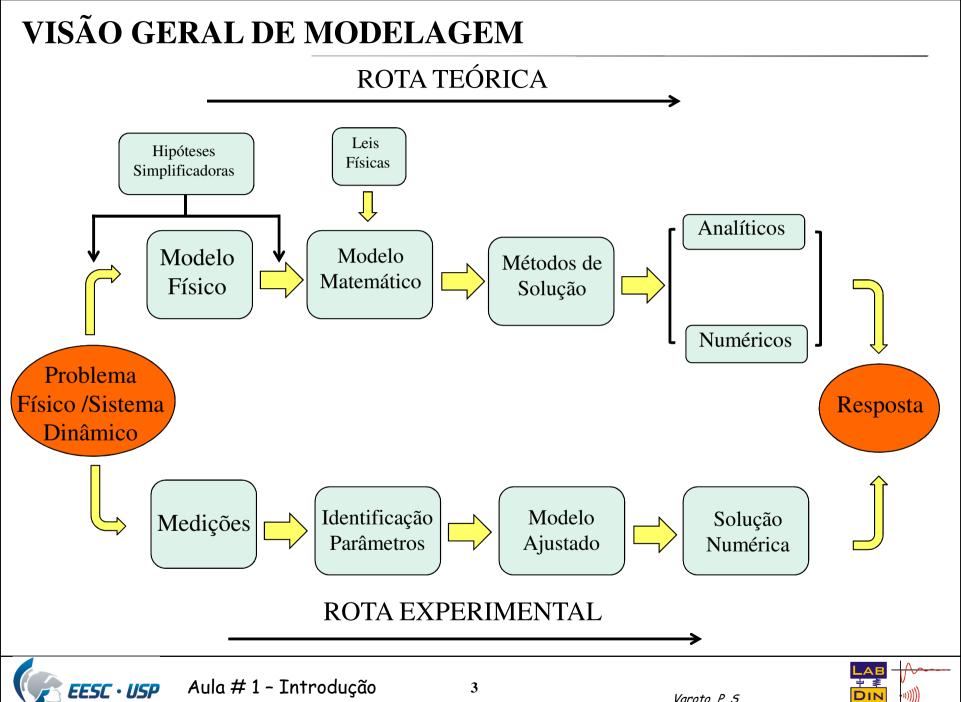
Resp.: Prof. Paulo S. Varoto

1- INTRODUÇÃO

O principal objetivo deste curso é prover o aluno de graduação com uma formação em *dinâmica de sistemas*, apresentando as principais ferramentas de modelagem, bem como utilizando leis físicas pertinentes a cada problema físico em estudo.

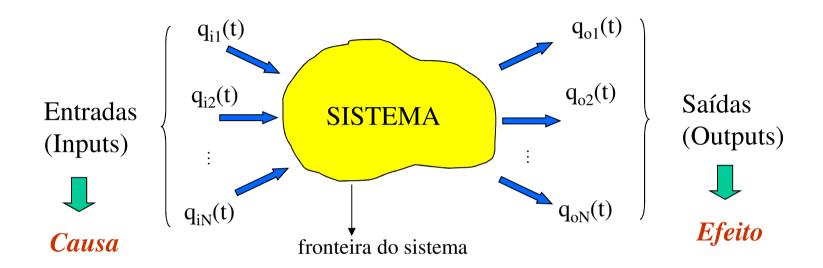
Por *sistema* entende-se um conjunto de componentes montados de tal maneira que realize uma tarefa fim. Por *dinâmica* entende-se uma situação onde o comportamento do sistema ou de suas propriedades varie com o tempo!

Tipos de sistemas a serem considerados:


- Mecânicos
- Elétricos
- Térmicos
- Fluídicos
- Mistos (combinações)

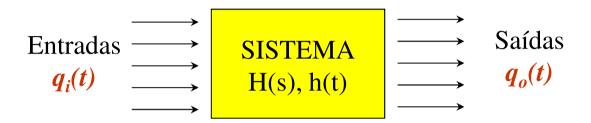
Bibliografia:

- Doebelin, E. O., System Dynamics: modeling, analysis, simulation and design, Marcel Dekker, 1998.
- Felício, L. C., Modelagem da Dinâmica de Sistemas e Estudo da Resposta, Ed. Rima, 2007

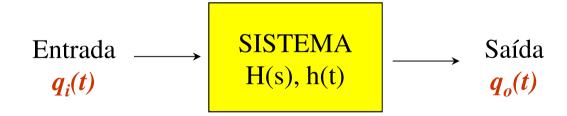


2- O CONCEITO DE ENTRADA E SAÍDA (INPUT/OUTPUT)

A figura abaixo mostra uma representação muito importante:

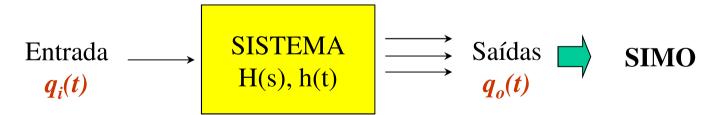


- Entradas: Agentes que provocam distúrbios no sistema. Geralmente, não dependem do sistema
- Saídas: Respostas do sistema. São na verdade "entradas" modificadas pelas características dinâmicas do sistema.



Na linguagem de modelos e controle, é muito comum utilizarmos o conceito de *diagrama de blocos* na visualização destas propriedades

Esta representação introduz a idéia de *visão sistêmica*, onde pode-se observar o modelo do sistema bem como suas entradas e saídas. Um caso muito comum Considera apenas uma entrada e uma saída, chamado de **SISO** (*single input, single output*)



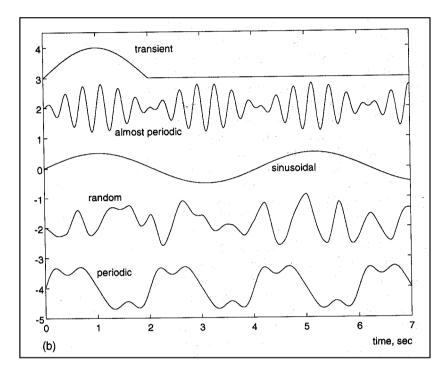
Da mesma forma podemos definir outras duas configurações:

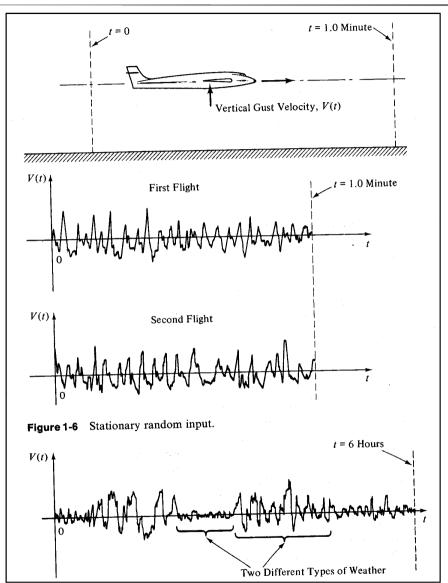
Múltiplas entradas – Uma saída

Uma entrada-Múltiplas saídas

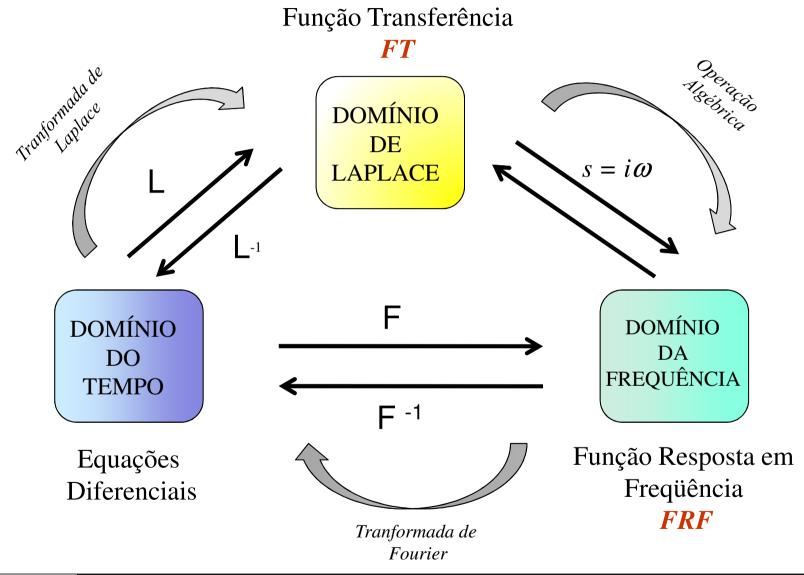
Tomando como base o sistema SISO abaixo, podemos definir três problemas:

- ✓ Problema de *Análise*: Buscamos determinar a saída conhecendo-se a entrada e o sistema.
- ✓ Problema de *Síntese* (ou *Identificação*): Buscamos determinar o sistema a partir da entrada e da saída.
- ✓ Problema de *Medida*: Se Si for um sistema de medida que mede uma grandeza E com incertezas, este problema busca determinar E a partir dos dados de medições contendo erros.

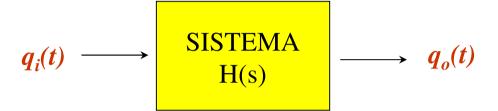

O diagrama abaixo serve para classificarmos as entradas que atuam no sistema



Alguns exemplos


Aleatório

Cont. ... Relação entre Domínios



3- O CONCEITO DE FUNÇÃO TRANSFERÊNCIA (FT)

A *função transferência* é um dos conceitos mais importantes em modelos dinâmicos. Considere inicialmente o sistema mais simples SISO

Definição: Função transferência é o quociente entre as *transformadas de Laplace* da saída $q_o(t)$ pela entrada $q_i(t)$, sendo *nulas* todas as demais entradas e condições iniciais do sistema. Algebricamente

$$H(s) = \frac{Q_o(s)}{Q_i(s)}$$

Eq. 1

e

Eq. 2
$$F(s) = L(f(t)) = \int_{0}^{\infty} f(t)e^{-st} dt$$

Definição de Transformada de Laplace para t > 0!

$$s = \sigma + i\omega$$

Devemos observar que a definição de FT para um dado sistema exige uma única entrada, bem como condições iniciais nulas. Para sistemas com múltiplas entradas, deve-se considerar uma entrada por vez! Embora existam métodos sofisticados que calculam as FT para múltiplas entradas com atuação simultânea. Para o caso de várias saídas, temos

$$Q_i(s)$$
 \longrightarrow $Q_{o1}(s)$ \longrightarrow $Q_{o2}(s)$ \longrightarrow $Q_{o2}(s)$ \longrightarrow $Q_{o3}(s)$

 $H_{1,i}(s) = \frac{Q_{o1}(s)}{Q_i(s)}$

$$H_{2,i}(s) = \frac{Q_{o2}(s)}{Q_i(s)}$$

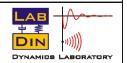
De forma geral:

$$H_{3,i}(s) = \frac{Q_{o3}(s)}{Q_i(s)}$$

Eq. 3
$$H_{p,q}(s) = \frac{Q_p(s)}{Q_q(s)}$$

FT relacionando a saída no ponto p devido a uma entrada no ponto q e zero nos demais!

Uma aplicação muito importante da FT é o seu uso na determinação das características da resposta dinâmica do sistema para uma determinada entrada. Da última equação da FT temos


$$H(s) = \frac{Q_O(s)}{Q_i(s)}$$
 Eq. 4

Resolvendo para a saída

$$Q_O(s) = H(s)Q_i(s)$$
Eq. 5

Ou seja, conhecendo-se as características do sistema (H(s)) bem como a entrada $Q_i(s)$, pode-se determinar a saída através de uma operação de multiplicação! Então, o problema está em *obtermos um modelo adequado que represente de maneira fiel o sistema físico estudado*.

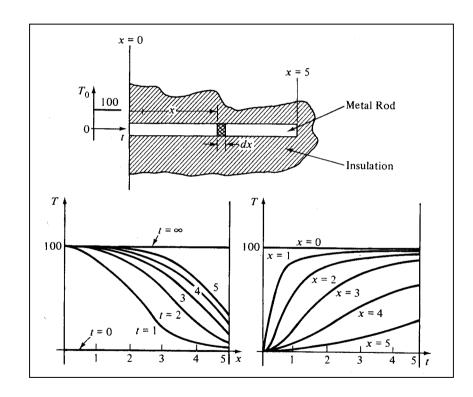
O QUE SE ENTENDE POR MODELO?


Um *modelo** de um *sistema dinâmico* é uma *representação matemática* do sistema

Características importantes dos modelos:

- ✓ Permitem estudar a dinâmica do sistema sem a necessidade de protótipos físicos
- ✓ São formas simplificadas do sistema e portanto nunca "exatos"
- ✓ Permitem análises paramétricas que os protótipos geralmente não permitem
- ✓ Permitem economia de tempo no ciclo de desenvolvimento do produto
- ✓ Falamos "um modelo" e não "o modelo" (um sistema => vários modelos!)
- ✓ Requerem a definição de hipóteses simplificadoras em sua formulação
- ✓ Hipóteses simplificadoras podem ser implícitas ou explícitas

^{*} Aqui diferentemente de um modelo físico, um protótipo



4- MODELOS DE SISTEMAS FÍSICOS

• Modelos Contínuos ou Parâmetros Distribuídos

São modelos descritos por (sistemas de) equações diferenciais parciais. Exemplo:

Condução de Calor em uma barra

$$\frac{\partial T}{\partial t} = \frac{k}{\rho c} \frac{\partial^2 T}{\partial x^2}$$

Equação de Fourier!

• Modelos Discretos ou Parâmetros Concentrados ("Lumped")

Tais modelos são obtidos através de processos de discretização, e são geralmente governados por equações diferenciais ordinárias. Exemplo:

Condução de calor em uma barra, discretização do problema anterior

Equações discretizadas:

$$\frac{3\rho c}{k} \frac{dT_{\frac{1}{4}}}{dt} + 32T_{\frac{1}{4}} - 8T_{1} = 2400$$

$$\frac{3\rho c}{k} \frac{dT_{1}}{dt} + 7T_{1} - 4T_{\frac{1}{4}} - 3T_{2} = 0$$

$$\frac{\rho c}{k} \frac{dT_{2}}{dt} + 2T_{2} - T_{1} - T_{3} = 0$$

$$\frac{\rho c}{k} \frac{dT_{3}}{dt} + 2T_{3} - T_{2} - T_{1} = 0$$

$$\frac{3\rho c}{k} \frac{dT_{4}}{dt} + 7T_{4} - 3T_{3} - 4T_{4\frac{3}{4}} = 0$$

$$\frac{3\rho c}{k} \frac{dT_{4\frac{3}{4}}}{dt} + 8T_{4\frac{3}{4}} - 8T_{4} = 0$$

IMPORTANTÍSSIMO: A passagem de um modelo contínuo para um modelo discreto depende das hipóteses simplificadoras que são feitas na modelagem. então, não existe o modelo discreto de um dado sistema, mas sim um (podendo existir mais de um !) modelo discreto !

Model Type Number	Nature of the Medium						Time-Variation of System Parameters			1
	Continuous (Field Problems)	Discrete (Network Problems)	Space-Variation of Parameters		Nonlinear	Linear	Random	Deterministic.	,	_
			Variable	Constant	1			Variable '	Constant	
. 1	X		X		X		X			\vdash
	X		X		X			х		1
3	X		X		Х				X	1
4	X			X	X		X			١.,
5	X		."	X	Х			X		Most realistic.
6	X			X	x				X	real
7	X		X			X	X		^	ost
8	X		X			X		X		Σ
9	X		X			\overline{x}			X	-
10	X			X		X	X			
11	X			X	-	X		X		
12	X			X		X		A		
13		X			x		X		X	istic
14		X			х			X		Least realistic,
15		X			X			^	37	ast
16		X				X	X		X	ว
17		X				$\frac{x}{x}$				
18		x			·	$\frac{x}{x}$	·	X		
						Λ			X	

