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Tensão: ideia do conceito

actually a continuum, so we could have imagined breaking it up any number of dif-
ferent ways into fluid particles around point C, and therefore obtained any number of
different stresses at point C.

In dealing with vector quantities such as force, we usually consider components in
an orthogonal coordinate system. In rectangular coordinates we might consider the
stresses acting on planes whose outwardly drawn normals (again with respect to
the material acted upon) are in the x, y, or z directions. In Fig. 2.7 we consider the stress
on the element δAx, whose outwardly drawn normal is in the x direction. The force, δ~F ,
has been resolved into components along each of the coordinate directions. Dividing
the magnitude of each force component by the area, δAx, and taking the limit as δAx

approaches zero, we define the three stress components shown in Fig. 2.7b:

σxx 5 lim
δAx-0

δFx
δAx

τxy 5 lim
δAx-0

δFy
δAx

τxz 5 lim
δAx-0

δFz
δAx

ð2:13Þ

Wehave used a double subscript notation to label the stresses. The first subscript (in this
case, x) indicates the plane on which the stress acts (in this case, a surface perpendicular
to the x axis). The second subscript indicates the direction in which the stress acts.

Consideration of area element δAy would lead to the definitions of the stresses, σyy,
τyx, and τyz; use of area element δAzwould similarly lead to the definitions ofσzz, τzx, τzy.

Although we just looked at three orthogonal planes, an infinite number of planes can
be passed through point C, resulting in an infinite number of stresses associated with
planes through that point. Fortunately, the state of stress at a point can be described
completely by specifying the stresses acting on any three mutually perpendicular planes
through the point. The stress at a point is specified by the nine components

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

2
4

3
5

where σ has been used to denote a normal stress, and τ to denote a shear stress. The
notation for designating stress is shown in Fig. 2.8.
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Fig. 2.6 The concept of stress in a continuum.
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Fig. 2.7 Force and stress components on the element of area δAx.
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2.3Stress Field
In our study of fluid mechanics, we will need to understand what kinds of forces act on
fluid particles. Each fluid particle can experience: surface forces (pressure, friction)
that are generated by contact with other particles or a solid surface; and body forces
(such as gravity and electromagnetic) that are experienced throughout the particle.

The gravitational body force acting on an element of volume, dV---, is given by ρ~gdV---,
where ρ is the density (mass per unit volume) and ~g is the local gravitational accel-
eration. Thus the gravitational body force per unit volume is ρ~g and the gravitational
body force per unit mass is ~g.

Surface forces on a fluid particle lead to stresses. The concept of stress is useful for
describing how forces acting on the boundaries of a medium (fluid or solid) are
transmitted throughout the medium. You have probably seen stresses discussed in
solid mechanics. For example, when you stand on a diving board, stresses are gener-
ated within the board. On the other hand, when a body moves through a fluid, stresses
are developed within the fluid. The difference between a fluid and a solid is, as we’ve
seen, that stresses in a fluid are mostly generated by motion rather than by deflection.

Imagine the surface of a fluid particle in contact with other fluid particles, and
consider the contact force being generated between the particles. Consider a portion,
δ~A, of the surface at some point C. The orientation of δ~A is given by the unit vector, n̂,
shown in Fig. 2.6. The vector n̂ is the outwardly drawn unit normal with respect to the
particle.

The force, δ~F , acting on δ~A may be resolved into two components, one normal to
and the other tangent to the area. A normal stress σn and a shear stress τn are then
defined as

σn 5 lim
δAn-0

δFn
δAn

ð2:11Þ

and

τn 5 lim
δAn-0

δFt
δAn

ð2:12Þ

Subscript n on the stress is included as a reminder that the stresses are associated with
the surface δ~A through C, having an outward normal in the n̂ direction. The fluid is

(e) At the point (12.1, 1.32) m,

~V 5 Aðxî2 yĵ Þ 5 0:3 s21ð12:1î2 1:32ĵ Þm
5 3:63î2 0:396ĵm=s ß

(f) To determine the equation of the pathline, we use the parametric
equations

x 5 x0e
At and y 5 y0e

2At

and eliminate t. Solving for eAt from both equations

eAt 5
y0
y

5
x

x0

Therefore xy5 x0y05 16 m2
ß

Notes:
ü This problem illustrates the
method for computing streamlines
and pathlines.ü Because this is a steady flow, the
streamlines and pathlines have the
same shape—in an unsteady flow
this would not be true.ü When we follow a particle (the
Lagrangian approach), its position
(x, y) and velocity (up5 dx/dt and
vp5 dy/dt) are functions of time,
even though the flow is steady.
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Tensão: partícula fluido

Referring to the infinitesimal element shown in Fig. 2.8, we see that there are six
planes (two x planes, two y planes, and two z planes) on which stresses may act. In
order to designate the plane of interest, we could use terms like front and back, top
and bottom, or left and right. However, it is more logical to name the planes in terms
of the coordinate axes. The planes are named and denoted as positive or negative
according to the direction of the outwardly drawn normal to the plane. Thus the top
plane, for example, is a positive y plane and the back plane is a negative z plane.

It also is necessary to adopt a sign convention for stress. A stress component is
positive when the direction of the stress component and the plane on which it acts are
both positive or both negative. Thus τyx 5 5 lbf=in:2 represents a shear stress on a
positive y plane in the positive x direction or a shear stress on a negative y plane in the
negative x direction. In Fig. 2.8 all stresses have been drawn as positive stresses. Stress
components are negative when the direction of the stress component and the plane on
which it acts are of opposite sign.

2.4Viscosity
Where do stresses come from? For a solid, stresses develop when the material is
elastically deformed or strained; for a fluid, shear stresses arise due to viscous flow (we
will discuss a fluid’s normal stresses shortly). Hence we say solids are elastic, and fluids
are viscous (and it’s interesting to note that many biological tissues are viscoelastic,
meaning they combine features of a solid and a fluid). For a fluid at rest, there will be
no shear stresses. We will see that each fluid can be categorized by examining the
relation between the applied shear stresses and the flow (specifically the rate of
deformation) of the fluid.

Consider the behavior of a fluid element between the two infinite plates shown in
Fig. 2.9a. The rectangular fluid element is initially at rest at time t. Let us now suppose
a constant rightward force δFx is applied to the upper plate so that it is dragged across
the fluid at constant velocity δu. The relative shearing action of the infinite plates
produces a shear stress, τyx, which acts on the fluid element and is given by

σyy

τyx

τyz

τzy
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σzz

τxy

σxx
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Fig. 2.8 Notation for stress.
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Viscosidade

τyx 5 lim
δAy-0

δFx
δAy

5
dFx
dAy

where δAy is the area of contact of the fluid element with the plate and δFx is the force
exerted by the plate on that element. Snapshots of the fluid element, shown in Figs.
2.9a�c, illustrate the deformation of the fluid element from position MNOP at time t,
to MuNOPu at time t1 δt, to MvNOPv at time t1 2δt, due to the imposed shear stress.
As mentioned in Section 1.2, it is the fact that a fluid continually deforms in response
to an applied shear stress that sets it apart from solids.

Focusing on the time interval δt (Fig. 2.9b), the deformation of the fluid is given by

deformation rate 5 lim
δt-0

δα
δt

5
dα
dt

We want to express dα/dt in terms of readily measurable quantities. This can be
done easily. The distance, δl, between the points M and Mu is given by

δl 5 δu δt

Alternatively, for small angles,

δl 5 δy δα
Equating these two expressions for δl gives

δα
δt

5
δu
δy

Taking the limits of both sides of the equality, we obtain

dα
dt

5
du

dy

Thus, the fluid element of Fig. 2.9, when subjected to shear stress τyx, experiences a
rate of deformation (shear rate) given by du/dy. We have established that any fluid
that experiences a shear stress will flow (it will have a shear rate). What is the relation
between shear stress and shear rate? Fluids in which shear stress is directly propor-
tional to rate of deformation are Newtonian fluids. The term non-Newtonian is used to
classify all fluids in which shear stress is not directly proportional to shear rate.

Newtonian Fluid

Most common fluids (the ones discussed in this text) such as water, air, and gasoline
are Newtonian under normal conditions. If the fluid of Fig. 2.9 is Newtonian, then

τyx ~
du

dy
ð2:14Þ

We are familiar with the fact that some fluids resist motion more than others.
For example, a container of SAE 30W oil is much harder to stir than one of water.
Hence SAE 30W oil is much more viscous—it has a higher viscosity. (Note that a con-
tainer of mercury is also harder to stir, but for a different reason!) The constant of

(a) (b) (c)
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Fig. 2.9 (a) Fluid element at time t, (b) deformation of fluid element at time t1 δt, and
(c) deformation of fluid element at time t1 2δt.
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Viscosidade fluidos não-Newtonianos

represented for many engineering applications by the power law model, which for
one-dimensional flow becomes

τyx 5 k
du

dy

� �n

ð2:16Þ

where the exponent, n, is called the flow behavior index and the coefficient, k, the con-
sistency index. This equation reduces to Newton’s law of viscosity for n5 1 with k5μ.

To ensure that τyx has the same sign as du/dy, Eq. 2.16 is rewritten in the form

τyx 5 k
du

dy

����
����
n21

du

dy
5 η

du

dy
ð2:17Þ

The term η 5 kjdu=dyjn21 is referred to as the apparent viscosity. The idea behind Eq.
2.17 is that we end up with a viscosity η that is used in a formula that is the same form
as Eq. 2.15, in which the Newtonian viscosity μ is used. The big difference is that while
μ is constant (except for temperature effects), η depends on the shear rate. Most non-
Newtonian fluids have apparent viscosities that are relatively high compared with the
viscosity of water.

Fluids in which the apparent viscosity decreases with increasing deformation rate
(n, 1) are called pseudoplastic (or shear thinning) fluids. Most non-Newtonian fluids
fall into this group; examples include polymer solutions, colloidal suspensions, and
paper pulp in water. If the apparent viscosity increases with increasing deformation rate
(n. 1) the fluid is termed dilatant (or shear thickening). Suspensions of starch and of
sand are examples of dilatant fluids. You can get an idea of the latter when you’re on
the beach—if you walk slowly (and hence generate a low shear rate) on very wet sand,
you sink into it, but if you jog on it (generating a high shear rate), it’s very firm.

A “fluid” that behaves as a solid until a minimum yield stress, τy, is exceeded and
subsequently exhibits a linear relation between stress and rate of deformation is
referred to as an ideal or Bingham plastic. The corresponding shear stress model is

τyx 5 τy 1μp
du

dy
ð2:18Þ

Clay suspensions, drilling muds, and toothpaste are examples of substances exhibiting
this behavior.

The study of non-Newtonian fluids is further complicated by the fact that the
apparent viscosity may be time-dependent. Thixotropic fluids show a decrease in η
with time under a constant applied shear stress; many paints are thixotropic. Rheo-
pectic fluids show an increase in η with time. After deformation some fluids partially
return to their original shape when the applied stress is released; such fluids are called
viscoelastic (many biological fluids work this way).
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Fig. 2.10 (a) Shear stress, τ, and (b) apparent viscosity, η, as a function of deformation rate for
one-dimensional flow of various non-Newtonian fluids.

CLASSIC VIDEO

Rheological Behavior of Fluids.
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Propriedades fluidos: massa específica
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