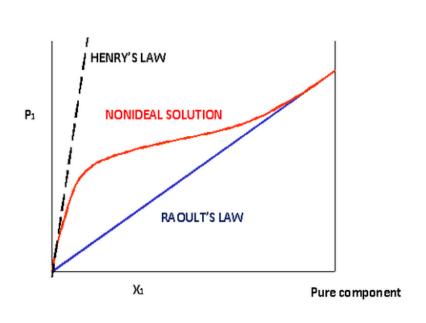

Soluções Ideais e Não Ideais – Definições e Equacionamento

Solução Ideal: Uma solução de dois componentes A e B é ideal sob o ponto de vista termodinâmico se a Entalpia de mistura é nula e a Entropia de mistura é função exclusiva da fração molar de cada componente: Assim:

$$Q_p = \Delta H_{mis} = 0$$

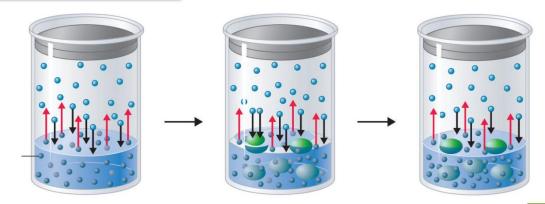
$$\Delta S_{mis} = -R(x_A ln x_A + x_B ln x_B)$$


Decorrência: A mistura de dois gases ideais forma uma solução gasosa ideal

Solução Ideal em fase condensada (solução líquida)

Seja o solvente o componente (1) com fração molar x_1 e o soluto o componente (2) com fração molar x_2 .

Uma solução é definida como ideal no regime de baixa concentração de soluto (isto é a fração molar $x_2 \rightarrow 0$) na qual o solvente segue a <u>lei de Raoult</u> e sua pressão de vapor é proporcional a fração molar x_1 .



$$P_1 = x_1 P_1^0$$

$$P_1 = (1 - x_2) P_1^0$$

Solvente (1) volátil com pressão de vapor puro P₁⁰

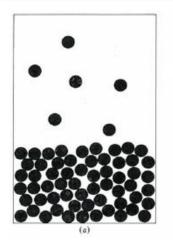
Adição de **soluto (2)** não volátil

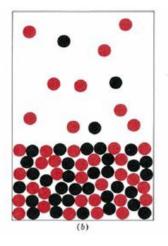
Resultado: Pressão de Vapor do Solvente (1) se reduz de acordo com a lei de Raoult

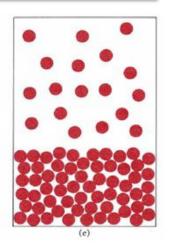
$$P_1 = x_1 P_1^0$$

Variação da pressão de vapor do solvente volátil é dada por:

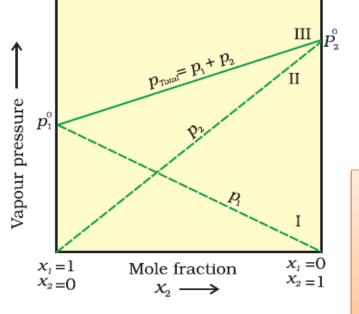
$$\Delta P_1 = (P_1^0 - P_1) = x_2 P_1^0$$


$$P_1 = (1 - x_2) P_1^0$$

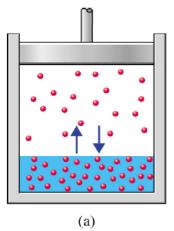

Aplicação:Tonometria: Medida da variação da pressão de vapor do solvente pela adição de um soluto não volátil. Permite estimar a massa molar do soluto (M₂).

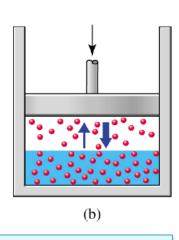

$$\overline{M}_2 = \left(\frac{m_2}{m_1}\right) \frac{P_1^0}{\Delta P_1} \overline{M}_1$$

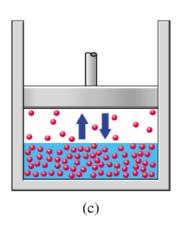
SOLUÇÃO IDEAL DE DOIS LÍQUIDOS VOLÁTEIS


Ex: Tolueno + Benzeno

Obs: Na fase líquida (solução) vale a <u>lei de Raoult</u> para ambos componentes e na fase vapor aplica-se a <u>Lei de Dalton</u>


Composição do Líquido e do Vapor:


$$\left(\frac{x_1}{x_2}\right)_{VAPOR} = \left(\frac{x_1}{x_2}\right)_{SOL} \left(\frac{P_1^0}{P_2^0}\right)$$


Conclusão: O vapor é rico no componente de maior pressão de vapor (componente mais volátil). Ou seja, o componente mais volátil de uma solução líquida ideal estará em maior proporção no vapor do que no líquido (solução). Este é o efeito fundamental para separação de líquidos em uma destilação fracionada

SOLUBILIDADE DE GASES EM LÍQUIDOS E A LEI DE HENRY

Observação experimental: Aumento da solubilidade de um dado gás na fase líquida com o aumento da pressão

Equilíbrio inicial

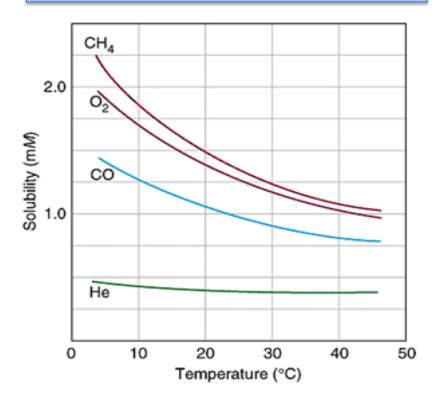
Aumento da Pressão do gás

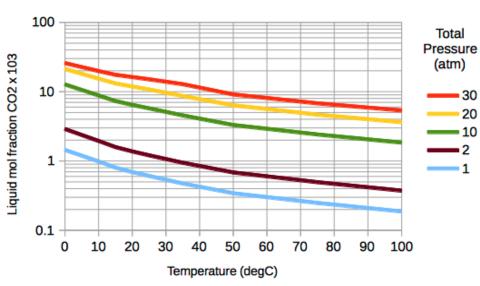
Novo equilíbrio é estabelecido com aumento na concentração do gás na fase líquida

Fenômeno similar que se verifica quando se abre um refrigerante

Questão 1: Como representar o equilíbrio de solubilização do gás no líquido.

Questão 2: Como representar o equilíbrio de solubilização com mais componentes (por exemplo dois gases).

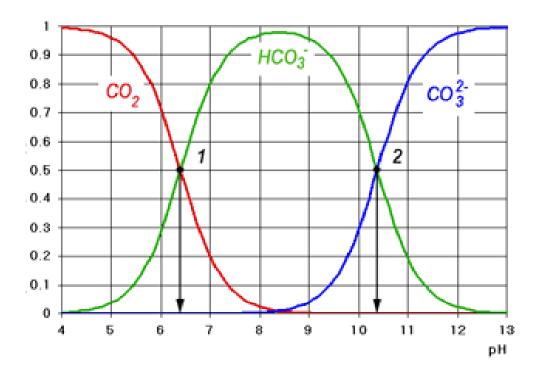

O equilíbrio do gás entre as fases é representado pela <u>equação</u> <u>de Henry</u>. A concentração de gás dissolvido na fase líquida é proporcional à Pressão Parcial deste gás na fase gasosa. Ou seja podemos colocar a equação em diferentes formas com diferentes definição da constante de Henry para um dado gás em relação a um dado líquido (T = constante). Assim temos:


Table 1: Some forms of Henry's law and constants (gases in water at 298 K) ^[7]				
equation:	$k_{ m H,pc} = rac{p_{ m gas}}{c_{ m aq}}$	$k_{ m H,cp} = rac{c_{ m aq}}{p_{ m gas}}$	$k_{ m H,px} = rac{p_{ m gas}}{x_{ m aq}}$	$k_{ m H,cc} = rac{c_{ m aq}}{c_{ m gas}}$
dimension:	$\left[\frac{L_{\rm soln} \cdot atm}{mol_{\rm gas}}\right]$	$\left[\frac{\mathrm{mol_{gas}}}{\mathrm{L_{soln}\cdot atm}}\right]$	$\left[\frac{\mathrm{atm}\cdot\mathrm{mol_{soln}}}{\mathrm{mol_{gas}}}\right]$	dimensionless
02	769.23	1.3 E-3	4.259 E4	3.180 E-2
H ₂	1282.05	7.8 E-4	7.099 E4	1.907 E-2
CO ₂	29.41	3.4 E-2	0.163 E4	0.8317
N ₂	1639.34	6.1 E-4	9.077 E4	1.492 E-2
He	2702.7	3.7 E-4	14.97 E4	9.051 E-3
Ne	2222.22	4.5 E-4	12.30 E4	1.101 E-2
Ar	714.28	1.4 E-3	3.955 E4	3.425 E-2
со	1052.63	9.5 E-4	5.828 E4	2.324 E-2

Efeito da Temperatura na Solubilidade de Gases em Líquidos

Variação da Solubilidade de Gases em água com temperatura

Variação da Solubilidade do CO₂ com temperatura e pressão do gás



Conclusão: Solubilidade de um gás diminui com a temperatura e aumenta com a pressão.

Atenção:

Solubilidade de Gases Reativos depende de equilíbrios na fase líquida. Exemplo: Solubilidade de CO₂ depende do pH de uma solução aquosa.

Explica por que lentamente o CO₂ carbonata uma solução de NaOH