# ANÁLISE DE FALHA EM CORRENTE DE TRANSMISSÃO DUPLA

INTERESSADO:

JUNHO DE 2012

Uma corrente de transmissão dupla rompida em serviço foi enviada para análise de fratura de seus componentes e determinação de possíveis causas de falha. A Error! Reference source not found. e a Error! Reference source not found. mostram a corrente rompida.



Figura 1 – Corrente de transmissão rompida em serviço.



Figura 2 – Corrente de transmissão rompida em serviço

A corrente de transmissão dupla é formada por elos externos e internos que se repetem alternadamente:

- 1) Elo interno: formando por duas placas internas, duas buchas e dois rolos, sendo as buchas montadas com ajuste prensado nas placas enquanto os rolos giram livremente sobre as buchas;
- 2) Elo externo: formado por dois pinos montados com ajuste e prensados em duas placas externas e posteriormente rebitados;

Os pinos e buchas são os principais componentes sujeitos a desgastes, pois a medida em que a corrente articula nas engrenagens, os pinos giram dentro das buchas.



Figura 3 – Partes componentes de corrente de transmissão dupla.

As placas externas e internas devem ser temperadas e revenidas para obtenção de microestrutura homogênea, constituída de martensita revenida, com elevada resistência à fadiga, com dureza entre 30 e 45 HRC<sup>1</sup>. Os pinos e buchas devem ser fabricados em aço ligado e devem ser cementados para obtenção de uma camada superficial endurecida e um núcleo de maior tenacidade. Especialmente as buchas, devem ser cementadas para obtenção de

<sup>&</sup>lt;sup>1</sup> D.I.D General catalog acessado em <u>http://www.did-daido.co.jp/documents/en/catalog/didcatalog.pdf</u>

resistência ao desgaste superficial, associada à tenacidade de um núcleo de baixo teor de carbono<sup>2</sup>.

A Tabela 1 mostra os valores de dureza superficial recomendada para buchas cementadas.

Tabela 1 – Valores de dureza superficial de buchas cementadas<sup>1</sup>

|                                          | Carburizing |
|------------------------------------------|-------------|
| Layer                                    | High carbon |
| Surface hardness (HV)                    | 750~850     |
| Actual thickness<br>of treated layer     | 100 or more |
| Surface hardness<br>lowering temperature | 200 or more |
| Peeling resistance                       | 0           |
| Wear resistance                          |             |

#### Objetivo

O objetivo desse relatório é analisar as características das fraturas observadas nos diferentes componentes da corrente e determinar as prováveis causas de falha em serviço.

#### Metodologia

Foram feitos os seguintes ensaios e análises:

- 1. Exame visual e em lupa estereoscópica ZEISS Stemi 2000 C e registro fotográfico com câmera digital Zeiss AxionCam ICc3
- 2. Análise da superfície de fratura em microscópio eletrônico de varredura Cambridge Stereoscan 440, com detectores de elétrons secundários e elétrons retroespalhados.
- 3. Análise da estrutura metalográfica em Microscópio Óptico Olympus BX60-M com aumentos de 50 a 1000 X. Padrão para aferição de aumentos escala micrométrica Leitz Wetzlar de 1mm/100 divisões e câmera digital de 3Mpixel Altra 20.
- 4. Análise de imagens para determinação de fração de austenita retida utilizando programa Image J.
- 5. Medidas de microdureza em microdurômetro Zwick 3202 com carga de 300 gf Certificado de calibração da Dinateste para cargas de 300 gf e 1000 gf DNNT/970c/10.

<sup>&</sup>lt;sup>2</sup> SKF Transmission Chain – acessado em http://www.skf.com/files/896759.pdf

Resultados

Análise visual e em lupa estereoscópica

A **Error! Reference source not found.** mostra a superfície de fratura da bucha vista em lupa estereoscópica É possível observar que a fratura tem aspectos diferentes tanto na superfície interna quanto na superfície interna, indicando que a mesma deve ter sido cementada.



Figura 4- Superfície de fratura da bucha.

A **Error! Reference source not found.** mostra a superfície de fratura da placa interna fraturada. Observa-se início de trinca por fadiga no canto interno indicado pela seta branca.



Figura 5 – Superfície de fratura da placa interna. Fratura por fadiga iniciada no canto interno da placa, indicado pela seta branca. Observam-se marcas de praia no final da fratura.

A **Figura 6** mostra o acoplamento da bucha à placa fraturada por fadiga.



Figura 6 – Acoplamento da bucha à placa fraturada por fadiga.

A **Figura 7** mostra a superfície de fratura do pino que trabalhava acoplado á uma placa externa fraturada. A superfície de fratura está bastante danificada, mas é possível observar marcas de praia de coloração cinza escura em uma região em que não houve amassamento.



Figura 7 — Superfície de fratura do pino. Observam-se marcas de praia indicadas pela seta branca.

Análise das superfícies de fratura por microscopia eletrônica de varredura

A Error! Reference source not found. e a **Error! Reference source not found.** mostram a superfície de fratura da bucha vista ao microscópio eletrônico de varredura. Observa-se fratura frágil intergranular em uma grande região próximo à superfície. Na **Error! Reference source not found.** é possível observar uma descontinuidade situada a aproximadamente 0,3 mm da superfície que separa a região de fratura intergranular de uma região de fratura frágil transgranular.



Figura 8 — Fratura frágil intergranular na região da superfície cementada da bucha. MEV. 1.100X.



Figura 9 – Descontinuidade presente na superfície de fratura. Observa-se fratura intergranular acima da descontinuidade. MEV. 150 X.

A **Error! Reference source not found.** mostra a superfície de fratura da placa interna, iniciada no canto interno de acoplamento da mesma à bucha. Observa-se fratura por fadiga, formando uma região relativamente lisa seguida de outra região contendo estrias. A fratura final **Figura 11** ocorreu por processo de fadiga de baixo ciclo com formação de dimples e estrias bastante espaçadas.



Figura 10 — Fratura por fadiga iniciada no canto interno da placa que trabalha acoplada à bucha. Observam-se marcas de praia bastante espaçadas formadas em processo de fadiga de baixo ciclo. MEV. 64 X.



Figura 11 – Fratura por fadiga de baixo ciclo com estrias bastante espaçadas. MEV. 64 X.



A **Figura 12** mostra que o mecanismo de fratura ao final é de coalescência de microcavidades, compatível com a observação de fratura por fadiga de baixo ciclo.

Figura 12 – Fratura dútil com formação de "dimples", indicativo de relativa dutilidade do material. MEV. 1430 X.

A **Error! Reference source not found.** mostra a superfície de fratura do pino rompido por fadiga iniciada na região indicada pela seta branca. Observa-se uma região em forma de meia lua, de trinca por fadiga iniciada no local indicado pela seta branca, que apresenta amassamento.



Figura 13 – trinca de fadiga iniciada na região indicada pela seta branca. MEV. 30 X.

Análise metalográfica dos componentes da corrente

A **Figura 14** mostra que existe uma descontinuidade na bucha, possivelmente uma dobra de laminação do material. A região mais externa da bucha se encontra separada da parte interna núcleo da bucha por um cordão de inclusões de óxidos.



Figura 14 – Descontinuidade encontrada em bucha de corrente. A parte externa da bucha se encontra separada da parte interna por um cordão de óxidos. MO. Sem ataque. 50 X.

Prof. Dr. André Paulo Tschiptschin



Figura 15 - Descontinuidade encontrada em bucha de corrente. A parte externa da bucha se encontra separada da parte interna por um cordão de óxidos. MO. Sem ataque. 500 X.

A microestrutura da superfície cementada possui quantidade excessiva de austenita retida (~28%), como mostram a **Figura 16** e a **Figura 17**.

Prof. Dr. André Paulo Tschiptschin



Figura 16 – Camada cementada da bucha com quantidade excessiva de austenita retida. Observa-se a descontinuidade que se estende desde a seta branca da direita até a seta branca da esquerda. MO. Ataque: Nital. 200X.



Figura 17 - Camada cementada da bucha com quantidade excessiva de austenita retida (~28%). Descontinuidade entre as setas brancas. MO. Ataque: Nital. 500 X.

As evidências encontradas indicam que a bucha possui quantidade excessiva de austenita retida e descontinuidade que se estende no interior do material, possivelmente uma dobra de laminação. A placa interna fraturada por fadiga apresenta microestrutura extremamente heterogênea contendo ferrita, perlita e bainita, como mostram a **Figura 18** e a **Error! Reference source not found.** 



Figura 18 – Microestrutura heterogênea da placa interna da corrente. MO. Ataque: Nital. Aumento 50 X.

Prof. Dr. André Paulo Tschiptschin



Figura 19 – Ferrita, perlita e bainita na placa interna da corrente. MO. Ataque: Nital. Aumento 500 X.

A **Error! Reference source not found.** mostra que, além disso, a placa interna apresenta descarbonetação superficial.



Figura 20 – Descarbonetação superficial. MO. Ataque: Nital. Aumento: 500 X.

As evidências encontradas indicam que a placa interna da corrente, fraturada por fadiga, apresenta microestrutura heterogênea, resultante de tratamento térmico mal feito e

Prof. Dr. André Paulo Tschiptschin

#### descarbonetação superficial.

A microestrutura do pino é homogênea, constituída de martensita revenida em toda a seção transversal, como se vê na **Error! Reference source not found.**. O pino não foi cementado nem recebeu qualquer outro tratamento para endurecimento superficial.



Figura 21- Microestrutura homogênea em toda a seção transversal, constituída de martensita revenida. MO. Ataque: Nital. Aumento: 500 X.

As evidências encontradas indicam que os três componentes da corrente apresentam problemas de estrutura metalográfica e de tratamento térmico que se reflete em suas durezas.

Medidas de dureza Vickers HV 0,3

As medidas de microdureza Vickers indicam que a bucha apresenta abaixamento de dureza na superfície, devido à presença de elevada quantidade de austenita retida, como mostra a **Figura 22.** 





Figura 22 – Microdureza Vickers 0,3 da bucha ao longo de sua seção transversal.

A dureza da placa interna é relativamente baixa e sofre queda acentuada nas duas superfícies descarbonetadas, como se vê na **Figura 23**.



Figura 23 - Microdureza Vickers 0,3 da placa interna ao longo de sua seção transversal.

O perfil de dureza do pino mostra que o mesmo não foi cementado, como se vê na Figura 24.



Figura 24 - Microdureza Vickers 0,3 do pino ao longo de sua seção transversal.

## Discussão

As evidências encontradas indicam que todos os componentes da corrente apresentam problemas de estrutura metalográfica, decorrentes de tratamentos térmicos mal especificados ou mal feitos. A bucha apresenta cerca de 28% de austenita retida. Além disso, apresenta descontinuidade de tamanho exagerado, possivelmente uma dobra de laminação. A placa interna apresenta estrutura muito heterogênea e descarbonetação superficial. O pino não foi cementado como indicado pelas melhores práticas de fabricantes de correntes de transmissão 1, 2

A placa interna e o pino quebraram por fadiga enquanto a bucha sofreu fratura frágil intergranular. Provavelmente a placa interna ou o pino começaram a romper por fadiga causando sobrecarga nos outros componentes da corrente.

## Conclusão

- 1) Os três componentes da corrente apresentam problemas de fabricação:
  - A bucha apresenta descontinuidade de tamanho exagerado e quantidade exagerada de austenita retida.
  - A placa interna apresenta microestrutura heterogênea indicativa de tratamento térmico mal feito, além de descarbonetação superficial.
  - O pino apresenta estrutura homogênea, mas não foi cementado, como indicam as melhores práticas de fabricantes de correntes de transmissão.
- 2) A placa interna rompeu por fadiga nucleada na região de acoplamento à bucha
- 3) O pino rompeu por fadiga nucleada em uma região de amassamento.
- 4) A bucha rompeu frágil com fratura intergranular.

## Prof. Dr. André Paulo Tschiptschin

## Referências

- 1. D.I.D General catalog http://www.did-daido.co.jp/documents/en/catalog/didcatalog.pdf
- 2. SKF Transmission Chain http://www.skf.com/files/896759.pdf