Capítulo 1

Controlador PID discreto

1.1 Objetivo

O objetivo deste experimento é introduzir ao estudante as noções básicas de um controlador PID discreto para um motor de corrente contínua.

1.2 Modelo Matemático

Nesta seção a função transferência de um motor elétrico de corrente contínua será encontrada. Considere o esquema elétrico de um motor de corrente contínua, Fig. 1.1.

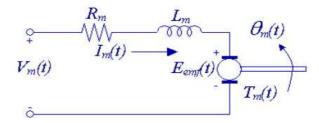


Figura 1.1: Circuito da armadura no domínio do tempo.

Usando a lei de Kirchhoff de tensão, obtém-se a equação abaixo:

$$V_m - R_m I_m - L_m \frac{dI_m}{dt} - E_{emf} = 0. {(1.1)}$$

Desde que $L_m \ll R_m$, pode-se desconsiderar a indutância do motor, assim:

$$I_m = \frac{V_m - E_{emf}}{R_m}. (1.2)$$

Sabe-se que a força contra eletromotriz criada pelo motor é proporcional a velocidade do rotor ω_m tal que:

$$I_m = \frac{V_m - K_m \dot{\theta}_m}{R_m} \qquad (\dot{\theta}_m = \omega_m). \tag{1.3}$$

Considerando o aspecto mecânico do motor e aplicando a segunda lei de Newton de movimento para o rotor do motor:

$$J_m \ddot{\theta}_m = T_m - \frac{T_l}{\eta_q K_q},\tag{1.4}$$

sendo J_m o momento de inércia do rotor, T_m o torque gerado pelo motor, T_l o torque aplicado à carga, K_g a redução da caixa de engrenagens e η_g a eficiência da caixa de engrenagens.

Aplicando a segunda lei de movimento na carga do motor:

$$J_l \ddot{\theta}_l = T_l - B_{eq} \dot{\theta}_l, \tag{1.5}$$

sendo B_{eq} o coeficiente viscoso de amortecimento.

Substituindo 1.4 em 1.5:

$$J_l \ddot{\theta}_l = \eta_g K_g T_m - \eta_g K_g J_m \ddot{\theta}_m - B_{eq} \dot{\theta}_l. \tag{1.6}$$

Sabe-se que $\theta_m = K_g \theta_l$ e $T_m = \eta_m K_t I_m$ (sendo η_m a eficiência do motor), 1.6 pode

ser escrita como:

$$J_l \ddot{\theta}_l + \eta g K_q^2 J_m \ddot{\theta}_l + B_{eq} \dot{\theta}_l = \eta_g \eta_m K_g K_t I_m. \tag{1.7}$$

Finalmente, pode-se combinar as equações elétricas e mecânicas substituindo 1.3 em 1.7, resultando na função de transferência desejada:

$$\frac{\theta_l(s)}{V_m(s)} = \frac{\eta_g \eta_m K_t K_g}{J_{eg} R_m s^2 + (B_{eg} R_m + \eta_g \eta_m K_m K t K_g^2) s},$$
(1.8)

sendo $J_{eq} = J_l + \eta_g J_m K_g^2$.

A função de transferência do motor considerando os dados da Tabela 1.4 (Apêndice 1.4) é dada por:

$$G(s) = \frac{\theta_l(s)}{V_m(s)} = \frac{3446}{s^2 + 34,17s},\tag{1.9}$$

sendo θ o ângulo em graus do motor e V a tensão aplicada.

1.3 Procedimento de laboratório

1.3.1 Ligações e conexões

A primeira tarefa é assegurar que todo o sistema está ligado corretamente. Se você está inseguro com a ligação, chame o professor.

Anote os resultados encontrados nas folhas de respostas apresentadas na Seção 1.5 e responda as demais questões. Estas folhas correspondem ao relatório da prática e devem ser entregues ao professor no final da aula.

1.3.2 Análise do Controle Proporcional

Inicialmente, considere o controlador proporcional, $u(k) = K_p(\theta_l^d - \theta_l)$.

- Execute o arquivo **Motor.m** no ambiente de trabalho do Matlab. O valor de T_0 considerado é 30 ms.
- Encontre o valor máximo do ganho K_p tal que o sistema em malha fechada seja estável (polos de malha fechada devem pertencer ao círculo unitário).
- Abra o arquivo **Proporcional.vi**.
- Execute o controle proporcional considerando $T_0 = 30 \text{ ms.}$
- Encontre o valor máximo do ganho K_p tal que a resposta ao degrau unitário seja estável.
- Verifique no Matlab o desempenho esperado (amortecimento e frequência natural) se este controlador proporcional fosse implementado analogicamente. Faça o Lugar das Raízes da planta contínua G(s).
- Altere o valor de T_0 nos arquivos **Motor.m** e **Proporcional.vi** e analise novamente os valores de K_p máximos.

1.3.3 Controlador PID

No experimento descrito nesta seção será implementado o controlador PID discreto para o motor de corrente contínua.

Considere a aproximação dos termos integral e derivativo do controlador, ou seja, para T_0 pequeno,

$$u(k) = K_p \left[e(k) + \frac{T_0}{T_I} \sum_{v=0}^k e(v) + \frac{T_D}{T_0} (e(k) - e(k-1)) \right].$$

O controlador PID discreto recursivo é dado por:

$$u(k) = u(k-1) + q_0e(k) + q_1e(k-1) + q_2e(k-2)$$

$$q_0 = K_p + \frac{K_d}{T_0} + K_i T_0,$$

$$q_1 = -K_p - \frac{2K_d}{T_0},$$

$$q_2 = \frac{K_d}{T_0},$$

sendo

$$K_i = \frac{K_p}{T_i}$$
 e $K_d = K_p T_d$.

- Execute o arquivo **MotorPID.m** no ambiente de trabalho do Matlab. O valor de T_0 considerado é 5 ms. Altere os valores de K_p , K_i e K_d . Verifique a resposta ao degrau unitário.
- Encontre valores de K_p , K_i e K_d tais que a reposta ao degrau unitário apresente sobressinal de 10% e tempo de subida $t_r = 60ms$. Faça este ajuste de forma empírica.
- Utilizando os valores obtidos no passo anterior, calcule os valores de q_0 , q_1 , q_2 , z_1 e z_2 , considerando uma parametrização do controle PID como:

$$D_{PID}(z) = \frac{q_0 z^2 + q_1 z + q_2}{z^2 - z} = \frac{q_0 (z - z_1)(z - z_2)}{z^2 - z}, \quad \frac{q_1}{q_0} = -(z_1 + z_2), \quad \frac{q_2}{q_0} = z_1 z_2.$$

- Abra o arquivo **PIDdiscreto.vi** e execute-o.
- Utilize os ganhos K_p , K_i e K_d encontrados anteriormente e verifique a resposta obtida. Quais as diferenças com relação à resposta simulada (Matlab)?
- Abra o arquivo PIDdiscreto_2.vi.
- Utilize os mesmos ganhos K_p , K_i e K_d , e compare os resultados obtidos com o PID recursivo. Utilize:

$$K_c = K_p$$

$$T_i(min) = \frac{K_p}{60K_i},$$

$$T_d(min) = \frac{K_d}{60K_p}.$$

1.4 Apêndice - A: Parâmetros do sistema

Tabela 1.1: Parâmetros do sistema

Símbolo	Nome	Valor	Unidades
K_t	Constante de Toque do Motor	0.00767	Nm/A
K_m	Constante da Força Contra Eletromotriz	0.00767	V/(rad/s)
R_m	Resistência da Armadura	2.6	Ω
K_g	Redução	70:1	
B_{eq}	Coeficiente Viscoso de Amortecimento	0.004	Nm/(rad/s)
J_m	Momento de Inércia do Rotor	$4.6e^{-7}$	kgm^2
J_l	Momento de Inércia Equivalente (Disco)	$2.13e^{-3}$	kgm^2
η_m	Eficiência do Motor	0.69	
η_g	Eficiência da Redução	0.9	

1.5 Relatório da Prática

Integr	rantes do Grupo:	
1:		
2:		
3:	·	
4:		
5:		
6:		
1. Aná	álise do Controle Proporcional	
a)	Valor de K_p máximo, considerando o projeto via Lugar das Raíz	es:
	$K_p = \dots$	
b)	Valor de K_p máximo, considerando a resposta real do motor:	
	$K_p = \dots$	
c)	Analise os valores encontrados e indique as possíveis causas de entre eles. R	diferença
d)	Analise o desempenho do sistema em malha fechada (amortecim quencia natural) se este controlador proporcional fosse implemente logicamente. Faça o Lugar das Raízes da planta contínua $G(s)$. R	

2.

res de K_p , K_i e K_d : $K_p = \dots \qquad e \qquad K_d = \dots$ res de q_0, q_1 e q_2 : $q_0 = \dots \qquad q_1 = \dots \qquad e \qquad q_2 = \dots$ pare os resultados simulados (Matlab) e reais. Por que são diferentes?
res de q_0, q_1 e q_2 : $q_0 =, \qquad q_1 = \qquad e \qquad q_2 =$ pare os resultados simulados (Matlab) e reais. Por que são diferentes?
$q_0=$, $q_1=$ e $q_2=$ pare os resultados simulados (Matlab) e reais. Por que são diferentes?
pare os resultados simulados (Matlab) e reais. Por que são diferentes?
pare os resultados simulados (Matlab) e reais. Por que são diferentes?
ie os efeitos dos ganhos K_p , $K_i \in K_d$.
pare os resultados do controlador discreto recursivo e do controlador
do LabVIEW.

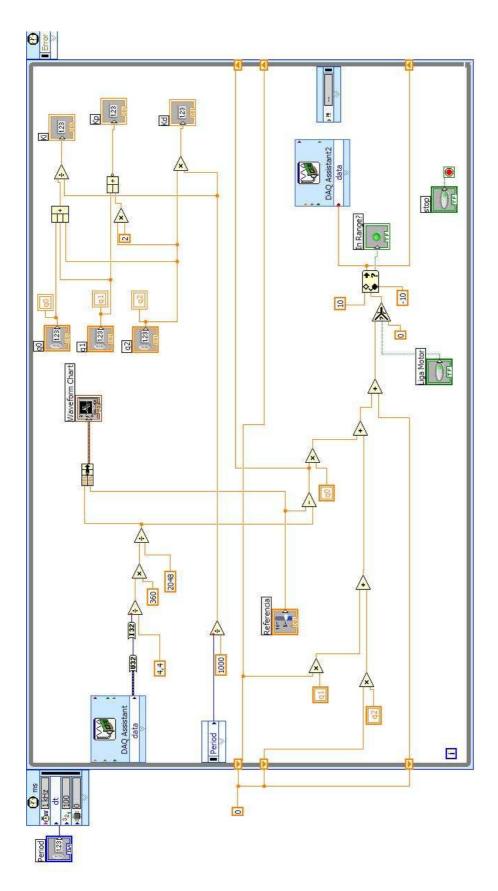


Figura 1.2: Programa em LabVIEW, controlador PID discreto recursivo.