13
Motion under
central forces

WE HAVE ALREADY seen, especially in Chapter 8, how the motion
of objects under the action of forces directed toward some well-
defined center is one of the richest areas of study in mechanics.
Twice in the history of physics the analysis of such motions has
been linked with fundamental advances in our understanding of
nature—through the explanation of planetary motions, on the
macroscopic scale, and through Rutherford’s studies of alpha-
particle scattering, which gave man his first clear view of the
subatomic world. Up until this point we have limited ourselves
to the study of circular orbits, and it is remarkable how much
can be learned on that basis. But now we shall begin a more
general analysis of motion under the action of central forces.

BASIC FEATURES OF THE PROBLEM

As we saw in Chapter 11 (p. 444), a central force field that is also
conservative must be spherically symmetric, and some of the most
important fields in nature (notably electrical and gravitational)
are precisely of this type. The frequent occurrence of spherically
symmetric models to describe physical reality is closely linked to
the basic assumption that space is isotropic and is the intuitively
natural starting point in building theoretical models of various
kinds of dynamical systems.

We shall begin with the specific problem of the motion of a
single particle of mass m in a spherically symmetric central field
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Fig. 13-1 (a) Unit
vectors associated
with radial and trans-
verse directions in a
plane polar coordinate
system. (b) Radial
and transverse com-
ponents of an ele-
mentary vector
displacement Ar,
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of force. Initially, at least, we shall assume that the object re-
sponsible for this central field is so massive that it can be regarded
as a fixed center that defines a convenient origin of coordinates
for the analysis of the motion.

The first thing to notice is that the path of the moving par-
ticle will lie in a fixed plane that passes through the center of
force. This plane is defined by the initial velocity vector v, of the
particle and the initial vector position rq of the particle with re-
spect to the center of force. Since the force acting on the particle
1s in this plane, and since there is no component of initial velocity
perpendicular to it, the motion must remain confined to this
plane of ry and vo. To analyze the motion we must first pick an
appropriate coordinate system. Because the force F is a function
of the scalar distance r only and is along the line of the vector r
(positively or negatively), it is clearly most convenient to work
with the plane polar coordinates (r, 8), as indicated in Fig. 13-1(a).
This means that we shall be making use of the acceleration vector
expressed in these coordinates. In Chapter 3 (p. 108) we calcu-
lated this vector for the particular case of circular motion
(r = constant). Now we shall develop the more general expres-
sion that embraces changes of both r and 6.

Using the unit vectors e, and €y as indicated in Fig. 13-1(a)
we have

r = re, (13-1)
dr dr dl
Y=w - et a® iy

This equation for v is readily constructed by recognizing that a
general infinitesimal change in position, Ar, is obtained by com-
bining a radial displacement of length Ar (at constant ¢) and a
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transverse displacement of length » Af (at constant r), as indicated
in Fig. 13-1(b). Alternatively, one can just differentiate both
sides of Eq. (13-1) with respect to time, remembering that
d(e,)/dt = (db/dr)eq [see Eq. (3—-17a)].

We now proceed to differentiate both sides of Eq. (13-2) with
respect to 7:

dv dr dr d dr do de
r=wwm T aa "t aa®t az®
do d

+l'a;; Ee’

Substituting d(e,)/dt = (d8/dt)es, and d(eg)/dt = —(db/dt)e,, the
expression for a can be rewritten as follows:

r do\” de . dr dﬁ]
a—[‘?ﬁ—r(a):le,+|:rﬁ+2§‘-§ e (13-3)
It will be convenient to extract from this the separate radial and
transverse components of the total acceleration:

3 2
dr dé
ar—ﬁ—r(z) (13 4)
2
de dr df
au—r?ﬁ"l-z&a (13-5)

The statement of Newton’s law in plane polar coordinates can
then be made in terms of these separate acceleration components:

r do\*
Fo= m[ﬁ,— — r(a?) ] (13-6)

d’o | . dr d&]
F9= J’HI:?*E-FZE a’; (13_7)

The above two equations provide a basis for the solution of any
problem of motion in a plane, referred to an origin of polar
coordinates. We shall, however, consider their application to
central forces in particular.

THE LAW OF EQUAL AREAS

In the case of any kind of conservative central force, we have
F, = F(r) simply, and Fy = 0. The second of these immediately
implies that @y = 0. Substituting the specific expression for as
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Fig. 13-2 [Illustrating the basis
of calculating areal velocity
(area swept out per unit time by
the radius vector).

from Eq. (13-5), we have

d’e dr db
roe 42— T =0 (13-8)
This equation contains a somewhat veiled statement of a simple
geometrical result—that the vector r sweeps out area at a constant
rate. One way of seeing this is to multiply Eq. (13-8) throughout
by r:
dr df

%0
+25‘—E =0

gd

The left-hand side may then be recognized as the derivative with
respect to ¢ of the product r* d/dt:

d2db) _ 2d%  , drdo
dt rdt di2 dt dt

If we integrate this expression, we therefore have

2df 4

r - const. (13-9)
Now in Fig. 13-2 we show the area A4 (shaded) swept out by r
in a short time Az. It is the triangle POQ (we take PQ to be
indistinguishable from a straight line if it is short enough) and

we have
= 4r(r + Ar) sin A9

The rate at which area is being swept out, instantaneously, is the
limit of AA/At for At — 0. Since, as we approach this limit,
Ar/r — 0 and sin A9 — A#@, we arrive at the result

dA _ 1 sd8

1
r -2‘ F a—: (13—103)

Thus we recognize the constant on the right-hand side of Eq.
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Fig, 13-3 (a) A por-
tion of Newton's
manuscript, De Motu,
showing the basis of
his proof of the law of
equal areas for a
central force. (b) En-
larged copy of New-
ton's diagram. (From
J. Herivel, The Back-
ground to Newton’s
Principia, Oxford
University Press,
London, 1965.)

(a)

(13-9) as twice the rate (a comstant rate) at which the radius
vector r sweeps out area, and we therefore have

(Any central force) %’; = %rggg = const. (13-10b)

The result expressed by Eq. (13-10b) was first discovered by
Kepler in his analysis of planetary motions (of which more later).
It was stated by him in what is known as his second law (although
it was actually the first chronologically). Newton understood it
on the same dynamical grounds as we have discussed above,
i.e., as a feature of the motion of an object acted on by any
kind of force that is directed always to the same point. He
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visualized the action of such a force as a succession of small kicks
or impulses, which in the limit would go over into a continuously
applied influence. He set out this view of the process in a tract
written in 1684 (about 2 years before the Principia)." Figure
13-3(a) is a reproduction of a small fragment of the work,
indicating Newton’s approach to the problem. With the help of
an enlarged version of his sketch [Figure 13-3(b)] we can
more readily follow Newton’s argument, which as usual was
geometrical.

Newton imagines an object traveling along 4B and then
receiving an imipulse directed toward the point S. As a result it
now travels along the line BC instead of Be. Similar impulses
carry it to D, E, and F. To make things quantitative, Newton
visualizes the displacement BC as being, in effect, the combination
of the displacement Be, equal to AB, that the object would have
undergone if it had continued for an equal length of time with its
original velocity, together with the displacement c¢C parallel to
the line BS along which the impulse was applied. This at once
yields the law of areas by a simple argument: The triangles SAB
and SBc are equal, having equal bases (4B and Bc) and the same
altitude. The triangles SBc and SBC are equal, having a common
base (SB) and lying between the same parallels. Hence
ASAB = ASBC.

THE CONSERVATION OF ANGULAR MOMENTUM
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We give a more modern and more fundamental slant to the law
of areas by expressing it in terms of the conservation of orbital
angular momentum. If a particle at P [Fig. 13-4(a)] is acted on
by a force F, we have
dv

F = ma= m
Let us now form the vector (cross) product of the position
vector r with both sides of this equation:

dv
F = — 13-11
r X r X mdr ( )

The left-hand side is the torque M due to F about O.

IThis tract, called De Moru (Concerning the Motion of Bodies), contains
many of the important results that were later incorporated in the Principia.
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