Lista de exercícios

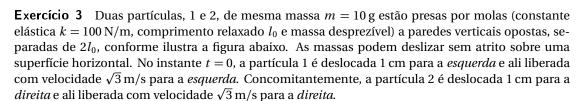
Oscilações harmônicas

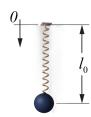
Exercício 1 A figura abaixo ilustra um bloco de massa M=1 kg em repouso sobre uma superfície sem atrito, conectado a uma mola de constante elástica k=4,4 N/m. Um outro corpo, de massa m=0,1 kg, segue em direção ao bloco com velocidade constante $v_0=10$ m/s e, ao colidir instantaneamente com ele, gruda nele (uma colisão totalmente inelástica, portanto). Após a colisão, os dois corpos oscilam como um só. Escolhendo t=0 como o instante da colisão, responda:

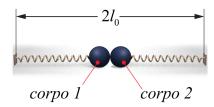
- (a) Qual é a velocidade do sistema m + M imediatamente após a colisão?
- (b) Identifique as condições iniciais.
- (c) Qual é a equação do movimento? Trata-se de um oscilador harmônico?
- (d) Qual é a frequência angular do movimento?
- (e) Ajuste $x(t) = A\cos(\omega t + \phi)$ às condições iniciais.
- (f) Qual é a velocidade v(t) do sistema m + M?
- (g) Qual é a energia mecânica do sistema como uma função do tempo?

Exercício 2 Um objeto de massa $m=0.1\,\mathrm{kg}$ está suspenso do teto por uma mola de constante elástica $k=2\,\mathrm{N/m}$ e comprimento relaxado $l_0=1\,\mathrm{m}$, cuja massa é desprezível. Em t=0, o objeto é solto em repouso, com a mola relaxada, sob a ação da aceleração da gravidade $g=10\,\mathrm{m/s^2}$. Escolhendo como sistema de referência o eixo 0z orientado para baixo, com origem no teto, responda:

- (a) Qual é a expressão da energia potencial gravitacional?
- (b) Qual é a expressão da energia potencial elástica?
- (c) Qual é a expressão da energia potencial U(z)?
- (d) Esboce o gráfico de U(z).
- (e) Qual é a posição de equilíbrio?
- (f) Identifique as condições iniciais.
- (g) Qual é a equação diferencial do movimento?
- (h) Determine z(t), sabendo que $z(t) = A\cos(\omega t + \phi) + B$ é uma solução da equação do movimento, onde $B = \frac{mg}{k} + l_0$.



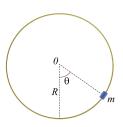




- (a) Identifique as condições iniciais das partículas 1 e 2.
- (b) Ajuste as condições inicias para obter $x_1(t)$ e $x_2(t)$.
- (c) Que condição deve ser satisfeira para que haja colisão em algum t > 0?
- (d) As partículas colidem? Se sim, em que instante?
- (e) Qual é a energia total do sistema?

Exercício 4 Uma conta de massa m enfiada num aro vertical fixo de raio $R=2.5\,\mathrm{m}$, no qual desliza sem atrito, desloca-se em torno do ponto mais baixo, de tal forma que o ângulo θ permanece pequeno. Considere que a aceleração da gravidade é $g=10\,\mathrm{m/s^2}$.

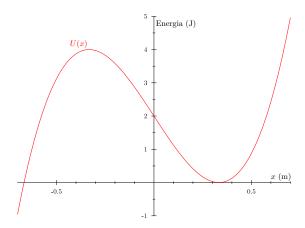
- (a) Mostre que o movimento é harmônico. Dica: θ é dito "pequeno" quando é possível fazer a aproximação sen $\theta \approx \theta$.
- (b) Qual é a expressão do período da oscilação?
- (c) Considere a condição inicial $\theta(0) = 0.1$ rad e $\dot{\theta}(0) = 0$ rad/s. Encontre $\theta(t)$.



Exercício 5 Um objeto de massa m cai de uma altura h sobre o prato de uma balança de molas e fica grudado no prato. A constante da mola é k e as massas da mola e do prato podem ser desprezadas.

- (a) Qual é a amplitude de oscilação do prato?
- (b) Qual é a energia total da oscilação?

Exercício 6 Uma partícula de massa m = 3 kg pode se deslocar em uma dimensão, submetida a um potencial dado por $U(x) = 27x^3 - 9x + 2$, em unidades do SI (figura abaixo).



- (a) Determine a expressão da força atuando sobre a partícula em função da posição x.
- (b) Determine a equação do movimento.
- (c) Calcule as posições de equilíbrio da partícula e indique o tipo de cada uma, ou seja, se é um ponto de equilíbrio estável, instável ou indiferente.

- (d) Qual seria uma boa escolha de energia mecânica para que esse sistem oscile de modo aproximadamente harmônico?
- (e) Aproxime o potencial U(x) por um potencial harmônico $U'(x) = U_0 + \frac{1}{2}k(x x_0)^2$ nas imediações do ponto de equilíbrio estável $x = x_0$. Isto é, determine x_0 , U_0 e k desta aproximação.
- (f) Qual é a frequência angular desse movimento periódico?
- (g) Se a partícula for deixada na condição de equilíbrio estável com velocidade de 1 m/s, ela realiza um movimento periódico? Justifique. Esse movimento é harmônico? Explique.

Respostas

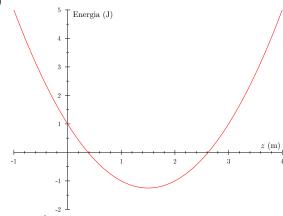
Exercício 1

- (a) $0.91 \,\mathrm{m/s}$
- (b) x(0) = 0 e $\dot{x}(0) = 0.91$ m/s
- (c) $\ddot{x} + 4x = 0$
- (d) $\omega = 2 \text{ rad/s}$
- (e) $x(t) = -0.45\cos(2t + \pi/2)$
- (f) $v(t) = 0.90 \operatorname{sen}(2t + \pi/2)$
- (g) E(t) = 0.44 J = constante

Exercício 2

- (a) $U_g(z) = -z$
- (b) $U_e(z) = (z-1)^2$
- (c) $U(z) = z^2 3z + 1$

(d)



- (e) $z_0 = 3/2$
- (f) $z(0) = l_0 e \dot{z}(0) = 0$
- (g) $\ddot{z} + 20z 30 = 0$
- (h) $z(t) = -\frac{1}{2}\cos(2\sqrt{5}t) + \frac{3}{2}$

Exercício 3

- (a) Tomando o eixo x horizontal, para a direita, com a origem no ponto de contato das partículas: $x_1(0) = -0.01 \text{ m}, \ \dot{x}_1(0) = -\sqrt{3} \text{ m/s}, \ x_2(0) = +0.01 \text{ m e } \dot{x}_2(0) = +\sqrt{3} \text{ m/s}$ (b) $x_1(t) = -0.02 \cos\left(100t - \frac{\pi}{3}\right) \text{ e } x_2(t) = -x_1(t).$ (c) $x_1(t_\star) = x_2(t_\star)$, onde t_\star é o instante da colisão.

- (d) A colisão ocorre em $t_{\star} = \frac{\pi}{120}$ s.

(e) 0,04 J

Exercício 4

(a) A equação do movimento aproximado é $\ddot{\theta} + \frac{g}{R}\theta = 0$, característica do oscilador harmônico.

(b)
$$T = 2\pi \sqrt{R/g}$$

(b)
$$T = 2\pi \sqrt{R/g}$$

(c) $\theta(t) = 0.1 \cos(2t)$

(a)
$$A = \frac{mg}{k} \sqrt{1 + \frac{2kh}{mg}}$$

Exercício 5
(a)
$$A = \frac{mg}{k} \sqrt{1 + \frac{2kh}{mg}}$$
(b) $E = mgh + \frac{(mg)^2}{2k}$

Exercício 6

(a)
$$F = -81x^2 + 9$$

(b)
$$\ddot{x} + 27x^2 - 3 = 0$$

- (c) $x_0 = -1/3$ (instável) e $x_0 = +1/3$ (estável)
- (d) E=0.1 J, por exemplo. O sistema oscila harmonicamente em torno de $x_0=1/3$. (e) $U'(x)=21\left(x-\frac{1}{3}\right)^2$ (f) $\omega=3.74$ rad/s

(e)
$$U'(x) = 21(x - \frac{1}{2})^2$$

- (g) A energia mecânica é de E=1,5 J, de modo que o intervalo em x onde a condição $U(x) \ge E$ vale é limitado. Além disso, a força é sempre restauradora (aponta sempre para a posição de equilíbrio). Logo, o movimento é periódico. Porém, a oscilação não é harmônica, pois o potencial U(x) diverde da dependência $(x - x_0)^2$.