LABORATÓRIO DE SISTEMAS DE POTÊNCIA

EXPERIÊNCIA: CURTO-CIRCUITO - 2014

		RELATORIC)	NOTA	
Alunos:	1)	 			
	2)	 			
Professo	or:		Data	1:	

1. OBJETIVOS DA EXPERIÊNCIA

- Aplicação de programas de curto-circuito;
- Familiarização com o uso de programas de curto-circuito;
- Familiarização com resultados de simulações de curto-circuito;
- Noções dos modelos utilizados pelos programas.

Comentários: Os sistemas de transmissão interligados ou as redes de distribuição têm milhares de nós, necessitando de programas de computador de grande porte para possibilitar a simulação do desempenho operacional ou de eventos que podem ocorrer como os curtos circuitos.

Os três estudos clássicos necessários para o dimensionamento dos sistemas interligados são os estudos de curto-circuito, fluxo de potência e de estabilidade.

As simulações de curto circuito são uma das mais relevantes e freqüentes em estudos de planejamento da expansão e principalmente dos estudos operacionais.

2. APLICAÇÃO DOS PROGRAMAS DE CURTO-CIRCUITO COMENTÁRIOS GERAIS

Introdução

Os resultados dos programas de curto circuito são utilizados para:

- a) especificação de equipamentos chaves, disjuntores, pára-raios, através da verificação dos maiores níveis de correntes de curto circuito ou de sobretensões:
- b) ajuste e coordenação da proteção;
- c) análise (expedita) de desempenho de redes (exemplo: sobretensões em manobras de linhas ou bancos de capacitores).

Exemplo

Na energização de bancos de capacitores ou de uma linha de transmissão em vazio, os níveis de tensões podem ser estimados por um modelo simples do tipo:

 $E_{0+} = E_0 / (1 - Q / Scc)$: tensão no ponto de conexão logo após o fechamento

da chave (pu);

E₀: tensão do barramento antes da conexão da LT ou

banco de capacitores (pu);

Q: potência reativa, na tensão nominal do sistema (da LT

ou banco de capacitores) (MVAr);

Scc: potência de curto-circuito trifásico no ponto de

instalação do banco (MVA).

Considerando Scc = 500 MVA e um banco de capacitores de 40 MVA, a tensão final estimada no ponto de conexão é de:

$$E_{0+} = 1/(1-40/500) * E_0 = 1,087 pu.$$

Se o nível de curto circuito fosse a metade apareceriam sobretensões maiores:

$$E_{0+} = 1/(1-40/250) * E_0 = 1,190 pu.$$

Níveis de curto circuito:

- a) Vantagens e desvantagens de níveis de curto circuito muito elevados: sistema "forte"
- b) Onde s\(\tilde{a}\) encontrados n\(\tilde{v}\)eis de curto circuito muito elevados ou muito baixos?

PEA -2406		

3. CARACTERÍSTICAS E PARTICULARIDADES DOS PROGRAMAS DE CURTO-CIRCUITO

- a) Métodos de Solução (componentes sequenciais ou de fase; métodos mistos)
 - Método das componentes simétricas

Quando a modelagem for aplicável (não há impedâncias mútuas entre as sequências): caso de redes com linhas de transmissão com impedâncias equilibradas (linhas transpostas).

O método das componentes simétricas apresenta condições de contorno apenas para defeitos singelos.

Modelagem trifásica (componentes de fases e neutro)

Aplicável para o caso geral (programa ATP).

Modelagem mista

b) Etapas dos programas de Curto circuito

- Leitura de impedâncias (pu ou ohm)
- Cálculo dos valores pu
- Montagem da Matriz Y_{nodal}
- Montagem parcial ou total da matriz Z_{nodal} (cálculo coluna a coluna)
- Cálculo da corrente de curto circuito através das condições de contorno (modelagem por componentes simétricas)
- Cálculos das contribuições de correntes e cálculo das tensões durante o defeito
- Superposição com as condições de pré-falta

c) Comentários sobre os dados

Dados de Barras

Identificação da barra, coordenadas geográficas, tensão nominal, cargas, elementos shunt (capacitores e reatores)

Dados de ligações (sequências positiva e zero)

- dados dos parâmetros elétricos as linhas de transmissão (comprimento, r₁, x₁, c₁, r₀, x₀, c₀);
- ligações e taps dos transformadores. Parâmetros elétricos (r_t, x_t) normalmente são fornecidos na base da potência nominal do transformador);
- dados de geradores: potência nominal e reatâncias (xd", xd' e xd).

Condição pré falta – considerar ou não

Considerar, se causar impacto.

• Impedâncias Mútuas

As impedâncias mútuas de seqüência zero podem ser significativas para circuitos paralelos próximos.

 Representações de elementos "shunt" (reatores, capacitores e capacitâncias das LTs)

Só devem ser representados quando se for fazer a superposição com as condições em regime.

Resistências das linhas

Muitos estudos de curto circuito em redes de transmissão não representam as resistências das linhas de transmissão. Veja por que:

```
Linhas de 500 kV \rightarrow x/r .> 10 (4 condutores por fase)

Linhas de 230 kV \rightarrow x/r da ordem de 5 (1 condutor por fase)

Linhas de 138 kV \rightarrow x/r da ordem de 2 a 3 (1 condutor por fase)

Linhas de 13.8 kV \rightarrow x/r da ordem de 2 a 1/4
```

d) Estudos de Curto Circuito

Barras em Curto Circuito

Função do estudo.

Resistências de Defeito

Ajuste da proteção para curto circuito com menores correntes de curto circuito. Pode impactar muito a atuação da proteção.

Defeitos de alta impedância são mais difíceis de serem detectados.

Cálculo das Contribuições

Importante para a analisar a seletividade da proteção: trata-se dos fluxos de corrente no momento do curto circuito.

• Tipos de Defeitos

Aqueles que dão correntes de curto circuito máxima e mínima e fatores de sobretensão máximos.

Variáveis de interesse / tipo de defeito

- Defeitos trifásicos e dupla fase: apenas as correntes de defeito são importantes (as tensões resultam inferiores às nominais):
- Defeitos fase—terra e dupla fase a terra correntes e fatores de sobretensão.

O que é fator de sobretensão (FS)?

Fator de sobretensão é o máximo valor de tensão, em pu, nas fases sãs, durante um curto circuito.

Exemplo: para curto circuito fase terra o fator de sobretensão aumenta conforme o sistema for menos aterrado.

Nível (potência) de curto-circuito

$$S_{cc} = \sqrt{3}V_{linha}I_{cc}$$

- Níveis de curto-circuito em função do tempo e modelagem de geradores e motores de indução
 - Valor da corrente de curto no instante inicial do defeito;
 - Curto no instante da abertura;
 - Curto a regime.

4. CASO REDE DE TRANSMISSÃO - 500 kV

4.1 Dados

- a) gerador \rightarrow 4 unidades de 250 MVA 13,8 kV ; x_d "d = 0,2 pu ; x_o =0,2 pu ; impedância de aterramento x_g = 0 (rigidamente aterrado);
- b) transformador 13,8/500 kV → 4 unidades de 250 MVA; x_t = 0,1 pu;
 x_o = 0,1 pu, ligação Delta / Yaterrado;
- c) linha de transmissão \rightarrow comprimento 400 km $r_1 = 0.025$ ohm/km; $x_1 = 0.31$ ohm/km; $c_1 = 13.0$ nF/km; $r_0 = 0.300$ ohm/km; $x_0 = 1.30$ ohm/km; $c_0 = 7.0$ nF/km.

4.2 Análises Preliminares

- Analisar a topologia do Caso 1;
- Fazer os diagramas de sequências para curto fase-terra e trifásico desprezando-se as resistências das linhas de transmissão;
- Fazer cálculo manual desta condição de curto circuito (sem resistências) e comparar com os resultados do programa;
- Analisar e comentar resultados do caso teste, analisando comparativamente os seguintes itens:
 - Tipo de Curto-circuito: discutir qual o mais severo.
 - Local de curto: Curto-circuito próximo ao gerador e curto no meio da LT ou no fim de linha;
 - o Influência das resistências das linhas de transmissão;
 - Influência das ligações do transformador;
 - o Influência do número de unidades geradoras.

6

Tabela 1 - Caso 1

Rede sem resistências, sem capacitâncias e sem impedância de aterramento dos geradores

Barra em curto– circuito	Tipo de Defeito	Trifásico	Dupla fase	Fase-terra	Dupla fase- terra
	loo (kA)				B:
1	lcc (kA)				C:
	ES (pu)			B:	
	FS (pu)	-	-	C:	
	loo (kA)				B:
2	lcc (kA)				C:
2	FS (pu)	-	-	B:	
				C:	
	lcc (kA)				B:
3	icc (ka)				C:
	FS (pu)	_	_	B:	
F3 (pt	i o (pu)	_	_	C:	
	lcc (kA)				B:
4	icc (KA)				C:
	ES (=::)			B:	
	FS (pu)	_	_	C:	

Análise de resultados

a)	Tipo e defeito que ocasiona a maior ou menor corrente, separadamente para a barra 1, 2, 3 ou 4;
••••	
b)	Tipo de defeito que ocasiona a maior sobretensão, separadamente para a barra 1 ou 2 ou 3 ou 4.
•••••	
c)	Cálculo das potências de curto-circuito trifásico e fase-terra (pontos 3 e 4)
,	Decaimento dos níveis de curto circuito para defeitos (trifásico e fase-terra para defeitos se afastando dos geradores)

Tabela 2 - Caso 2

Idêntico ao Caso 1, acrescentando somente a resistência às linhas de transmissão

Barra em curto	Tipo de Defeito	Trifásico	Fase-terra
	Icc (kA)		
3	FS (pu)	-	B:
			C:
	Icc(kA)		
4	FS (pu)		B:
		-	C:

Comentar a influência das resistências das linhas de transmissão para defeito nas barras 3 e 4 (defeito trifásico e fase-terra).

Tabela 3 - Caso 3 $\mbox{Gerador com aterramento resistivo igual a 2} \ \Omega \mbox{ (a partir do Caso 2)}$

Barra em curto	Tipo de Defeito	Trifásico	Fase-terra
	Icc (kA)		
1	FS (pu)	-	B:
			C:
	Icc (kA)		
2	FS (pu)		B:
		-	C:

Comentar a influência de aterrar o gerador.	

Tabela 4 - Caso 4

Influência da ligação do transformador no defeito fase-terra (a partir do Caso 2)

Primeiramente analisar os defeitos trifásicos e ver que estes não se alteram com a ligação do transformador e comentar o porquê. Verificar então os resultados do defeito fase-terra.

Defeito fase-terra

Barra em curto	Tipo de ligação do trafo	Delta- Yaterrado	Delta-Delta	Yaterrado- Delta	Yaterrado- Yaterrado
	Icc (kA)				
2	FS (pu)	B:	B:	B:	B:
		C:	C:	C:	C:
	Icc (kA)				
4	FS (pu)	B:	B:	B:	B:
		C:	C:	C:	C:

Comentários		

Tabela 5 - Caso 5

Influência de aumentar em 50% o número de unidades geradoras (a partir do Caso 2)

Barra em curto	Tipo de Defeito	Trifásico	Fase-terra
	Icc (kA)		
2	EQ	_	B:
	FS	-	C:
	lcc (kA)		
3	FS		B:
		-	C:
	Icc (kA)		
4			B:
	FS	-	C:

comentário: variação porcentual dos níveis de curto-circuito entre o Caso 2 Caso 5.	
	• • • •
•••••••••••••••••••••••••••••••••••••••	• • • •

<u>PEA -2406</u>

Tabela 6

Avaliação das correntes assimétricas (a partir do Caso 2)

(Fator = Icc_ass / Icc_sim)

Barra em curto	Grandeza	Valor
	Imped. de entrada - seq. zero (Z0 [Ω])	
	Imped. de entrada - seq. direta (Z1 [Ω])	
	Relação (2X1 + X0) / (2R1 + R0)	
	Relação X1 / R1	
4	Fator de assimetria - defeito FT (Tab. 7)	
	Fator de assimetria - defeito 3F (Tab. 7)	
	Icc_ass - defeito FT (kA)	
	Icc_ass - defeito 3F (kA)	

Tabela 7 - Valores para o fator de assimetria

		1		1		1					
X/R ≤	Fator										
0,25	1,000	1,25	1,029	2,30	1,085	4,10	1,212	6,80	1,360	15,00	1,550
0,30	1,004	1,30	1,030	2,40	1,090	4,20	1,220	7,00	1,362	16,00	1,560
0,40	1,005	1,35	1,033	2,50	1,104	4,30	1,225	7,25	1,372	17,00	1,570
0,50	1,006	1,40	1,035	2,60	1,110	4,40	1,230	7,50	1,385	18,00	1,580
0,55	1,007	1,45	1,037	2,70	1,115	4,50	1,235	7,75	1,391	19,00	1,590
0,60	1,008	1,50	1,040	2,80	1,123	4,60	1,249	8,00	1,405	20,00	1,600
0,65	1,009	1,55	1,043	2,90	1,130	4,70	1,255	8,25	1,410	22,50	1,610
0,70	1,010	1,60	1,045	3,00	1,140	4,80	1,260	8,50	1,420	25,00	1,615
0,75	1,011	1,65	1,047	3,10	1,142	4,90	1,264	8,75	1,425	27,75	1,625
0,80	1,012	1,70	1,050	3,20	1,150	5,00	1,270	9,00	1,435	30,00	1,630
0,85	1,013	1,75	1,055	3,30	1,155	5,20	1,275	9,25	1,440	35,00	1,636
0,90	1,015	1,80	1,060	3,40	1,162	5,40	1,290	9,50	1,450	40,00	1,648
0,95	1,018	1,85	1,063	3,50	1,170	5,60	1,303	9,75	1,455	45,00	1,653
1,00	1,020	1,90	1,065	3,60	1,175	5,80	1,310	10,00	1,465	50,00	1,659
1,05	1,023	1,95	1,068	3,70	1,182	6,00	1,315	11,00	1,480	55,00	1,660
1,10	1,025	2,00	1,070	3,80	1,190	6,20	1,324	12,00	1,500	60,00	1,680
1,15	1,026	2,10	1,075	3,90	1,192	6,40	1,335	13,00	1,515	8	1,732
1,20	1,028	2,20	1,080	4,00	1,210	6,60	1,350	14,00	1,525		

5. REDES COM DUPLA ALIMENTAÇÃO

Preparar e desenvolver um estudo que tenha alimentação nas duas pontas, ou seja acrescentar à barra 4 duas unidades geradoras e seus transformadores elevadores, cujas características são idênticas às do gerador anterior. Acrescentar também uma segunda linha de transmissão igual à primeira, entre as barras 2 e 3 e entre as barras 3 e 4.

Analisar este caso de curto-circuito, apontando as principais diferenças em relação ao estudo do item 4 - Caso 2.

Tabela 8 - Dupla alimentação

Barra em curto	Tipo de Defeito	Trifásico	Fase-terra
	lcc (kA)		
3	FS (pu)	-	B:
			C:
	Icc(kA)		
4	FS (pu)		B:
		-	C:

alise:	