Introductory Statistics
with R

Peter Dalgaard

Springer

Statistics and Computing

Series Editors:
J. Chambers
W. Eddy

W. Hirdle

S. Sheather

L. Tierney

Springer
New York
Berlin
Heidelberg
Hong Kong
London

Milan

Paris

Tokyo

Statistics and Computing

Dalgaard: Introductory Statistics with R.

Gentle: Elements of Computational Statistics.

Gentle: Numerical Linear Algebra for Applications in Statistics.

Gentle: Random Number Generation and Monte Carlo Methods.
Hirdle/Klinke/Turlach: XploRe: An Interactive Statistical Computing Environment.
Krause/Olson: The Basics of S and S-Prus, 3rd Edition.

Lange: Numerical Analysis for Statisticians.

Loader: Local Regression and Likelihood.

O Ruanaidh/Fitzgerald: Numerical Bayesian Methods Applied to Signal Processing.
Pannatier: VARIOWIN: Software for Spatial Data Analysis in 2D.

Pinheiro/Bates: Mixed-Effects Models in S and S-PLUS.

Venables/Ripley: Modern Applied Statistics with S, 4th Edition.

Venables/Ripley: S Programming.

Wilkinson: The Grammar of Graphics.

Peter Dalgaard

Introductory Statistics
with R

With 48 Illustrations

ey,
&) Springer

Peter Dalgaard

Department of Biostastics
University of Copenhagen
Blegdamsvej 3
2200 Cph. N Copenhagen
Denmark
p.dalgaard @biostat.ku.dk
Series Editors:
J. Chambers W. Eddy W. Hiirdle
Bell Labs, Lucent Technologies ~ Department of Statistics Institut fiir Statistik und Okonometrie
600 Mountain Avenue Camnegie Mellon University Humboldt-Universitiit zu Berlin
Murray Hill, NJ 07974 Pittsburgh, PA 15213 Spandauer Str. 1
USA USA D-10178 Berlin
Germany

S. Sheather L. Tiemey
Australian Graduate School School of Statistics

of Management University of Minnesota
University of New South Wales Vincent Hall
Sydney, NSW 2052 Minneapolis, MN 55455
Australia USA

Library of Congress Cataloging-in-Publication Data
Dalgaard, Peter.
Introductory statistics with R / Peter Dalgaard.
p. cm. — (Statistics and computing)
Includes bibliographical references and index.
ISBN 0-387-95475-9 (softcover : alk. paper)
1. Statistics—Data processing. 2. R (Computer program language) L Title, II. Series.
QA276.4 .D33 2002
519.5—dc21 2002020947

ISBN 0-387-95475-9 Printed on acid-free paper.

© 2002 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York,
NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed in the United States of America.
987654321 SPIN 10874037
Typeset from the author’s INTEX files.
WWw.springer-ny.com

Springer-Verlag New York Berlin Heidelberg
A member of BertelsmannSpringer Science+Business Media GmbH

To Grete. For putting up with me for so long.

This page intentionally left blank

Preface

R is a statistical computer program, made available through the Internet
under the General Public License (GPL). That is, it is supplied with a li-
cense that allows you to use it freely, distribute it, or even sell it, as long
as the receiver has the same rights and the source code is freely available.
It exists for Microsoft Windows 95 or later, for a variety of Unix and Linux
platforms, and for the Apple Macintosh (OS versions newer than 8.6).

R provides an environment in which you can perform statistical analysis
and produce graphics. It is actually a complete programming language,
although that is only marginally described in this book. Here we content
ourselves with learning the elementary concepts and seeing a number of
cookbook examples.

R is designed in such a way that it is always possible to do further
computations on the results of a statistical procedure. Furthermore, the
design for graphical presentation of data allows both no-nonsense meth-
ods, for example plot (x,y), and the possibility of fine-grained control
of the output appearance. The fact that R is based on a formal computer
language gives it tremendous flexibility. Other systems present simpler
interfaces in terms of menus and forms, but often the apparent user-
friendliness turns into a hindrance in the longer run. Although elementary
statistics is often presented as a collection of fixed procedures, analysis
of moderately complex data requires ad-hoc statistical model building,
which makes the added flexibility of R highly desirable.

viii Preface

R owes its name to typical Internet humour. You may be familiar with
the programming language C (whose name is a story in itself). Inspired
by this, Becker and Chambers chose in the early 1980s to call their newly
developed statistical programming language S. This language was further
developed into the commercial product S-PLUS, which by the end of the
decade was in widespread use among statisticians of all kinds. Ross Thaka
and Robert Gentleman from the University of Auckland, New Zealand,
chose to write a reduced version of S for teaching purposes, and what was
more natural than choosing the immediately preceding letter? Ross” and
Robert’s initials may also have played a role.

In 1995 Martin Maechler persuaded Ross and Robert to release the source
code for R under the GPL. This coincided with the upsurge in open source
software spurred by the Linux system. R soon turned out to fill a gap for
people like me who intended to use Linux for statistical computing but
had no statistical package available at the time. A mailing list was set up
for the communication of bug reports and discussions of the development
of R.

In August 1997 I was invited to join an extended international core team
whose members collaborate via the Internet and which has controlled the
development of R since then. The core team was subsequently expanded
several times and currently includes 15 members. On February 29, 2000,
version 1.0.0 was released. As of this writing, the current version is 1.5.0.

R implements a dialect of the S language. There are some differences, but
in everyday use the two are very similar. However, some functions do
differ, often because the R version tries to simplify things for the user. The
differences are not all that big, but it would be silly not to take advantage
of the improvements in a book at this level, so although the book might be
used as an introduction to S-PLUS as well as R, the reader is urged to use
R while working through it.

The book is based upon a set of notes developed for the course in Ba-
sic Statistics for Health Researchers at the Faculty of Health Sciences of
the University of Copenhagen. This course has a primary target of stu-
dents for the Ph.D. degree in medicine. However, the material has been
substantially revised and I hope that it will be useful for a larger audi-
ence, although some biostatistical bias remains, particularly in the choice
of examples.

This book is not a manual for R. The idea is to introduce a number of basic
concepts and techniques that should allow the reader to get started with
practical statistics.

In terms of the practical methods, the book covers a reasonable curriculum
for first-year students of theoretical statistics as well as for engineering
students. These groups will eventually need to go further and study

Preface ix

more complex models as well as general techniques involving actual
programming in the R language.

For fields where elementary statistics is taught mainly as a tool, the book
goes somewhat further than what is commonly taught at the under-
graduate level. Multiple regression methods or analysis of multifactorial
experiments are rarely taught at that level but may quickly become essen-
tial for practical research. I have collected the simpler methods near the
beginning to make the book readable also at the elementary level. How-
ever, in order to keep technical material together, Chapter 1 does include
material that some readers will want to skip.

The book is thus intended to be useful for several groups, but I will not
pretend that it can stand alone for any of them. I have included brief
theoretical sections in connection with the various methods, but more
than as teaching material, these should serve as reminders or perhaps as
appetizers for readers who are new to the world of statistics.

Acknowledgements

Obviously, this book would not have been possible without the efforts of
my friends and colleagues on the R Core Team, the authors of contributed
packages, and many of the correspondents of the e-mail discussion lists.

I'm deeply grateful for the support of my colleagues and co-teachers
Lene Theil Skovgaard, Bendix Carstensen, Birthe Lykke Thomsen, Helle
Rootzen, Claus Ekstrem, and Thomas Scheike, as well as the feedback
from multiple students enrolled in the course in basic statistics for health
science researchers. In addition, several people, including Bill Venables,
Brian Ripley, and David James, have offered valuable advice on the
manuscript.

Finally, profound thanks are due to the free software community at large.
The R project would not have been possible without their effort. For the
typesetting of this book TgX, I&TgX, and the consolidating efforts of the
IATEX2e project have been indispensable.

Peter Dalgaard
Copenhagen
May 2002

This page intentionally left blank

Contents

Preface

1 Basics
1.1
1.2

Firststeps
1.1.1 An overgrown calculator
1.1.2 Assignments
1.1.3 Vectorized arithmetic

1.1.4
1.1.5

1.2.1
1.2.2
1.2.3
124
1.2.5
1.2.6
1.2.7
1.2.8
1.29
1.2.10
1.2.11
1.2.12
1.2.13
1.2.14

Standard procedures
Graphics
R language essentials
Expressions and objects
Functions and arguments . . .
Vectors
Missing values
Functions that create vectors . .
Matrices and arrays
Factors
Lists
Data frames
Indexing
Conditional selection
Indexing of data frames
subset and transform. . .

Grouped data and data frames

NN W W =

10

10
12
13
13
14
16
17
18
19
20
21
22
23

Xii

Contents

1215 Sorting o
1.2.16 Implicitloops
1.3 Thegraphicssubsystem
131 Plotlayout
1.3.2 Building a plot from pieces.
133 Using par
1.3.4 Combiningplots.
14 Rprogramming
141 Flowcontrol
14.2 Classes and generic functions
15 Sessionmanagement
151 Theworkspace.
152 Gettinghelp L.
153 Packages
154 Builtsindata 00 0L
155 attach and detach
1.6 Dataentry.
1.6.1 Reading fromatextfile.
1.6.2 Thedataeditor
1.6.3 Interfacing to other programs
1.7 Exercises,

Probability and distributions
21 Randomsampling
2.2 Probability calculations and combinatorics
2.3 Discrete distributions
24 Continuous distributions
2.5 The built-in distributionsinR
251 Densities e
2.5.2 Cumulative distribution functions
253 Quantiles L
254 Randomnumbers
26 Exercises

Descriptive statistics and graphics

3.1 Summary statistics for a singlegroup

3.2 Graphical display of distributions
321 Histograms.
3.2.2 Empirical cumulative distribution
323 QQplots o oo
324 Boxplots

3.3 Summary statisticsby groups

3.4 Graphics for grouped data
341 Histograms.
3.4.2 Parallelboxplots.

24
26
27
27
29
30
30
32
32
34
34
34
36
37
37
38
39
39
42
43
44

45
45
46
47
48
49
49
52
53
54
55

57
57
61
61
63
64
65
65
67
67
69

3.5

3.6

3.7

Contents

343 Stripcharts o o oL
Tables e
3.5.1 Generatingtables
3.5.2 Marginal tables and relative frequency
Graphical display of tables
36.1 Barplots
362 Dotcharts
363 Piecharts
Exercises

One- and two-sample tests

41
4.2
4.3
44
4.5
4.6
4.7
4.8

One-samplettest
Wilcoxon signed-rank test
Two-samplettest
Comparison of variances
Two-sample Wilcoxontest
Thepairedttest
The matched-pairs Wilcoxontest
Exercises

Regression and correlation

5.1
52
5.3
54

55

Simple linear regression
Residuals and fitted values
Prediction and confidencebands
Correlation
5.4.1 Pearsoncorrelation
542 Spearman’sp.
543 Kendall'sT
Exercises

ANOVA and Kruskal-Wallis

6.1 One-way analysis of variance
6.1.1 Pairwise comparisons and multiple testing
6.1.2 Relaxing the variance assumption.
6.1.3 Graphical presentation
6.14 Bartlett’'stest
6.2 Kruskal-Wallistest
6.3 Two-way analysis of variance
6.3.1 Graphics for repeated measurements
6.4 TheFriedmantest
6.5 The ANOVA table in regression analysis
6.6 Exercises
Tabular data
71 Singleproportions

xiii

70
72
72
74
75
75
78
78
79

81
81
85
86
89
89
90
92
93

95
95
99
103
106
106
109
109
110

111
111
115
117
118
120
120
121
124
124
126
127

129
129

Xiv

10

11

Contents

7.2
73
74
7.5

Two independent proportions
k proportions, test fortrendo
rxctables oo
Exercises 0.

Power and the computation of sample size

8.1

8.2
8.3
8.4
8.5

The principles of power calculations
8.1.1 The power of one-sample and paired ¢ tests . . .
8.1.2 Power of two-samplettest.
8.1.3 Approximatemethods
8.14 Power of comparisons of proportions.
Two-sample problems
One-sample problems and paired tests
Comparison of proportions
Exercises

Multiple regression

9.1
9.2
9.3
9.4

Plotting multivariatedata
Model specification and output
Modelsearch
Exercises

Linear models

10.1
10.2
10.3
10.4
10.5
10.6
10.7

10.8
10.9

Polynomial regression
Regression through the origin
Design matrices and dummy variables
Linearity over groups
Interactions o oL
Two-way ANOVA with replication
Analysis of covariance 0L
10.7.1 Graphical description
10.7.2 Comparison of regression lines
Diagnostics oL
Exercises

Logistic regression

11.1
11.2

11.3
114
11.5
11.6

Generalized linearmodels
Logistic regression on tabulardata
11.2.1 The analysis of deviance table
11.2.2 Connection to testfortrend
Logistic regression usingraw data.
Prediction
Model checking
Exercises

131
133
135
138

139
139
140
142
142
143
143
145
146
146

149
149
151
154
157

159
160
162
164
166
170
171
172
173
177
182
188

191
192
193
197
199
201
203
204
208

Contents

12 Survival analysis
12.1 Essentialconcepts
12.2 Survivalobjects
12.3 Kaplan-Meier estimates.
124 Thelog-ranktest
12.5 The Cox proportional hazards model
12.6 Exercises

A Obtaining and installing R
B Data sets in the ISwR package
C Compendium

Index

XV

211
211
212
213
216
218
220

221

225

247

261

This page intentionally left blank

1

Basics

The purpose of this chapter is to get you started using R. It is assumed that
you have a working installation of the software and of the ISwR package
that contains the data sets for this book. Instructions for obtaining and
installing the software are given in Appendix A.

The text that follows describes R version 1.5.0. As of this writing that is
the latest version of R. As far as possible I present the issues in a way that
is independent of the operating system in use and assume that the reader
has the elementary operational knowledge to select from menus, move
windows around, etc. I do, however, make exceptions where I am aware
of specific difficulties with a particular platform or specific features of it.

1.1 First steps

This section gives an introduction to the R computing environment and
walks you through its most basic features.

Starting R is straightforward, but the method will depend on your com-
puting platform. You will be able to launch it from a system menu, by
double-clicking an icon, or by entering the command “R” at the system
command line. This will either produce a console window or cause R to
start up as an interactive program in the current terminal window. In ei-
ther case, R works fundamentally by the question-and-answer model: You

2 1. Basics

E @ Copyeight 2001, The X Develom
wersion 1,40 (Z001-12-18)

or oscie demss, e
for 4 WIKL brossss
tosooquit .

= pletirners (11001

marmi1000)

T T T T
0 200 400 GO0 800 1000
_' = |

|
| | & 5109 [RRow 78

Figure 1.1. Screen dump of R for Windows.

enter a line with a command and press Enter (<—). Then the program does
something, prints the result if relevant, and asks for more input. When R
is ready for input, it prints out its prompt, a “>". It is possible to use R as a
text-only application, and also in batch mode, but for the purposes of this

chapter, I assume that you are sitting at a graphical workstation.

All the examples in this book should run if you type them in exactly as
printed, provided that you have the ISwR package not only installed but
also loaded into your current search path. This is done by entering

> library (ISwR)

at the command prompt. You do not need to understand what the
command does at this point. It is explained in Section 1.5.3.

For a first impression of what R can do, try typing the following;:

> plot (rnorm(500))

This command draws 500 numbers at random from the normal distri-
bution (rnorm = random normal) and plots them in a pop-up graphics
window. The result on a Windows machine can be seen on Figure 1.1.

Of course, you are not expected at this point to guess that you would ob-
tain this result in that particular way. The example is chosen because it
brings several components of the user interface in action. Before the style
of commands will fall naturally, it is necessary to introduce some concepts
and conventions through simpler examples.

1.1 First steps 3

Under Windows, the graphics window will have taken the keyboard focus
at this point. Click on the console to make it accept further commands.

1.1.1 An overgrown calculator

One of the simplest possible tasks in R is to enter an arithmetic expression
and receive a result. (The second line is the answer from the machine.)

> 2 + 2
[1] 4

So the machine knows that 2 and 2 makes 4. Of course, it also knows how

to do other standard calculations. For instance, here is how to compute
-2.
e

> exp(-2)
[1] 0.1353353

The [1] in front of the result is part of R’s way of printing numbers and
vectors. It is not useful here, but it becomes so when the result is a longer
vector. The number in brackets is the index of the first number on that
line. Consider the case of generating 15 random numbers from a normal
distribution:

> rnorm(1l5)
[1] -0.18326112 -0.59753287 -0.67017905 0.16075723 1.28199575
[6] 0.07976977 0.13683303 0.77155246 0.85986694 -1.01506772
[11] -0.49448567 0.52433026 1.07732656 1.09748097 -1.09318582

Here, for example, the [6] indicates that 0.07976977 is the sixth element in
the vector. (For typographical reasons, the examples in this book are made
with a shortened line width. If you try it on your own machine, you will
see the values printed with six numbers per line rather than five. The num-
bers themselves will also be different since random number generation is
involved.)

1.1.2 Assignments

Even on a calculator, you will quickly need some way to store interme-
diate results, so that you don’t have to key them in over and over again.
R, like other computer languages, has symbolic variables, that is names that
can be used to represent values. To assign the value 2 to the variable x,
you can enter

> x <= 2

4 1. Basics

The two characters <- should be read as a single symbol: an arrow point-
ing to the variable to which the value is assigned. This is known as the
assignment operator. Spacing around operators is generally disregarded
by R, but notice that adding a space in the middle of a <- changes the
meaning to “less than” followed by “minus” (conversely, omitting the
space when comparing a variable to a negative number has unexpected
consequences!).

There is no immediately visible result, but from now on, x has the value 2
and can be used in subsequent arithmetic expressions.

> x

(11 2

> x + x
[1] 4

Names of variables can be chosen quite freely in R. They can be built from
letters, digits, and the period (dot) symbol. There is, however, the limita-
tion that the name must not start with a digit or a period followed by a
digit. Names that start with a period are special and should be avoided.
A typical variable name could be height . lyr, which might be used to
describe the height of a child at the age of 1 year. Names are case-sensitive:
WT and wt do not refer to the same variable.

Some names are already used by the system. This can cause some con-
fusion if you use them for other purposes. The worst cases are the
single-letter names ¢, g, t, C, D, F, I, and T, but there are also diff, df,
and pt, for example. In practice, you get used to avoiding them after a
few accidents.

1.1.3 Vectorized arithmetic

You cannot do much statistics on single numbers! Rather, you will look at
data from a group of patients, for example. One strength of R is that it can
handle entire data vectors as single objects. A data vector is simply an array
of numbers, and a vector variable can be constructed like this:

> weight <- c(60, 72, 57, 90, 95, 72)
> weight
[1] 60 72 57 90 95 72

The construct c (.. .) is used to define vectors. The numbers are made
up but might represent the weights (in kg) of a group of normal men.

This is neither the only way to enter data vectors into R, nor is it gen-
erally the preferred method, but short vectors are used for many other
purposes, and the c (...) construct is used extensively. In Section 1.6

1.1 First steps 5

we discuss alternative techniques for reading data. For now, we stick to a
single method.

You can do calculations with vectors just like ordinary numbers, as long
as they are of the same length. Suppose that we also have the heights that
correspond to the weights above. The body mass index (BMI) is defined
for each person as the weight in kg divided by the square of the height in
meters. This could be calculated as follows:

> height <- c(1.75, 1.80, 1.65, 1.90, 1.74, 1.91)

> bmi <- weight/height”2

> bmi

[1] 19.59184 22.22222 20.93664 24.93075 31.37799 19.73630

Notice that the operation is carried out elementwise, that is, the first value
of bm1i is 65/1.75? and so forth and that the ~ operator is used for raising
a value to a power. (On some keyboards, * is a “dead key” and you will
have to press the spacebar afterwards to make it show.)

It is in fact possible to perform arithmetic operations on vectors of differ-
ent length. We already used that when we calculated the height~2 part
above since 2 has length 1. In such cases, the shorter vector is recycled.
This is mostly used with vectors of length 1 (scalars) but sometimes also
in other cases where a repeating pattern is desired. A warning is issued if
the longer vector is not a multiple of the shorter in length.

These conventions for vectorized calculations make it very easy to specify
typical statistical calculations. Consider, for instance, the calculation of the
mean and standard deviation of the weight variable.

First calculate the mean, ¥ = ¥ x;/n:

> sum(weight)

[1] 446
> sum(weight) /length (weight)
[1] 74.33333

Then save the mean in a variable xbar and proceed with the calculation

of SD = /(3(x; — ¥)2)/(n — 1). We do this in steps to see the individual
components. The deviations from the mean are

> xbar <- sum(weight)/length (weight)

> weight - xbar

[1] -14.333333 -2.333333 -17.333333 15.666667 20.666667
[6] -2.333333

Notice how xbar, which has length 1, is recycled and subtracted from
each element of weight. The squared deviations will be

> (weight - xbar)”"2

6 1. Basics

[1] 205.444444 5.444444 300.444444 245.444444 427.111111
[6] 5.444444

Since this command is quite similar to the one before it, it is convenient
to enter it by editing the previous command. On most systems running R,
the previous command can be recalled with the up-arrow key.

The sum of squared deviations is similarly obtained with

> sum((weight - xbar)"2)
[1] 1189.333

and all in all the standard deviation becomes

> sgrt (sum((weight - xbar)"2)/(length(weight) - 1))
[1] 15.42293

Of course, since R is a statistical program, such calculations are already
built into the program, and you get the same results just by entering

> mean (weight)
[1] 74.33333
> sd(weight)
[1] 15.42293

1.1.4 Standard procedures

As a slightly more complicated example of what R can do, consider the
following: The rule of thumb is that the BMI for a normal-weight indi-
vidual should be between 20 and 25, and we want to know if our data
deviate systematically from that. You might use a one-sample f test to as-
sess whether the 6 persons’ BMI can be assumed to have mean 22.5 given
that they come from a normal distribution. To this end, you can use the
function t. test. (You might not know the theory of the ¢ test yet. The
example is mainly included here to give some indication of what “real”
statistical output looks like. A thorough description of t . test is given in
Chapter 4.)

> t.test(bmi, mu=22.5)
One Sample t-test

data: bmi

t = 0.3449, df = 5, p-value = 0.7442

alternative hypothesis: true mean is not equal to 22.5
95 percent confidence interval:

18.41734 27.84791

sample estimates:
mean of x

23.13262

1.1 First steps 7

o
g - o
o
©

=

2

o

=

o o
o |
N~
8 o
o
| | | | | |
1.65 1.70 1.75 1.80 1.85 1.90

height

Figure 1.2. A simple x-y plot.

The argument mu=22.5 attaches a value to the formal argument mu,
which represents the Greek letter u conventionally used for the theoret-
ical mean. If this is not given, t . test would use the default mu=0, which
is not of interest here.

For a test like this, we get a more extensive printout than in the earlier
examples. The details of the output are explained in Chapter 4, but you
might focus on the p-value which is used for testing the hypothesis that
the mean is 22.5. The p-value is not small, indicating that it is not at all un-
likely to get data like those observed if the mean were in fact 22.5. (Loosely
speaking; actually p is the probability of obtaining a t value bigger than
0.3449 or less than —0.3449.) However, you might also look at the 95% con-
fidence interval for the true mean. This interval is quite wide, indicating
that we really have very little information about the true mean.

1.1.5 Graphics

One of the most important aspects of presentation and analysis of data is
the generation of proper graphics. R has — as S before it — a model for

8 1. Basics

constructing plots that allows simple production of standard plots as well
as fine control over the graphical components.

If you want to investigate the relation between weight and height, the
first idea is to plot one versus the other. This is done as follows:

> plot (height,weight)

— leading to Figure 1.2.

You will often want to modify the drawing in various ways. To that end,
there is a wealth of plotting parameters that you can set. As an example,
let’s try changing the plotting symbol, using the keyword pch (“plotting
character”), like this:

> plot (height, weight, pch=2)
This gives the plot in Figure 1.3, with the points now marked with little
triangles.

The idea behind the BMI calculation is that this value should be inde-
pendent of the person’s height, thus giving you a single number as an
indication of whether someone is overweight and by how much. Since

A
S A
o
o]
=
2
(]
2
A A
o
~
8 A
A
T T T T T T
1.65 1.70 1.75 1.80 1.85 1.90
height

Figure 1.3. Plot with pch = 2.

1.1 First steps 9

A
S - A
o _|
[ee]
=
R
(]
H
A A
o |
N~
8 A
A
T T T T T T
1.65 1.70 1.75 1.80 1.85 1.90
height

Figure 1.4. Superimposed reference curve, using lines (.. .).

a normal BMI should be about 22.5, you would expect that weight ~

22.5 x height®. Accordingly, you can superimpose a curve of expected
weights at BMI 22.5 on the figure:

> hh <- c(1.65, 1.70, 1.75, 1.80, 1.85, 1.90)
> lines(hh, 22.5 * hh"2)

yielding Figure 1.4. The function lines will add (x,y) values joined by
straight lines to an existing plot.

The reason for defining a new variable (hh) with heights rather than using
the original height vector is twofold. First, the relation between height
and weight is a quadratic one and hence nonlinear although it can be diffi-
cult to see on the plot. Since we are approximating a nonlinear curve with
a piecewise linear one, it will be better to use points that are spread evenly
along the x-axis than to rely on the distribution of the original data. Sec-
ond, since the values of height are not sorted, the line segments would
not connect neighbouring points but would run back and forth between
distant points.

10 1. Basics

1.2 Rlanguage essentials

This section outlines the basic aspects of the R language. It is necessary
to do this in a slightly superficial manner with some of the finer points
glossed over. The emphasis is on items that are useful to know in interac-
tive usage as opposed to actual programming, although a brief section on
programming is included.

1.2.1 Expressions and objects

The basic interaction mode in R is one of expression evaluation. The user
enters an expression; the system evaluates it and prints the result. Some
expressions are evaluated not for their result, but for side effects such as
putting up a graphics window or writing to a file. All R expressions return
a value (possibly NULL), but sometimes it is “invisible” and not printed.

Expressions typically involve variable references, operators like +, func-
tion calls, as well as some other items that have not been introduced
yet.

Expressions work on objects. This is an abstract term for anything that can
be assigned to a variable. R contains several different types of objects. So
far, we have almost exclusively seen numerical vectors, but several other
types are introduced in this chapter.

Although objects can be discussed abstractly, it would make a rather bor-
ing read without some indication of how to generate them and what to do
with them. Conversely, much of the expression syntax makes little sense
without knowledge of the objects on which it is intended to work. There-
fore, the subsequent sections alternate between introducing new objects
and introducing new language elements.

1.2.2 Functions and arguments

At this point you have obtained an impression of the way R works, and
we have already used some of the special terminology when talking about
the plot function, etc. That is exactly the point: Many things in R are done
using function calls, that is, commands that look like application of a math-
ematical function of one or several variables, for example, log(x) or
plot (height, weight).

The format is that a function name is followed by a set of parentheses con-
taining one or more arguments. For instance, in plot (height, weight)
the function name is plot and the arguments are height and weight.

1.2 Rlanguage essentials 11

These are the actual arguments, which apply only to the current call. A func-
tion also has formal arguments, which get connected to actual arguments in
the call.

When you write plot (height, weight) R assumes that the first argu-
ment corresponds to the x-variable and the second one to the y-variable.
This is known as positional matching. Users of traditional programming
languages like C or Pascal will recognize this format immediately and
probably also be aware of the fact that it becomes unwieldy if a func-
tion has a large number of arguments, since you have to supply every
one of them and remember their position in the sequence. Fortunately,
R has methods to avoid this: Most arguments have sensible defaults and
can be omitted in the standard cases, and there are nonpositional ways of
specifying them when you need to depart from the default settings.

The plot function is in fact an example of a function that has a large
selection of arguments in order to be able to modify symbols, line
widths, titles, axis type, and so forth. We used the alternative form of
specifying arguments when setting the plot symbol to triangles with
plot (height, weight, pch=2).

The pch=2 form is known as a named actual argument whose name can
be matched against the formal arguments of the function and thereby
allow keyword matching of arguments. The keyword pch was used to
say that the argument is a specification of the plotting character. This
type of function argument can be specified in arbitrary order. Thus, you
can write plot (y=weight,x=height) and get the same plot as with
plot (x=height, y=weight).

The two kinds of argument specification — positional and named — can
be mixed in the same call.

Even if there are no arguments to a function call, you have to write, for
example, 1s () for displaying the contents of the workspace. A common
error is to leave off the parentheses, which instead results in the display of
a piece of R code since 1s entered by itself indicates that you want to see
the definition of the function rather than executing it.

The formal arguments of a function are part of the function definition. The
set of formal arguments to a function, for instance plot .default (which
is the function that gets called when you pass plot an x argument for
which no special plot method exists), may be seen with

> args(plot.default)

function (x, y=NULL, type="p", x1im=NULL, ylim=NULL,
log="", main=NULL, sub=NULL, xlab=NULL, ylab=NULL,
ann=par ("ann"), axes=TRUE, frame.plot=axes, panel.first=NULL,
panel.last=NULL, col=par("col"), bg=NA, pch=par("pch"),
cex=1, lty=par("lty"), lab=par("lab"), lwd=par("lwd"),

12 1. Basics

asp=NA, ...)
NULL

Notice that most of the arguments have defaults, meaning that if you do
not specify (say) the type argument, the function will behave as if you
had passed type="p". The NULL defaults for many of the arguments re-
ally serve as indicators that the argument is unspecified, allowing special
behaviour to be defined inside the function. For instance, if they are not
specified, the x1ab and ylab arguments are constructed from the actual
arguments passed as x and y. (There are some very fine points associated
with this, but we do not go further into the topic.)

The triple-dot (...) argument indicates that this function will accept
additional arguments of unspecified name and number. These are often
intended for passing on to other functions, although some functions treat
it specially. For instance, data. frame interprets the . . .-arguments as
the column vectors and the argument names become column names in
the result.

1.2.3 Vectors

We have already seen numerical vectors. There are two further types,
character vectors and logical vectors.

A character vector is a vector of text strings, whose elements are specified
and printed in quotes:

> c("Huey", "Dewey", "Louie")
[1] "Huey" "Dewey" "Louie"

It does not matter whether you use single- or double-quote symbols, as
long as the left quote is the same as the right quote:

> c(’Huey’, 'Dewey’, 'Louie’)
[1] "Huey" "Dewey" "Louie"

However, you should avoid the acute accent key (”), which is present on
some keyboards. Double quotes are used throughout this book to prevent
mistakes.

Logical vectors can take the value TRUE or FALSE (or NA; see below). In
input, you may use the convenient abbreviations T and F. Logical vectors
are constructed using the ¢ function just like the other vector types:

> c(T,T,F,T)
[1] TRUE TRUE FALSE TRUE

1.2 Rlanguage essentials 13

Actually, you will not often have to specify logical vectors in the above
manner. It is much more common to use single logical values to turn an
option on or off in a function call. Vectors of more than one value most
often result from relational expressions:

> bmi > 25
[1] FALSE FALSE FALSE FALSE TRUE FALSE

We return to relational expressions and logical operations in the context
of conditional selection in Section 1.2.11.

1.2.4 Missing values

In practical data analysis a data point is frequently unavailable (the patient
did not show up, an experiment failed, etc.). Statistical software needs
ways to deal with this. R allows vectors to contain a special NA value.
This value is carried through in computations so that operations on NA
yield NA as the result. There are some special issues associated with the
handling of missing values; we deal with them as we encounter them.

1.2.5 Functions that create vectors

Here we introduce three functions, c, seq, and rep, which are used to
create vectors in various situations.

The first of these, ¢, has already been introduced. It is short for “concate-
nate”, that is, joining items end to end, which is exactly what the function
does:

> c(42,57,12,39,1,3,4)
[1] 42 57 12 39 1 3 4

The second function, seq (“sequence”), is used for equidistant series of
numbers. Writing

> seqg(4,9)
[1] 4 56 7 89

yields, as seen, the integers from 4 to 9. If you want a sequence in jumps
of 2, write

> seq(4,10,2)
[11 4 6 8 10

This kind of vector is frequently needed, particularly for graphics. For ex-
ample, we previously used ¢ (1.65,1.70,1.75,1.80,1.85,1.90) to

14 1. Basics

define the x-coordinates for a curve, something that could also have been
written seq(1.65,1.90,0.05) (theadvantage of using seq might have
been more obvious if the heights had been in steps of 1 cm rather than
5 cm!).

The case with step size equal to 1 can also be written using a special
syntax:

> 4:9
[1] 4 56 789

The above is exactly the same as seq (4, 9), only easier to read.

The third function, rep (“replicate”), is used to generate repeated values.
It is used in two variants, depending on whether the second argument is
a vector or a single number:

> oops <- c(7,9,13)

> rep(oops, 3)

[1] 7 913 7 9 13 7 9 13
> rep(oops,1:3)

[117 7 9 9 13 13 13

The first of the above function calls repeats the entire vector cops three
times. The second call has the number 3 replaced by a vector with the three
values (1, 2, 3); these values the values of the cops vector, indicating that
7 should be repeated once, 9 twice, and 13 three times. The rep function
is often used for things like group codes: If it is known that the first 10
observations are men and the last 15 ones are women, you can use

> rep(l:2,c(10,15))
(1] 1111111111222222222222222

to form a vector that for each observation indicates whether it is from a
man or a woman.

1.2.6 Matrices and arrays

A matrix in mathematics is just a two-dimensional array of numbers. Ma-
trices are used for many purposes in theoretical and practical statistics,
but it is not assumed that the reader is familiar with matrix algebra,
so many special operations on matrices, including matrix multiplication,
are skipped. (The document “An Introduction to R” that comes with
the installation outlines these items quite well.) However, matrices and
also higher-dimensional arrays do get used for simpler purposes as well,
mainly to hold tables, so an elementary description is in order.

1.2 Rlanguage essentials 15

In R, the matrix notion is extended to elements of any type, so you could
have, for instance, a matrix of character strings. Matrices and arrays are
represented as vectors with dimensions:

> x <- 1:12
> dim(x) <- c(3,4)
> x

(1.1

(3.1

The dim assignment function sets or changes the dimension attribute of x,
causing R to treat the vector of 12 numbers as a 3 x 4 matrix. Notice that
the storage is column-major, that is, the elements of the first column are
followed by those of the second, etc.

A convenient way to create matrices is to use the matrix function:

> matrix(1:12,nrow=3,byrow=T)
[,11 [,21 [,31 [,4]

(1,1 1 2 3 4
(2,1 5 6 7 8
[3,1 9 10 11 12

Notice how the byrow=T switch causes the matrix to be filled in a rowwise
fashion rather than columnwise.

Useful functions that operate on matrices include rownames, colnames
and the transposition function t (notice small letter as opposed to capital
T for TRUE), which turns rows into columns, and vice versa:

\

X <- matrix(1:12,nrow=3,byrow=T)
rownames (x) <- LETTERS[1:3]

X
[,1

vV Vv

[,21 [,3]1 [.4
2 3

10 11 1

vV Qw

t(x
C
9

10

11

12

(1.1
(2,1
(3.1

]
1
5
9
)
A
1
2
3
[4,]1 4

o J o o

The character vector LETTERS is a built-in variable that contains the cap-
ital letters A-Z. Similar useful vectors are letters, month.name, and
month . abb with lowercase letters, month names, and abbreviated month
names.

16 1. Basics

You can “glue” vectors together, columnwise or rowwise, using the cbind
and rbind functions.

> cbind(A=1:4,B=5:8,C=9:12)

A B C
[1,1 15 9
[2,] 2 6 10
[3,1 3711
[4,] 4 8 12

> rbind(A=1:4,B=5:8,C=9:12)
[,11 [,2]1 [,31 [,4]

A 1 2 3 4

B 5 6 7 8

C 9 10 11 12

We return to table operations in Section 3.5, which discusses tabulation of
variables in a data set.

1.2.7 Factors

It is common in statistical data to have categorical variables, indicating
some subdivision of data, such as social class, primary diagnosis, tu-
mor stage, Tanner stage of puberty, etc. Typically, these are input using
a numeric code.

Such variables should be specified as factors in R. This is a data structure
that (among other things) makes it possible to assign meaningful names
to the categories.

There are analyses where it is essential for R to be able to distinguish
between categorical codes and variables whose values have a direct
numerical meaning (see Chapter 6).

The terminology is that a factor has a set of levels — say four levels for con-
creteness. Internally, a four-level factor consists of two items: (a) a vector of
integers between 1 and 4 and (b) a character vector of length 4 containing
strings describing what the four levels are. Let’s look at an example:

> pain <- ¢(0,3,2,2,1)
> fpain <- factor(pain, levels=0:3)
> levels(fpain) <- c("none", "mild", "medium", "severe")

The first command creates a numerical vector pain, encoding the pain
level of five patients. We wish to treat this as a categorical variable, so we
create a factor fpain from it using the function factor. This is called
with one argument in addition to pain, namely levels=0:3, which in-
dicates that the input coding uses the values 0-3. The latter can in principle
be left out, since R by default uses the values in pain, suitably sorted, but

1.2 Rlanguage essentials 17

it is a good habit to retain it; cf. below. The effect of the final line is that the
level names are changed to the four specified character strings.

The result should be apparent from the following:

> fpain
[1] none severe medium medium mild
Levels: none mild medium severe

> as.numeric (fpain)

[1] 1 4 3 3 2

> levels (fpain)

[1] "none" "mild" "medium" "severe"

The function as.numeric extracts the numerical coding as numbers
1-4 and levels extracts the names of the levels. Notice that the origi-
nal input coding in terms of numbers 0-3 has disappeared; the internal
representation of a factor always uses numbers starting at 1.

If, in factor(...), you do not specify a levels argument, the levels
will by default be the sorted, unique values represented in the vector. This
is not always desirable when dealing with text variables, since the sorting
is alphabetical. Consider, for instance,

> text.pain <- c("none", "severe", "medium", "medium", "mild")
> factor (text.pain)
[1] none severe medium medium mild

Levels: medium mild none severe

Also, you would obviously not include levels that are not present in data,
which can cause trouble when merging data from several populations.

R also allows you to create a special kind of factor in which the lev-
els are ordered. This is done using the ordered function, which works
similarly to factor. These are potentially useful in that they distinguish
nominal and ordinal variables from each other (and arguably, text .pain
above ought to have been an ordered factor). Unfortunately, R defaults to
treating the levels as if they were equidistant in the modelling code (by gen-
erating polynomial contrasts), so it may be better to ignore ordered factors
for now.

1.2.8 Lists

It is sometimes useful to combine a collection of objects into a larger
composite object. This can be done using lists.

You can construct a list from its components with the function 1ist.

18 1. Basics

As an example, consider a set of data from Altman (1991, p. 183) concern-
ing pre- and postmenstrual energy intake in a group of women. We can
place these data in two vectors as follows:

intake.pre <- c¢(5260,5470,5640,6180,6390,
6515,6805,7515,7515,8230,8770)
intake.post <- ¢(3910,4220,3885,5160,5645,
4680,5265,5975,6790,6900,7335)

+ VvV + Vv

Notice how input lines can be broken and continue on the next line. If
you press the Enter key while an expression is syntactically incomplete, R
will assume that the expression continues on the next line and will change
its normal > prompt to the continuation prompt +. This often happens inad-
vertently due to a forgotten parenthesis or a similar problem; in such cases
either complete the expression on the next line, or press ESC (Windows)
or Ctrl-C (Unix).

To combine these individual vectors into a list, you can say

> mylist <- list(before=intake.pre,after=intake.post)
> mylist
Sbefore
[1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770

Safter
[1] 3910 4220 3885 5160 5645 4680 5265 5975 6790 6900 7335

The components of the list are named according to the argument names
used in 1ist. Named components may be extracted like this:

> mylistSbefore
[1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770

Many of R’s built-in functions compute more than a single vector of values
and return their results in the form of a list.

1.2.9 Data frames

A data frame corresponds to what other statistical packages call a “data
matrix” or a “data set”. It is a list of vectors and/or factors of the same
length, which are related “across”, such that data in the same position
come from the same experimental unit (subject, animal, etc.). In addition,
it has a unique set of row names.

You can create data frames from preexisting variables:

> d <- data.frame(intake.pre, intake.post)
> d

1.2 Rlanguage essentials 19

intake.pre intake.post

1 5260 3910
2 5470 4220
3 5640 3885
4 6180 5160
5 6390 5645
6 6515 4680
7 6805 5265
8 7515 5975
9 7515 6790
10 8230 6900
11 8770 7335

Notice that these data are paired, that is, the same woman has an intake
of 5260 k] premenstrually and 3910 k] postmenstrually.

As with lists, variables are accessible using the $ notation:

> dSintake.pre
[1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770

1.2.10 Indexing

If you need a particular element in a vector, for instance the premenstrual
energy intake for woman no. 5, you can do

> intake.prel5]
[1] 6390

The brackets are used for selection of data, also known as indexing or sub-
setting. This also works on the left-hand side of an assignment (so that you
can say, for instance, intake.pre[5] <- 6390) if you want to modify
elements of a vector.

If you want a subvector consisting of data for more than one woman, let’s
say nos. 3, 5, and 7, you can index with a vector:

> intake.pre[c(3,5,7)]
[1] 5640 6390 6805

Note that it is necessary to use the ¢ (. . .) -construction to define the vec-
tor consisting of the three numbers 3, 5, and 7. intake.pre(3,5,7]
would mean something completely different. It would specify indexing
into a three-dimensional array.

Of course, indexing with a vector also works if the index vector is stored
in a variable. This is useful when you need to index several variables in
the same way.

20 1. Basics

> v <- c(3,5,7)
> intake.prel[v]
[1] 5640 6390 6805

It is also worth noting that to get a sequence of elements, for instance, the
first five, you can use the a : b notation:

> intake.pre[l:5]
[1] 5260 5470 5640 6180 6390

A neat feature of R is the possibility of negative indexing. You can get all
observations except nos. 3, 5, and 7 by writing

> intake.pre[-c(3,5,7)]
[1] 5260 5470 6180 6515 7515 7515 8230 8770

It is not possible to mix positive and negative indices. That would be
highly ambiguous.

1.2.11 Conditional selection

We saw in Section 1.2.10 how to extract data using one or several indices.
In practice, you often need to extract data that satisfy certain criteria, such
as data from the males or the prepubertal or those with chronic diseases,
etc. This can be done simply by inserting a relational expression instead
of the index, like this:

> intake.post[intake.pre > 7000]
[1] 5975 6790 6900 7335

— yielding the postmenstrual energy intake for the four women who had
an energy intake above 7000 k] premenstrually.

Of course, this kind of expression makes sense only if the variables that go
into the relational expression have the same length as the variable being
indexed.

The comparison operators available are < (less than), > (greater than), ==
(equal to), <= (less than or equal to), >= (greater than or equal to), and ! =
(not equal to). Notice that a double equal sign is used for testing equality.
This is to avoid confusion with the = symbol used to match keywords with
function arguments. Also, the ! = operator is new to some; the ! symbol
indicates negation. The same operators are used in the C programming
language.

To combine several expressions you can use the logical operators & (logical
“and”), | (logical “or”), and ! (logical “not”). For instance, we find the

1.2 Rlanguage essentials 21

postmenstrual intake for women with a premenstrual intake between 7000
and 8000 k] with

> intake.post[intake.pre > 7000 & intake.pre <= 8000]
[1] 5975 6790

There are also && and | |, which are used for flow control in actual R
programming. However, their use is beyond what we discuss here.

It may be worth taking a closer look at what actually happens when you
use a logical expression as an index. The result of the logical expression is
a logical vector as described in Section 1.2.3:

> intake.pre > 7000 & intake.pre <= 8000
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
[11] FALSE

Indexing with a logical vector implies that you pick out the values where
the logical vector is TRUE, so in the preceding example we got the 8th and
9th values in intake.post.

If missing values (NA; see Section 1.2.4) appear in an indexing vector, then
R will create the corresponding elements in the result but set the values to
NA.

In addition to the relational and logical operators, there is a series of
functions that return a logical value. A particularly important one is
is.na(x), which is used to find out which elements of x are recorded
as missing (NA).

Notice that there is a real need for is.na because you cannot make
comparisons of the form x==NA. That simply gives NA as the result, for
any value of x. The result of a comparison with an unknown value is
unknown!

1.2.12 Indexing of data frames

We have already seen how it is possible to extract variables from a
data frame by typing, for example, d$intake.post. However, it is also
possible to use a notation that uses the matrix-like structure directly:

> d <- data.frame(intake.pre, intake.post)
> d[5,1]
[1] 6390

gives fifth row, first column, that is, the “pre” measurement for woman
no. 5, and

22 1. Basics

> d[5,]1]
intake.pre intake.post
5 6390 5645

gives all measurements for woman no. 5. Notice that the commain d[5,]
is required; without the comma, for example d[2], you get the data frame
consisting of the second column of d, that is, more like d [, 2], which is the
column itself.

Other indexing techniques also apply. In particular, it can be useful to ex-
tract all data for cases that satisfy some criterion, such as women with a
premenstrual intake above 7000 k]J:

> d[d$intake.pre>7000,]
intake.pre intake.post

8 7515 5975
9 7515 6790
10 8230 6900
11 8770 7335

Here we extracted the rows of the data frame where intake.pre>7000.
Notice that the row names are those of the original data frame.

If you want to understand the details of this, it may be a little easier if it is
divided into smaller steps. It could also have been done like this:

> sel <- dS$intake.pre>7000

> sel
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[11] TRUE
> d[sel,]
intake.pre intake.post
8 7515 5975
9 7515 6790
10 8230 6900
11 8770 7335

What happens is that sel (select) becomes a logical vector that is TRUE
corresponding to the four women consuming more than 7000 k] premen-
strually. Indexing as d[sel,] yields data from the rows where sel is
TRUE and from all columns because of the empty field after the comma.

1.2.13 subset and transform

The indexing techniques for extracting parts of a data frame are logical but
a bit cumbersome, and a similar comment applies to the process of adding
transformed variables to a data frame. Therefore, a couple of functions

1.2 Rlanguage essentials 23

exist to make things a little easier. They are used as follows (data is used
to fetch a built-in data set; see Section 1.5.4):

> data(thuesen)
> thue2 <- subset (thuesen,blood.glucose<7)

> thue2

blood.glucose short.velocity
6 5.3 1.49
11 6.7 1.25
12 5.2 1.19
15 6.7 1.52
17 4.2 1.12
22 4.9 1.03

> thue3 <- transform(thuesen, log.gluc=log(blood.glucose))
> thue3
blood.glucose short.velocity log.gluc

1 15.3 1.76 2.727853
2 10.8 1.34 2.379546
3 8.1 1.27 2.091864
4 19.5 1.47 2.970414
5 7.2 1.27 1.974081
22 4.9 1.03 1.589235
23 8.8 1.12 2.174752
24 9.5 1.70 2.251292

Notice that the variables used in the expressions for new variables or for
subsetting are evaluated with variables taken from the data frame.

subset also works on single vectors. This is nearly the same as indexing
with a logical vector (such as short.velocity[blood.glucose<7]),
except that observations with missing values in the selection criterion are
excluded.

subset also has a select formal argument with a somewhat peculiar
syntax, used to extract variables from a data frame. This will not be needed
here, though.

1.2.14 Grouped data and data frames

The natural way of storing grouped data in a data frame is to have the
data themselves in one vector and parallel to that to have a factor telling
which data are from which group. Consider, for instance, the following
data set on energy expenditure for lean and obese women. (Again, see
Section 1.5.4 for data.)

> data(energy)
> energy
expend stature

24

PR R ROV d0 0 WN e
w N R o
[= =

14
15
16
17
18
19
20
21
22

=
0 W JWVWWoLwJWVWERE JINME J00O 0O 0w JJ v

This is a convenient format since it generalizes easily to multiple classifica-
tion criteria. However, sometimes it is desirable to have data in a separate
vector for each group. Fortunately, it is easy to extract these from the data

frame:

> exp.lean <- energyS$Sexpend[energyS$Sstature=="lean"]
> exp.obese <- energyS$Sexpend|[energyS$Sstature=="obese"]

Alternatively, you can use the split function, which generates a list of
vectors according to a grouping.

> 1 <- split(energySexpend,

> 1
$lean
[11
[11]

Sobese

[1] 9.21 11.51 12.79 11.85

.21
.53
.48
.08
.09
.15
.40
.88
.13
.90
.51
.79
.05
.85
.97
.48
.79
.69
.68
.58
.19
L11

7.53
7.48

1. Basics

obese
lean
lean
lean
lean
lean
lean
lean
lean
lean
obese
obese
lean
obese
obese
lean
obese
obese
obese
lean
obese
lean

7.48
7.58

1.2.15 Sorting

It is trivial to sort a vector. Just use the sort function:

> intake.post

[1] 3910 4220 3885 5160 5645 4680 5265 5975 6790 6900 7335
> sort (intake.post)

energyS$stature)

1.2 Rlanguage essentials 25

[1] 3885 3910 4220 4680 5160 5265 5645 5975 6790 6900 7335

(intake.pre could not be used for this example since it is sorted
already!)

However, sorting a single vector is not usually what is required. More
often, you need to sort a series of variables according to the values of some
other variables — blood pressures sorted by sex and age, for instance. For
this purpose, there is a construction that may look somewhat abstract at
first but is really very powerful. You first compute an ordering of a variable.

> order (intake.post)
[1] 31 2 6 4 7 5 8 910 11

The result is the numbers 1 to 11 (or whatever the length of the vec-
tor is), sorted according to the size of the argument to order (here:
intake.post). Interpreting the result of order is a bit tricky — it should
be read as follows: You sort intake.post by placing its values in the
order no. 3, no. 1, no. 2, no. 6, etc.

The point is that by indexing with this vector, other variables can be sorted
by the same criterion. Note that indexing with a vector containing the
numbers from 1 to the number of elements exactly once corresponds to
a reordering of the elements.

> o <- order (intake.post)
> intake.post[o]

[1] 3885 3910 4220 4680 5160 5265 5645 5975 6790 6900 7335
> intake.prelo]

[1] 5640 5260 5470 6515 6180 6805 6390 7515 7515 8230 8770

What has happened here is that intake.post has been sorted — just as
in sort (intake.post) — while intake.pre has been sorted by the
size of the corresponding intake.post.

Sorting by several criteria is done simply by having several arguments to
order; for instance, order (sex, age) will give a main division into men
and women, and within each sex an ordering by age. The second variable
is used when the order cannot be decided from the first variable. Sorting
in reverse order can be handled by, for example, changing the sign of the
key variable.

26 1. Basics
1.2.16 Implicit loops

The looping constructs of R are described in Section 1.4.1. For the purposes
of this book, you can largely ignore their existence. However, there is a
group of useful R functions that it will be useful for you to know about.

A common application of loops is to apply a function to each element of a
set of values or vectors and collect the results in a single structure. In R this
is abstracted by the functions lapply and sapply. The former always
returns a list (hence the ‘') whereas the latter tries to simplify (hence the
‘s’) the result to a vector or a matrix if possible. So to compute the mean of
each variable in a data frame of numeric vectors, you can do the following;:

> lapply(thuesen, mean, na.rm=T)
Sblood.glucose
[1] 10.3

$short.velocity
[1] 1.325652

> sapply(thuesen, mean, na.rm=T)
blood.glucose short.velocity
10.300000 1.325652

Notice how both forms attach meaningful names to the result, which is an-
other good reason to prefer using these functions over using explicit loops.
The second argument to lapply/sapply is the function that should be
applied, here mean. Any further arguments are passed on to the function;
in this case we pass na.rm=T to request that missing values be removed
(see Section 3.1).

A similar function, apply, allows you to apply a function to the rows
or columns of a matrix (or over indices of a multidimensional array in
general) as in

> m <- matrix(rnorm(12),4)

> m

[,1] [,2] [,3]
[1,] -0.9686756 -0.7045067 0.9612115
[2,] 0.9658574 0.2166490 0.3189893
[3,] 1.9969486 1.4072639 0.4043070
[4,] -1.1616653 -0.7892404 2.0291297

> apply(m, 2, min)
[1] -1.1616653 -0.7892404 0.3189893

The second argument is the index (or vector of indices) that defines what
the function is applied to; in this case we get the columnwise minima.

Also, the function tapply allows you to create tables (hence the ‘t’) of the
value of a function on subgroups defined by its second argument, which

1.3 The graphics subsystem 27

can be a factor or a list of factors. In the latter case a cross-classified table
is generated. (The grouping can also be defined by ordinary vectors. They
will be converted to factors internally.)

> tapply (energySexpend, energy$stature, median)
lean obese
7.90 9.69

1.3 The graphics subsystem

In Section 1.1.5 we saw how to generate a simple plot and superimpose
a curve on it. It is quite common in statistical graphics that you want to
create a plot that is slightly different from the default: Sometimes you will
want to add annotation, sometimes you want the axes to be different —
labels instead of numbers, irregular placement of tick marks, etc. All these
things can be obtained in R. The methods for doing it may feel slightly
unusual at first, but it is a very flexible and powerful approach.

In this section we look deeper into the structure of a typical plot and give
some indication of how you can work with plots to achieve your desired
results. Beware, though, that this is a large and complex area and it is not
within the scope of this book to cover it completely.

1.3.1 Plot layout

In the graphics model that R uses, there is (for a single plot) a figure region
containing a central plotting region surrounded by margins. Coordinates
inside the plotting region are specified in data units (the kind generally
used to label the axes). Coordinates in the margins are specified in lines
of text as you move in a direction perpendicular to a side of the plotting
region, but in data units as you move along the side. This is useful since
you generally wants to put text in the margins of a plot.

A standard x—y plot has an x and a y title label generated from the ex-
pressions being plotted. You may, however, override these labels and also
add two further titles, a main title above the plot and a subtitle at the very
bottom, in the plot call.

x <- runif(50,0,2)

y <- runif (50,0,2)

plot(x, y, main="Main title", sub="subtitle",
xlab="x-label", ylab="y-label")

+ V. VvV VvV

28 1. Basics

Inside the plotting region you can place points and lines that are either
specified in the plot call or added later with points and lines. You
can also place a text with

> text(0.6,0.6,"text at (0.6,0.6)")
> abline(h=.6,v=.6)

Here, the abline call is just to show how the text is centered on the point
(0.6,0.6). (Normally, abline plots the line y = a + bx when given a and
b as arguments, but it can also be used to draw horizontal and vertical
lines as shown.)

The margin coordinates are used by the mtext function. They can be
demonstrated as follows:

> for (side in 1:4) mtext(-1:4,side=side,at=.7,line=-1:5)
> mtext (paste("side",1:4), side=1:4, line=-1,font=2)

3
2 Main ti
] ain title
° 0
o o -1 side 3 o
o
o o
o o
24 e
o ©O o 9
— O o ° o
© N o b ° o o <
8 o () o ()
© -0 o
T - = [e] [¢] (o
= 7] o 7]
o
oo~ ofT ° o Tle —
textat{p-6;6-6)o O
0 | ’ o
© ° o ° ° o
® o o o o
o 9 o ° o
o -1 side 1
T T 0 T T T
0.0 0.5 1 1.0 1.5 2.0
2
3 x—label
4 subtitle

Figure 1.5. The layout of a standard plot.

The for loop (see Section 1.4.1) places the numbers —1 to 4 on corre-
sponding lines in each of the four margins, at an off-center position of 0.7
measured in user coordinates. The subsequent call places a label on each
side, giving the side number. The argument font=2 means that a boldface

1.3 The graphics subsystem 29

font is used. Notice in Figure 1.5 that the margins are not all wide enough
to hold all the numbers and that it is possible to use negative line numbers
to place text within the plotting region.

1.3.2 Building a plot from pieces

High-level plots are composed of elements, each of which can also be
drawn separately. The separate drawing commands often allow finer con-
trol of the element, so a standard strategy to achieve a given effect is first
to draw the plot without that element and add the element subsequently.
As an extreme case, the following command will plot absolutely nothing:

> plot(x, y, type="n", xlab="", ylab="", axes=F)

Here type="n" causes the points not to be drawn. axes=F suppresses
the axes and the box around the plot, and the x and y title labels are set to
empty strings.

However, the fact that nothing is plotted does not mean that nothing hap-
pened. The command sets up the plotting region and coordinate systems
just as if it had actually plotted the data. To add the plot elements, evaluate
the following:

> points(x,Vy)

> axis (1)

> axis(2,at=seqg(0.2,1.8,0.2))

> box ()

> title(main="Main title", sub="subtitle",
+ xlab="x-label", ylab="y-label")

Notice how the second axis call specifies an alternative set of tick marks
(and labels). This is a common technique used to create special axes on a
plot and might also be used to create nonequidistant axes as well as axes
with nonnumeric labelling.

Plotting with type="n" is a common technique in S-PLUS, which lacks
R’s feature of passing a vector argument for col to specify individual
colours for each point. Instead, to create a plot with different colours for
different groups, you would first plot all data with type="n" to make
sure the plot region was large enough, and then you would add the points
for each group using points.

30 1. Basics
1.3.3 Using par

The par function allows incredibly fine control over the details of a plot,
although it can be quite confusing to the beginner (and even to experi-
enced users at times). The best strategy for learning it may well be simply
to try and pick up a few useful tricks at a time and once in a while try to
solve a particular problem by poring over the help page.

Some of the parameters, but not all, can also be set via arguments to plot-
ting functions, which also have some arguments that cannot be set by par.
When a parameter can be set by both methods, the difference is generally
that if something is set via par, then it stays set subsequently.

The par settings allow you to control line widths and types, character size
and font, colours, style of axis calculation, size of the plot and figure re-
gions, clipping, etc. It is possible to divide a figure into several subfigures,
using the mfrow and mfcol parameters.

For instance, the default margin sizes are just over 5, 4, 4, and 2 lines.
You might set par (mar=c(4,4,2,2)+0.1) before plotting. This shaves
one line off the bottom margin and two lines off the top margin of the
plot, which will reduce the amount of unused whitespace when there is
no main title or subtitle. If you look carefully, you will in fact notice that
Figure 1.5 has a somewhat smaller plotting region than the other plots in
this book. This is because the other plots have been made with reduced
margins for typographical reasons.

However, it is quite pointless to describe the graphics parameters com-
pletely at this point. Instead, we return to them as they are used for specific
plots.

1.3.4 Combining plots

Some special considerations arise when you wish to put several elements
together in the same plot. Consider overlaying a histogram with a normal
density (see Sections 3.2 and 3.4.1 for information on histograms and Sec-
tion 2.5.1 for density). The following is close, but only nearly good enough
(figure not shown).

> X <- rnorm(100)
> hist (x, freqg=F)
> curve (dnorm(x) ,add=T)

The freg=F argument to hist ensures that the histogram is in terms of
densities rather than absolute counts. The curve function graphs an ex-
pression (in terms of x) and its add=T allows it to overplot an existing

1.3 The graphics subsystem 31

plot. So things are generally set up correctly, but sometimes the top of the
density function gets chopped off. The reason is of course that the height
of the normal density played no role in the setting of the y-axis for the his-
togram. It will not help to reverse the order and draw the curve first and
add the histogram, because then the highest bars might get clipped.

The solution is first to get hold of the magnitude of the y values for both
plot elements and make the plot big enough to hold both (Figure 1.6:

h <- hist(x, plot=F)

ylim <- range (0, h$Sdensity, dnorm(0))
hist(x, freg=F, ylim=ylim)

curve (dnorm(x), add=T)

vV V. V V

Histogram of x

0.4

0.3

Density
0.2

0.1

] S

-2 -1 0 1 2 3

Figure 1.6. Histogram with normal density overlaid.

When called with plot=F, hist will not plot anything, but it will re-
turn a structure containing the bar heights on the density scale. This and
the fact that the maximum of dnorm (x) is dnorm(0) allows us to cal-
culate a range covering both the bars and the normal density. The zero in
the range call ensures that the bottom of the bars will be in range too.
The range of y values is then passed to the hist function via the ylim
argument.

32 1. Basics

14 R programming

It is possible to write your own R functions. In fact, this is a major as-
pect and attraction of working with the system in the long run. This book
largely avoids the issue in favour of covering a larger set of basic statistical
procedures that can be executed from the command line. However, to give
you a feel for what can be done, consider the following function, which
wraps the code from the example of Section 1.3.4 so that you can just
say hist.with.normal (rnorm(200)). It has been slightly extended
so that it now uses the empirical mean and standard deviation of the data
instead of just 0 and 1.

> hist.with.normal <- function(x, xlab=deparse(substitute(x)),...)
+ {

+ h <- hist(x, plot=F, ...)

+ s <- sd(x)

+ m <- mean (x)

+ ylim <- range(0,h$density,dnorm(0,sd=s))

+ hist(x, freg=F, ylim=ylim, xlab=xlab, ...)

+ curve (dnorm(x,m,s), add=T)

+

}

Notice the use of a default argument for x1ab. If x1ab is not specified,
then it is obtained from this expression which evaluates to a character
form of the expression given for x, that is, if you pass rnorm(100) for
%, then the x label becomes “rnorm(100)”. Notice also the use of a . ..
argument which collects any additional arguments and passes them on to
hist in the two calls.

You can learn more about programming in R by studying the built-in
functions, starting with simple ones like 10g10 or weighted.mean. For
further study of the R and S languages, the books by Venables and Ripley
(2002, 2000) are indispensable as are the original books on (new) S, known
as the “blue book” (Becker et al., 1988) and the “white book” (Chambers
and Hastie, 1992).

1.4.1 Flow control

Until now, we have seen components of the R language that cause evalua-
tion of single expressions. However, R is a true programming language
that allows conditional execution and looping constructs as well. Con-
sider, for instance, the following code. (It is not terribly important what the
code does, but it implements a version of Newton’s method for calculating
the square root of y.)

>y <- 12345

1.4 R programming 33

> x <- y/2

> while (abs(x*x-y) > le-10) x <- (X + y/x)/2
> X

[1] 111.1081

> xX"2

[1] 12345

Notice the while (condition) expression construction, which says
that the expression should be evaluated as long as the condition is TRUE.
The test occurs at the top of the loop so that the expression might never be
evaluated.

A variation of the same algorithm with the test at the bottom of the loop
can be written with a repeat construction:

> x <- y/2

> repeat{

+ X <- (X + y/x)/2

+ if (abs(x*x-y) < le-10) break
+ }

> x

[1] 111.1081

This also illustrates three other flow control structures: (a) a compound ex-
pression: several expressions held together between curly braces; (b) an 1 £
construction for conditional execution; and (c) a break expression, which
causes the enclosing loop to exit.

Incidentally, the loop could allow for y being a vector, simply by changing
the termination condition to

if (any(abs(x*x - y) < 1le-10)) break

This would iterate excessively for some elements, but the vectorized
arithmetic would likely more than make up for that.

Actually, while and repeat are quite rarely used in R. Much more fre-
quent is for, which loops over a fixed set of values as in the following
example, which plots a set of power curves on the unit interval.

> x <- seq(0, 1,.05)
> plot(x, x, ylab="y", type="1")
> for (j in 2:8) lines(x, x"Jj)

Notice the loop variable j, which in turn takes the values of the given
sequence when used in the 1ines call.

34 1. Basics
1.4.2 Classes and generic functions

Object-oriented programming is about creating coherent systems of data
and methods that work upon them. One purpose is to simplify programs
by accommodating the fact that you will have conceptually similar meth-
ods for different types of data, even though the implementations will have
to be different. A prototype example is the print method: It generally
makes sense to print many kinds of data objects, but the print layout will
depend on what the data object is. You will generally have a class of data
objects and a print method for that class. There are several object-oriented
languages implementing these ideas in different ways.

R uses the same object system as S version 3. This is a simple system in
which an object has a class attribute, which is simply a character vector.
One example of this is that all the return values of the classical tests like
t.test have class "htest", indicating that they are the result of a hy-
pothesis test. When these objects are printed, it is done by print.htest,
which creates the nice layout (see Chapter 4 for examples). However, from
a programmatic viewpoint these objects are just lists and you can, for
instance, extract the p-value by writing

> t.test(bmi, mu=22.5)%$p.value
[1] 0.7442183

The function print is a generic function, one that acts differently depend-
ing on its argument. These are generally implemented as follows:

> print
function (x, ...)
UseMethod ("print")

which means that R should pass control to a function named according
to the object class (print.htest for objects of class "htest", etc.) or if
this is not found, to print.default. To see all the methods available
for print, type methods (print) (there are 58 of them in 1.5.0, so the
output is not shown here).

1.5 Session management

1.5.1 The workspace

All variables created in R are stored in a common workspace. To see which
variables are defined in the workspace, you can use the function 1s (list).

1.5 Session management 35

It should look as follows if you have run all the preceding examples in this
chapter:

> 1s()
[1] "bmi" nan "energy"
[4] "exp.lean" "exp.obese" "fpain"
[71 "h" "height" "hh"
[10] "hist.with.normal" "intake.post" "intake.pre"
[13] "5" nyn "m"
[16] "mylist" "o" "oops"
[19] "pain" "pu" "sel"
[22] "side" "text.pain" "thue2"
[25] "thue3" "thuesen" "y
[28] "weight" "X "xbar"
[31] "y" "ylim"

Remember that you cannot omit the parentheses in 1s (). An alternative
that might be preferable, especially if you plan to use S-PLUS later on, is
objects (). In Ritis just another name for the same function.

If at some point things begin to look messy, you can delete some of the
objects. This is done using rm (remove), so that

> rm(height, weight, bmi)

deletes the variables height, weight, and bmi.

The entire workspace can be cleared using rm(list=1s()), and in the
Windows version also via the “Remove all objects” menu entry (under
“Misc”). Strictly speaking, youneed rm(1list=1s(all.names=TRUE))
since 1s otherwise does not list variables whose name begins with a
dot. However, because such variable names are often used for system
purposes, you are discouraged from using such names in the first place.

If you are acquainted with the Unix operating system, for which the S
language that preceded R was originally written, then you will know that
the commands for listing and removing files in Unix are called precisely
ls and rm.

It is possible to save the workspace to a file at any time. If you just write
save.image ()

then it will be saved to a file called .RData in your working directory.
The Windows version also has this on the File menu. When you exit R
you will be asked whether to save the workspace image; if you accept,
the same thing will happen. It is also possible to specify an alternative
filename (within quotes). You can also save selected objects with save.
The .RData file is loaded by default when R is started in its directory.
Other save files can be loaded into your current workspace using 1oad.

36 1. Basics

It is important to note that the workspace consists only of R objects, not of
any of the output that you have generated during a session. If you want
to save your output, use “Save to file” from the File menu on Windows
or use standard cut-and-paste facilities. Another option, popular on Unix
and Linux systems, is to use ESS, which is a “mode” for the Emacs editor
allowing you to run your entire session in an Emacs buffer. You can get
ESS and installation instruction for it from CRAN (see Appendix A).

The history of commands entered in a session can be saved and reloaded
using the savehistory and loadhistory commands, which are also
mapped to menu entries on Windows.

1.5.2 Getting help

R can do a lot more than what a typical beginner can be expected to need
or even understand. This book is written so that most of the code you are
likely to need in relation to the statistical procedures is described in the
text, and the compendium in Appendix C is designed to provide a basic
overview. However, it is obviously not possible to cover everything.

R also comes with extensive online help in text form as well as in the form
of a series of HTML files that can be read using a Web browser such as
Netscape or Internet Explorer. The help pages can be accessed via “help”
in the menu bar on Windows and by entering help.start () on any
platform. You will find that the pages are of a technical nature. Preci-
sion and conciseness here take precedence over readability and pedagogy
(something one learns to appreciate after exposure to the opposite).

From the command line, you can always enter help (aggregate) to get
help on the aggregate function, or use the prefix form ?aggregate. If
the HTML viewer is running, then the help page is shown there. Other-
wise it is shown as text either through a pager to the terminal window or
in a separate window.

Notice that the HTML version of the help system features a very useful
“Search Engine and Keywords” and that the apropos function allows
you to get a list of command names that contain a given pattern.

Also available with the R distributions is a set of documents in various for-
mats. Of particular interest is “An Introduction to R”, originally based on
a set of notes for S-PLUS by Bill Venables and David Smith and modified
for R by various people. It contains an introduction to the R language and
environment in a rather more language-centric fashion than this book. On
the Windows platform, you can choose to install PDF documents as part
of the installation procedure so that — provided that the Adobe Acrobat
Reader program is also installed — it can be accessed via the Help menu.

1.5 Session management 37

An HTML version (without pictures) can be accessed via the browser
interface on all platforms.

1.5.3 Packages

An R installation contains a library of packages. Some of these packages
are part of the basic installation. Others can be downloaded from CRAN
(see Appendix A), which currently hosts over 100 packages for various
purposes. You can even create your own packages.

A package can contain functions written in the R language, dynamically
loaded libraries of compiled code (written in C or Fortran mostly), and
data sets. It generally implements functionality that most users will prob-
ably not need to have loaded all the time. A package is loaded into R using
the library command, so to load the survival package you should
enter

> library (survival)

The loaded packages are not considered part of the user workspace. If
you terminate your R session and start a new session with the saved
workspace, then you will have to load the packages again. For the same
reason, it is rarely necessary to remove a package that you have loaded,
but it can be done if desired with

> detach ("package:survival")

(see also Section 1.5.5).

1.5.4 Built-in data

We have used the data function without explanation a couple of times
already. It is used to load a built-in data set (one that comes with R or one
of the packages) into memory. Most often, it loads a data frame with the
name that its argument specifies; data (thuesen) will, for instance, load
the thuesen data frame. However, it may be another kind of object, or
even several objects.

What data does is to go through the data directories associated with each
package (see Section 1.5.3) and look for files whose basename matches
the given name. Depending on the file extension several things can then
happen. Files with a .tab extension are read using read.table (Sec-
tion 1.6), whereas files with a . R extension are executed as source files (and
could, in general, do anything!), to give two common examples. If there is

38 1. Basics

a subdirectory of the current directory called data, then it is searched as
well.

1.5.5 attach and detach

The notation for accessing variables in data frames gets rather heavy if
you repeatedly have to write longish commands like

plot (thuesen$blood.glucose, thuesen$short.velocity)

Fortunately, you can make R look for objects among the variables in a
given data frame, for example thuesen. You write

> attach (thuesen)
and then thuesen’s data are available without the clumsy $-notation:
> blood.glucose

[1] 15.3 10.8 8.1 19.5 7.2 5.3 9.3 11.1 7.5 12.2 6.7 5.2
[13] 19.0 15.1 6.7 8.6 4.2 10.3 12.5 16.1 13.3 4.9 8.8 9.5

What happens is that the data frame thuesen is placed in the system’s
search path. You can view the search path with search:

> search()
[1] ".GlobalEnv" "thuesen" "package: ISwR"
[4] "package:ctest" "Autoloads" "package:base"

Notice that thuesen is placed as no. 2 in the search path. .GlobalEnv
is the workspace and package:base is the system library where
all standard functions are defined. Autoloads is not described here.
package:ctest contains the “classical tests”: the Wilcoxon test, etc.
Finally, package : ISwR contains data sets used in this book.

There may be several objects of the same name in different parts of the
search path. In that case, R chooses the first one (that is, it searches first in
.GlobalEnv, then in thuesen, and so forth). For this reason you need
to be a little careful with “loose” objects that are defined in the workspace
outside a data frame since they will be used before any vectors and factors
of the same name in an attached data frame. For the same reason, itisnota
good idea to give a data frame the same name as one of the variables inside
it. Note also that changing a data frame after attaching it will not affect the
variables available since at tach involves a (virtual) copy operation of the
data frame.

It is not possible to attach data frames in front of .GlobalEnv or fol-
lowing package:base. However, it is possible to attach more than one

1.6 Data entry 39

data frame. New data frames are inserted into position 2 by default, and
everything except .GlobalEnv moves one step to the right. It is, how-
ever, possible to specify that a data frame should be searched before
.GlobalEnv by using constructions of the form

with (thuesen, plot (blood.glucose, short.velocity), thuesen)

In some contexts, R uses a slightly different method when looking for ob-
jects. If the program “knows” that it needs a variable of a specific type
(usually a function), it will skip those of other types. This is what saves
you from the worst consequences of accidentally naming a variable (say)
¢, even though there is a system function of the same name.

You can remove a data frame from the search path with detach. If no
arguments are given, the data frame in position 2 is removed, which is
generally what is desired. .GlobalEnv and package:base cannot be
detach’ed.

> detach()

> search()

[1] ".GlobalEnv" "package:ISwR" "package:ctest"
[4] "Autoloads" "package:base"

1.6 Data entry

Data sets do not have to be very large before it becomes impractical to type
them in with ¢ (...). In this section we discuss how to read data files
and how to use the data editor module in R. The text has some bias to-
ward Windows systems, mainly because this is where problems are most
frequently encountered.

1.6.1 Reading from a text file

The most convenient way of reading data into R is via the function called
read. table. It requires that data is in “ASCII format”, that is, a “flat file”
as created with Windows” NotePad or any plain-text editor. The result of
read.table is a data frame, and it expects to find data in a correspond-
ing layout where each line in the file contains all data from one subject (or
rator ...) in a specific order, separated by blanks or, optionally, some other
separator. The first line of the file can contain a header giving the names
of the variables, a practice that is highly recommended.

Table 11.6 in Altman (1991) contains an example on ventricular circumfer-
ential shortening velocity versus fasting blood glucose by Thuesen et al.

40 1. Basics

We used those data to illustrate subsetting and use them again in the chap-
ter on correlation and regression. They are among the built-in datasets in
the ISwR package and available via data (thuesen), but the point here
is to show how to read them from a plain-text file.

Let’s assume that the data are contained in the file thuesen. txt, which
looks as follows:

blood.glucose short.velocity

15.3 1.76
10.8 1.34
8.1 1.27
19.5 1.47
7.2 1.27
5.3 1.49
9.3 1.31
11.1 1.09
7.5 1.18
12.2 1.22
6.7 1.25
5.2 1.19
19.0 1.95
15.1 1.28
6.7 1.52
8.6 NA

4.2 1.12
10.3 1.37
12.5 1.19
16.1 1.05
13.3 1.32
4.9 1.03
8.8 1.12
9.5 1.70

To enter the data into the file, you could start up Windows” NotePad (usu-
ally found via the Start button and Programs/ Accessories) or a similar text
editor and simply type the data as shown. Unix/Linux users should just
use a standard editor like emacs or vi. Notice that the columns are sep-
arated by an arbitrary number of blanks and that NA represents a missing
value.

Finally, you would save the data to a text file. Notice that some programs
like Word or WordPad require special actions in order to save as text. Their
normal save format is difficult to read from other programs.

Assuming further that the file is in the ISwR folder on the N: drive, the
data can be read using

> thuesen <- read.table("N:/ISwR/thuesen.txt",6 header=T)

1.6 Data entry 41

Notice header=T specifying that the first line is a header containing
the names of variables contained in the file. Also note that you use for-
ward slashes (/), not backslashes (\), in the filename, even on a Windows
system.

The reason for avoiding backslashes in filenames is that the symbol is used
as an “escape character” for specifying characters that could not normally
be entered in a text string: \n means the newline character; \ " means that
the string should contain a "; etc. The backslash itself is written \\ so we
could also have used N: \\ISwR\\thuesen. txt.

Variants of the read. table function are read.csv and read.csv2.
The former assumes that fields are separated by a comma instead of
whitespace, and the latter assumes that they are separated by semicolons
but use a comma as the decimal point (some programs generate this for-
mat when running in European locales). In these formats an empty field
is allowed to represent a missing value. Both have header=T as the de-
fault. Further variants are read.delim and read.delim2 for reading
delimited files (by default, the delimiter is the Tab character).

The result is a data frame, which is put into the variable thuesen and
looks as follows:

> thuesen
blood.glucose short.velocity

1 15.3 1.76
2 10.8 1.34
3 8.1 1.27
4 19.5 1.47
5 7.2 1.27
6 5.3 1.49
7 9.3 1.31
8 11.1 1.09
9 7.5 1.18
10 12.2 1.22
11 6.7 1.25
12 5.2 1.19
13 19.0 1.95
14 15.1 1.28
15 6.7 1.52
16 8.6 NA
17 4.2 1.12
18 10.3 1.37
19 12.5 1.19
20 16.1 1.05
21 13.3 1.32
22 4.9 1.03
23 8.8 1.12
24 9.5 1.70

42 1. Basics

The read. table function knows a couple of other tricks. It autodetects
whether a vector is text or numeric and converts it to a factor in the former
case (but makes no attempt to recognize numerically coded factors). Fur-
thermore, it will recognize the case where the first line is one item shorter
than the rest and will interpret that layout to imply that the first line con-
tains a header and the first value on all subsequent lines is a row label
— that is, exactly the layout generated when printing a data frame as in
the above example. It is also possible to specify which strings represent
missing values via the na . strings argument.

1.6.2 The data editor

R provides two ways of editing data interactively. One allows you to edit
numeric variables in the workspace using the data . entry function, and
the other lets you edit data frames. Both use the same spreadsheet-like
interface. We only discuss the data frame editor here. The interface is a bit
rough but quite useful for small data sets.

To edit a data frame you can use the edit function:

> data(airquality)
> aqg <- edit(airquality)

This brings up a spreadsheet-like editor with a column for each vari-
able in the data frame. The airquality data set is built into R; see
help(airquality) for its contents. Inside the editor, you can move
around with the mouse or the cursor keys and edit the current cell by typ-
ing in data. The type of variable can be switched between real (numeric)
and character (factor) by clicking on the column header, and the name of
the variable can be changed similarly.

Note that there is (as of R 1.5.0) no way to delete rows and columns and
that new data can be entered only at the end.

When you close the data editor, the edited data frame is assigned to aq.
The original airquality is left intact. Alternatively, if you do not mind
overwriting the original data frame, you could have used

> fix(airquality)

In the airquality data, it may be useful to change the Month variable
to a factor by switching its mode to character. This gives a factor with
label names "5" to "9", but more meaningful names may be assigned after
editing with

> levels(airqualitySMonth) <- c("May", "June", "July",
+ "August", "September")

1.6 Data entry 43

Alternatively, levels (airqualitysMonth) <- month.name[5:9]
could have been used.

To enter data into a blank data frame, use

> dd <- data.frame()
> fix(dd)

An alternative would be dd <- edit(data.frame()), which works
fine, except that beginners tend to re-execute the command when they
need to edit dd, which of course destroys all data. It is necessary in either
case to start with an empty data frame since by default edit expects you
to want to edit a user-defined function and would bring up a text editor if
you started it as edit ().

1.6.3 Interfacing to other programs

Sometimes you will want to move data between R and other statisti-
cal packages or spreadsheets. A simple fallback approach is to request
the package in question to export data as a text file of some sort and
use one of read.table, read.csv, read.csv2, read.delim, and
read.delim2 to read the data as an R data frame. Unfortunately, each
program seems to have its own idiosyncrasies, but the read functions in R
are flexible enough to cope.

The foreign package is one of the packages labeled “recommended”
and should therefore be available with binary distributions of R. It con-
tains routines to read files from SPSS (. sav format), SAS (export libraries),
Stata, Minitab, and some S-PLUS version 3 dump files.

Unix/Linux users sometimes find themselves with data sets written on
Windows machines. The foreign library will work there as well for
those formats that it supports. Notice that ordinary SAS data sets are
not among the supported formats. These have to be converted to ex-
port libraries on the originating system. Data that have been entered
into Microsoft Excel spreadsheets are most conveniently extracted using
compatible applications like Sun StarOffice.

For data stored in databases, there exists a number of interface packages
on CRAN. Of particular interest on the Windows platform is the RODBC
package, because you can set up ODBC connections to data stored by
common applications including Excel and Access.

For up-to-date information on these matters, consult the “R Data Im-
port/Export” manual that comes with the system.

44 1. Basics
1.7 Exercises

1.1 What is the most convenient way to insert a value between two
elements of a vector at a given position?

1.2 How would you check whether two vectors are the same, if they
may contain missing (N2) values? (Use of the identical function is
considered cheating!)

1.3 If xis a factor with n levels and y is a length n vector, what happens
if you compute y [x]?

1.4 The cut function is used to create a factor from a numeric vec-
tor. Look up the details on its help page. Create a factor in which the
blood.glucose variable in the thuesen data is divided into the inter-
vals (4,7], (7,9], (9,12], and (12,20]. Change the level names to “low”,
“intermediate”, “high”, and “very high”.

1.5 Write the logical expression to use to extract girls between 7 and 14
years of age in the juul data set.

1.6 What happens if you change the levels of a factor (with 1evels)and
give the same value to two or more levels?

1.7 Use sapply to simulate the result of taking the mean of 100 random
numbers from the normal distribution for 10 independent samples.

1.8 Write the built-in data set thuesen to a Tab-separated text file with
write.table. View it with a text editor (depending on your system).
Change the NA value to . and read the changed file back into R with a
suitable command.

Also try importing the data into other applications of your choice and
exporting them to a new file after editing. You may have to remove row
names to make this work.

2
Probability and distributions

The concepts of randomness and probability are central to statistics. It
is an empirical fact that most experiments and investigations are not
perfectly reproducible. The degree of irreproducibility may vary: Some
physical experiments may yield data that are accurate to many decimal
places, whereas data on biological systems are typically much less reli-
able. However, the view of data as something coming from a statistical
distribution is vital to understanding statistical methods.

In this section we outline the basic ideas of probability and the functions
that R has for random sampling and handling of theoretical distributions.

2.1 Random sampling

Much of the earliest work in probability theory was about games and gam-
bling issues, based on symmetry considerations. The basic notion then is
that of a random sample, dealing from a well-shuffled pack of cards or
picking numbered balls from a well-stirred urn.

In R you can simulate these situations with the sample function. If you
want to pick five numbers at random from the set 1:40, then you can
write

> sample(1:40,5)

46 2. Probability and distributions

[1] 4 30 28 40 13

The first argument (x) is a vector of values to be sampled and the second
(size) is the sample size. Actually, sample (40,5) would suffice since
a single number is interpreted to represent the length of a sequence of
integers.

Notice that the default behaviour of sample is sampling without replace-
ment. That is, the samples will not contain the same number twice, and
size can obviously not be bigger than the length of the vector to be sam-
pled. If you want sampling with replacement, then you need to add the
argument replace=TRUE.

Sampling with replacement is suitable for modelling coin tosses or throws
of a die. So, for instance, to simulate 10 coin tosses we could write

> sample(c("H","T"), 10, replace=T)
[1] I|TIV HT" llTlI IITH HTH "Hll IIHII I|TH "H" IITII

In fair coin-tossing, the probability of heads should equal the probability
of tails, but the idea of a random event is not restricted to symmetric cases.
It could be equally well applied to other cases such as the successful out-
come of a surgical procedure. Hopefully, there would be a better than 50%
chance of this. You can simulate data with nonequal probabilities for the
outcomes (say, a 90% chance of success) by using the prob argument to
sample, asin

> sample(c("succ", "fail"), 10, replace=T, prob=c (0.9, 0.1))
[1] "succ" "succ" "succ" "succ" "succ" "succ" "succ" "succ"
[9] "succ" "succ"

This may not be the best way to generate such a sample, though. See the
later discussion of the binomial distribution.

2.2 Probability calculations and combinatorics

Let’s return to the case of sampling without replacement, specifically
sample(1:40, 5).The probability of obtaining a given number as the
first one of the sample should be 1/40, the next one 1/39, and so forth. The
probability of a given sample should then be 1/(40 x 39 x 38 x 37 x 36).
Or, in R, use the prod function, which calculates the product of a vector
of numbers

> 1/prod(40:36)
[1] 1.266449e-08

2.3 Discrete distributions 47

However, notice that this is the probability of getting given numbers in a
given order. If this were a Lotto-like game, then you would rather be inter-
ested in the probability of guessing a given set of five numbers correctly.
Thus you need also to include the cases that give the same numbers in a
different order. Since obviously the probability of each such case is going
to be the same, all we need to do is to figure out how many such cases
there are and multiply by that. There are 5 possibilities for the first num-
ber, and for each of these there are 4 possibilities for the second, and so
forth; that is, the numberis 5 x 4 x 3 x 2 x 1. This number is also written
as 5! (5 factorial). So the probability of a “winning Lotto coupon” would be

> prod(5:1) /prod(40:36)
[1] 1.519738e-06

There is another way of arriving at the same result. Notice that since the
actual set of numbers is immaterial, all sets of five numbers must have the
same probability. So all we need to do is to calculate the number of ways
to choose 5 numbers out of 40. This is denoted

40 40!
(5) —ﬁ—658008

In R the choose function can be used to calculate this number, and the
probability is thus

> 1/choose(40,5)
[1] 1.519738e-06

2.3 Discrete distributions

When looking at independent replications of a binary experiment, you
would not usually be interested in whether each case is a success or a
failure, but rather in the total number of successes (or failures). Obvi-
ously, this number is random, since it depends on the individual random
outcomes, and it is consequently called a random variable. In this case it
is a discrete-valued random variable that can take values in 0,1,...,n,
where 7 is the number of replications. Continuous random variables are
encountered later.

A random variable X has a probability distribution that can be described
using point probabilities f(x) = P(X = x) or the cumulative distribution
function F(x) = P(X < x). In the case at hand, the distribution can be
worked out as having the point probabilities

£ = (1)pra—py

X

48 2. Probability and distributions

This is known as the binomial distribution, and the (%) are known as bino-
mial coefficients. The parameter p is the probability of a successful outcome
in an individual trial. A graph of the point probabilities of the binomial
distribution appears in Figure 2.2 ahead.

We delay describing the R functions related to the binomial distribution
until we have discussed continuous distributions so that we can present
the conventions in a unified manner.

Many other distributions can be derived from simple probability models.
For instance, the geometric distribution is similar to the binomial distri-
bution but records the number of failures that occur before the first
success.

2.4 Continuous distributions

Some data arise from measurements on an essentially continuous scale, for
instance temperature, concentrations, etc. In practice they will be recorded
to a finite precision, but it is useful to disregard this in the modelling. Such
measurements will usually have a component of random variation, which
makes them less than perfectly reproducible. However, these random fluc-
tuations will tend to follow patterns; typically they will cluster around a
central value with large deviations being more rare than smaller ones.

In order to model continuous data we need to define random variables
that can obtain the value of any real number. Because there are infinitely
many numbers infinitely close, the probability of any particular value will
be zero so there is no such thing as a point probability as for discrete-
valued random variables. Instead we have the concept of a density: This is
the infinitesimal probability of hitting a small region around x divided by
the size of the region. The cumulative distribution function can be defined
as before, and we have the relation

F(x) = /joof(x) dx

There are a number of standard distributions that come up in statistical
theory and are available in R. It makes little sense to describe them in
detail here except for a couple of examples.

The uniform distribution has a constant density over a specified interval (by
default [0, 1]).

2.5 The built-in distributions in R 49

The normal distribution (also known as the Gaussian distribution) has
density

(x — p)?
202

)

depending on its mean p and standard deviation o. The normal distri-
bution has a characteristic bell shape (Figure 2.1), and modifying u and
o simply translates and widens the distribution. It is a standard building
block in statistical models, where it is commonly used to describe error
variation. It also comes up as an approximating distribution in several
contexts; for instance, the binomial distribution for large sample sizes can
be well approximated by a suitably scaled normal distribution.

2.5 The built-in distributions in R

The standard distributions that turn up in connection with model building
and statistical tests have been built into R, and it can therefore completely
replace traditional statistical tables. Here we look only at the normal dis-
tribution and the binomial distribution, but other distributions follow
exactly the same pattern.

Four fundamental items can be calculated for a statistical distribution:

¢ Density or point probability

* Cumulated probability, distribution function

¢ Quantiles

¢ Pseudo-random numbers
For all distributions implemented in R, there is a function for each of
the four items listed above. For example, for the normal distribution,

these are named dnorm, pnorm, gnorm, and rnorm, respectively (density,
probability, quantile, and random).

2.5.1 Densities

The density for a continuous distribution is a measure of the relative prob-
ability of “getting a value close to x”. The probability of getting a value in
a particular interval is the area under the corresponding part of the curve.

50 2. Probability and distributions

For discrete distributions, the term “density” is used for the point proba-
bility — the probability of getting exactly the value x. Technically, this is
correct: It is a density with respect to counting measure.

N]
()
@ _]
o

—_

x

x

g o]

o ©

c

©
-
o
o |
(=)

I I I I I
-4 -2 0 2 4

X

Figure 2.1. Density of normal distribution.

The density function is likely the one of the four function types that is least
used in practice, but if, for instance it is desired to draw the well-known
bell curve of the normal distribution, then it can be done like this:

> X <- seq(-4,4,0.1)
> plot(x,dnorm(x), type="1")

(Notice that this is the letter ‘1, not the digit ‘1’).

The function seq (see p. 13) is used to generate equidistant values, here
from —4 to 4 in steps of 0.1, thatis (—4.0, —3.9, —3.8,...,3.9,4.0). The use
of type="1" as an argument to plot causes the function to draw lines
between the points rather than plotting the points themselves.

An alternative way of creating the plot is to use curve as follows:

> curve (dnorm(x), from=-4, to=4)

2.5 The built-in distributions in R 51

This is often a more convenient way of making graphs, but it does require
that the y-values can be expressed as a simple functional expression in x.

For discrete distributions, where variables can take on only distinct values,
it is preferable to draw a pin diagram, here for the binomial distribution
with n = 50 and p = 0.33 (Figure 2.2):

> x <- 0:50
> plot(x,dbinom(x,size=50,prob=.33),type="h")

0.12
|

=50, prob = 0.33)
0.06 0.08 0.10
| | |

dbinom(x, size
0.04
|

0.02
|

0 10 20 30 40 50

0.00
|

X

Figure 2.2. Point probabilities in binom(50, 0.33).

Notice that there are three arguments to the “d-function” this time. In
addition to x, you have to specify the number of trials #n and the proba-
bility parameter p. The distribution drawn corresponds to, for example,
the number of 5s or 6s in 50 throws of a symmetrical die. Actually, dnorm
also takes more than one argument, namely the mean and standard devia-
tion, but they have default values of 0 and 1, respectively, since most often
it is the standard normal distribution that is requested.

The form 0:50 is a short version of seq (0,50, 1): the whole numbers
from 0 to 50 (cf. p. 13). It is type="h" (as in histogram-like) that causes
the pins to be drawn.

52 2. Probability and distributions
2.5.2 Cumulative distribution functions

The cumulative distribution function describes the probability of “hitting”
x or less in a given distribution. The corresponding R functions begin with
a ‘p’ (for probability) by convention.

Just as you can plot densities, you can of course also plot cumulative dis-
tribution functions, but that is usually not very informative. More often,
actual numbers are desired. Say that it is known that some biochemical
measure in healthy individuals is well described by a normal distribution
with a mean of 132 and a standard deviation of 13. Then, if a patient has a
value of 160, there is

> l-pnorm(160,mean=132,sd=13)
[1] 0.01562612

or only about 1.5% of the general population that has that value or higher.
The function pnorm returns the probability of getting a value smaller
than its first argument in a normal distribution with the given mean and
standard deviation.

Another typical application occurs in connection with statistical tests.
Consider a simple sign test: Twenty patients are given two treatments each
(blindly and in randomized order) and then asked whether treatment A
or B worked better. It turned out that 16 patients liked A better. The ques-
tion is then whether this can be taken as sufficient evidence that A actually
is the better treatment, or whether the outcome might as well have hap-
pened by chance even if the treatments were equally good. If there was
no difference between the two treatments, then we would expect that the
number of people favouring treatment A to be binomially distributed with
p = 0.5and n = 20. How (im)probable would it then be to obtain what we
have observed? Like in the normal distribution, we need a tail probability,
and the immediate guess might be to look at

> pbinom(16,size=20,prob=.5)
[1] 0.9987116

and subtract it from 1 to get the upper tail — but this would be an error!
What we need is the probability of the observed or more extreme and pbinom
is giving the probability of 16 or less. We need to use “15 or less” instead.

> 1-pbinom(15,size=20,prob=.5)
[1] 0.005908966

If you want a two-tailed test because you have no prior idea about which
treatment is better, then you will have to add the probability of obtain-
ing equally extreme results in the opposite direction. In the present case,

2.5 The built-in distributions in R 53

that means the probability that 4 or fewer people prefer A, giving a total
probability of

> 1-pbinom (15,20, .5)+pbinom(4,20,.5)
[1] 0.01181793

(which is obviously exactly twice the one-tailed probability).

As can be seen from the last command, it is not strictly necessary to use
the size and prob keywords as long as the arguments are given in the
right order (positional matching; Section 1.2.2).

It is quite confusing to keep track of whether or not the observation itself
needs to be counted. Fortunately, the function binom. test keeps track
of such formalities and performs the correct binomial test. This is further
discussed in Chapter 7.

2.5.3 Quantiles

The quantile function is the inverse of the cumulative distribution func-
tion. The p-quantile is the value with the property that there is probability
p of getting a value less than or equal to it. The median is by definition the
50% quantile.

Some details concerning the definition in the case of discontinuous distri-
butions are glossed over here. You can fairly easily deduce the behaviour
by experimenting with the R functions.

Tables of statistical distributions are almost all given in terms of quantiles.
For a fixed set of probabilities, the table shows the boundary that a test
statistic must cross in order to be considered significant at that level. This
is purely for operational reasons; it is almost superfluous when you have
the option of computing p exactly.

Theoretical quantiles are commonly used for the calculation of confi-
dence intervals and for power calculations in connection with designing
and dimensioning experiments (see Chapter 8). A simple example of a
confidence interval can be given here (see also Chapter 4).

If we have n normally distributed observations with the same mean p
and standard deviation o, then it is known that the average & is normally
distributed around p with standard deviation o/+/n. A 95% confidence
interval for p can be obtained as

4 0/vnx Nygs < u<x+0/yv/nx Noozs

where Ny g5 is the 2.5% quantile in the normal distribution. If o = 12 and
we have measured n = 5 persons and found an average of X = 83, then

54 2. Probability and distributions

we can compute the relevant quantities as follows (“sem” means standard
error of the mean):

> xbar <- 83

> sigma <- 12

>n <- 5

> sem <- sigma/sqgrt (n)

> sem

[1] 5.366563

> xXbar + sem * gnorm(0.025)
[1] 72.48173

> xXbar + sem * gnorm(0.975)
[1] 93.51827

and thus find a 95% confidence interval for u going from 72.48 to 93.52.

Since it is known that the normal distribution is symmetric, so that
Noozs = —Npogrs, it is common to write the formula for the confi-
dence interval as ¥ + 0/1/n X Ny g75. The quantile itself is often written
®~1(0.975), where @ is standard notation for the cumulative distribution
function of the normal distribution (pnorm).

Another application of quantiles is in connection with Q-Q plots (see
Section 3.2.3), which can be used to assess whether a set of data can
reasonably be assumed to come from a given distribution.

2.5.4 Random numbers

To many people it sounds like a contradiction in terms to generate random
numbers on a computer, since its results are supposed to be predictable
and reproducible. What is in fact possible is to generate sequences of
“pseudo-random” numbers, which for practical purposes behave as if
they were drawn randomly.

Here random numbers are used to give the reader a feeling for the way
in which randomness affects the quantities that can be calculated from a
set of data. In professional statistics they are used to create simulated data
sets in order to study the accuracy of mathematical approximations and
the effect of assumptions being violated.

The use of the functions that generate random numbers is straightfor-
ward. The first argument specifies the number of random numbers to
compute, and the subsequent arguments are similar to those for other
functions related to the same distributions. For instance,

> rnorm(10)
[1] -0.2996466 -0.1718510 -0.1955634 1.2280843 -2.6074190
[6] -0.2999453 -0.4655102 -1.5680666 1.2545876 -1.8028839

2.6 Exercises 55

> rnorm(10)
[1] 1.7082495 0.1432875 -1.0271750 -0.9246647 0.6402383
[6] 0.7201677 -0.3071239 1.2090712 0.8699669 0.5882753
> rnorm(10,mean=7, sd=5)
[1] 8.934983 8.611855 4.675578 3.670129 4.223117 5.484290
[7] 12.141946 8.057541 -2.893164 13.590586
> rbinom(10,size=20,prob=.5)
[1] 12 11 10 8 11 8 11 8 8 13

2.6 Exercises

2.1 Calculate the probability for each of the following events: (a) A
standard normally distributed variable is larger than 3. (b) A normally
distributed variable with mean 35 and standard deviation 6 is larger than
42. (c) Getting 10 out of 10 successes in a binomial distribution with prob-
ability 0.8. (d) X < 0.9 when X has the standard uniform distribution. (e)
X > 6.5 in a x? distribution with 2 degrees of freedom.

2.2 It is well known that 5% of the normal distribution lies outside an
interval approximately +2s about the mean. Where are the limits cor-
responding to 1%, 5%o, and 1%.? What is the position of the quartiles
measured in standard deviation units?

2.3 For a disease known to have a postoperative complication frequency
of 20%, a surgeon suggests a new procedure. He tests it on 10 patients
and there are no complications. What is the probability of operating on 10
patients successfully with the traditional method?

2.4 Simulated coin-tossing is probably better done using rbinom than
using sample. Explain how.

This page intentionally left blank

3

Descriptive statistics and graphics

Before going into the actual statistical modelling and analysis of a data
set, it is often useful to make some simple characterizations of the data in
terms of summary statistics and graphics.

3.1 Summary statistics for a single group

It is easy to calculate simple summary statistics with R. Here is how to
calculate the mean, standard deviation, variance, and median.

> x <- rnorm(50)
> mean (x)

[1] 0.03301363
> sd(x)

[1] 1.069454

> var (x)

[1] 1.143731

> median (x)

[1] -0.08682795

Notice that the example starts with the generation of an artificial data
vector x of 50 normally distributed observations. It is used in examples
throughout this section. When reproducing the examples, you will not get
exactly the same results since your random numbers will differ.

58 3. Descriptive statistics and graphics

Empirical quantiles may be obtained with the function quantile, like
this:

> quantile(x)
0% 25% 50% 75% 100%
-2.60741896 -0.54495849 -0.08682795 0.70018536 2.98872414

As you see, by default you get the minimum, the maximum, and the
three quartiles — the 0.25, 0.50, and 0.75 quantiles, so named because they
correspond to a division into four parts. Similarly, we have deciles for
0.1,0.2,...,0.9, and centiles or percentiles. The difference between the first
and third quartiles is called the interquartile range (IQR) and is sometimes
used as a robust alternative to the standard deviation.

It is also possible to obtain other quantiles; this is done by adding an argu-
ment containing the desired percentage points. This, for example, is how
to get the deciles:

> pvec <- seq(0,1,0.1)
> pvec

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
> quantile(x,pvec)

0% 10% 20% 30% 40%
-2.60741896 -1.07746896 -0.70409272 -0.46507213 -0.29976610
50% 60% 70% 80% 90%
-0.08682795 0.19436950 0.49060129 0.90165137 1.31873981
100%
2.98872414

Beware that there are several possible definitions of empirical quantiles.
The one R uses is based on a sum polygon where the ith ranking observa-
tion is the (i — 1) /(n — 1) quantile and intermediate quantiles are obtained
by linear interpolation. It sometimes confuses students that in a sample of
10 there will be 3 observations below the first quartile with this definition.

If there are missing values in data, things become a bit more complicated.
For illustration, we use the following example:

The data set juul contains variables from an investigation performed by
Anders Juul (Rigshospitalet, Department for Growth and Reproduction)
concerning serum IGF-I (insulin-like growth factor) in a group of healthy
humans, primarily school children. The data set is contained in the ISwR
package and contains a number of variables, of which we only use 1gfl
(serum IGE-I) for now, but later in the chapter we also use tanner (Tan-
ner stage of puberty, a classification into five groups, based on appearance
of primary and secondary sexual characteristics), sex, and menarche
(indicating whether or not a girl has had her first period).

3.1 Summary statistics for a single group 59

Attempting to calculate the mean of igf1 reveals a problem.

> data(juul)

> attach(juul)
> mean(igfl)
[1] NA

R will not skip missing values unless explicitly requested to do so. The
mean of a vector with an unknown value is unknown. However, you can
give the na.rm argument (not available, remove) to request that missing
values be removed:

> mean (igfl,na.rm=T)
[1] 340.168

There is one slightly annoying exception: The length function will not
understand na . rm, so we cannot use it to count the number of nonmissing
measurements of igfl. However, you can use

> sum(!is.na(igfl))
[1] 1018

The above construction uses the fact that if logical values are used in
arithmetic, then TRUE is converted to 1 and FALSE to 0.

A nice summary display of a numeric variable is obtained from the
summary function:

> summary (igfl)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’'s
25.0 202.3 313.5 340.2 462.8 915.0 321.0

The 1st Qu. and 3rd Qu. refer to the empirical quartiles (0.25 and 0.75
quantiles).

In fact, it is possible to summarize an entire data frame with

> summary (juul)

age menarche sex
Min. : 0.170 Min. : 1.000 Min. :1.000
1st Qu.: 9.053 1st Qu.: 1.000 1st Qu.:1.000
Median :12.560 Median 1.000 Median :2.000
Mean :15.095 Mean 1.476 Mean :1.534
3rd Qu.:16.855 3rd Qu.: 2.000 3rd Qu.:2.000
Max. :83.000 Max. : 2.000 Max. :2.000
NA's : 5.000 NA'Ss :635.000 NA's 5.000

igfl tanner testvol
Min. : 25.0 Min. ¢ 1.000 Min. ¢ 1.000
1st Qu.:202.2 1st Qu.: 1.000 1st Qu.: 1.000
Median :313.5 Median : 2.000 Median : 3.000
Mean :340.2 Mean : 2.640 Mean 7.896

60 3. Descriptive statistics and graphics

3rd Qu.:462.8 3rd Qu.: 5.000 3rd Qu.: 15.000
Max. :915.0 Max. : 5.000 Max. : 30.000
NA's :321.0 NA's :240.000 NA’'s :859.000

Notice that this data set has menarche, sex, and tanner coded as nu-
meric variables even though they are clearly categorical. This can be
mended as follows:

> detach (juul)
> juulSsex <- factor(juulS$sex,labels=c("M","F"))
> juul$menarche <- factor (juul$menarche, labels=c("No", "Yes"))
> juulStanner <- factor (juulStanner,
+ labels=c("1I","1II","III","IV","V"))
> attach(juul)
> summary (juul)
age menarche sex igfl

Min. : 0.170 No :369 M :621 Min. : 25.0
lst Qu.: 9.053 Yes :335 F :713 1st Qu.:202.2
Median :12.560 NA’s:635 NA's: 5 Median :313.5
Mean :15.095 Mean :340.2
3rd Qu.:16.855 3rd Qu.:462.8
Max. :83.000 Max. :915.0
NA's : 5.000 NA's :321.0
tanner testvol

I :515 Min. : 1.000

IT :103 l1st Qu.: 1.000

IIT : 72 Median : 3.000

v . 81 Mean : 7.896

v :328 3rd Qu.: 15.000

NA’'s:240 Max. : 30.000

NA's :859.000

Notice how the display changes for the factor variables. Note also that
juul was detached and reattached after the modification. This is because
modifying a data frame does not affect any attached version. It was not
strictly necessary to do it here, because summary works directly on the
data frame whether attached or not.

In the above the variables sex, menarche, and tanner were converted
to factors with suitable level names (in the raw data these are represented
using numeric codes). The syntax x <- factor(x,labels=...) isa
short form for x <- factor (x) followed by levels (x) <-The
converted variables were put back into the data frame juul replacing the
original sex, tanner, and menarche variables. We might also have used
the transform function:

> juul <- transform(juul,

+ sex=factor (sex, labels=c("M", "F")),

+ menarche=factor (menarche, labels=c("No", "Yes")),

+ tanner=factor (tanner, labels=c("I","II","III","IV","V")))

3.2 Graphical display of distributions 61

Histogram of x

0 _
>
2 2 4
(3]
3
o
o
[T
0 —
o -
| T T T T T |
-3 -2 -1 0 1 2 3

Figure 3.1. Histogram.
3.2 Graphical display of distributions

3.2.1 Histograms

You can get a reasonable impression of the shape of a distribution by
drawing a histogram, that is, a count of how many observations fall within
specified divisions (“bins”) of the x-axis (Figure 3.1).

> hist (x)

By specifying breaks=n in the hist call, you get approximately n bars in
the histogram since the algorithm tries to create “pretty” cutpoints. You
can have full control over the interval divisions by specifying breaks as
a vector, rather than a number. Altman (1991, pp. 25-26) contains an ex-
ample of accident rates by age group. These are given as a count in age
groups 04, 5-9, 10-15, 16, 17, 18-19, 20-24, 25-59, and 60-79 years of age.
The data can be entered as follows:

> mid.age <- c¢(2.5,7.5,13,16.5,17.5,19,22.5,44.5,70.5)
> acc.count <- c¢(28,46,58,20,31,64,149,316,103)
> age.acc <- rep(mid.age,acc.count)

62 3. Descriptive statistics and graphics

Histogram of age.acc

<
o o
2 n
(s2]
o
o
'2\ Al
® o 4
S o
a
S
o
o
Q —
° | T T T |
0 20 40 60 80
age.acc

Figure 3.2. Histogram with unequal divisions.

> brk <- ¢(0,5,10,16,17,18,20,25,60,80)
> hist (age.acc,breaks=brk)

Here the first three lines generate pseudo-data from the table in the book.
For each interval, the relevant number of “observations” is generated with
an age set to the midpoint of the interval, that is, 28 2.5-year-olds, 46 7.5-
year-olds, etc. Then a vector brk of cutpoints is defined (note that the
extremes need to be included) and used as the breaks argument to hist,
yielding Figure 3.2.

Notice that you automatically got the “correct” histogram where the area
of a column is proportional to the number. The y-axis is in density units,
that is, proportion of data per x unit, so that the total area of the histogram
will be 1. If, for some reason, you wanted the (misleading) histogram
where the column height is the raw number in each interval, then it can
be specified using freg=T. For equidistant breakpoints, that is the default
(because then you can see how many observations have gone into each
column), but you can set freg=F to get densities displayed. This is really
just a change of scale on the y-axis, but it has the advantage that it be-
comes possible to overlay the histogram with a corresponding theoretical
density function.

3.2 Graphical display of distributions 63

1.0

0.8

(1:n)/n
0.6

0.2 0.4

0.0
|

sort(x)

Figure 3.3. Empirical cumulative distribution function.

3.2.2 Empirical cumulative distribution

The empirical cumulative distribution function is defined as the fraction of
data smaller than or equal to x. That is, if x is the kth smallest observation,
then the proportion k/n of the data is smaller than or equal to x (7/10 if
x is no. 7 of 10). The empirical cumulative distribution function can be
plotted as follows, see Figure 3.3, where x is the simulated data vector
from Section 3.1.

> n <- length(x)
> plot(sort(x), (1:n)/n,type="s",ylim=c(0,1))

The plotting parameter type="s" gives a step function where (x, y) is the
left end of the steps and y1im is a vector of two elements specifying the
extremes of the y-coordinates on the plot. Recall that ¢ (. ..) is used to
create vectors.

Some rather more elaborate displays of empirical cumulative distribution
functions are available in the stepfun package.

64 3. Descriptive statistics and graphics

Normal Q-Q Plot

™ - o
o
AT o
00
3 00°
£ - o
o
g ®
g
2
g ° 7 5
5 M
T s
o
0 000°
o
o o
! o
T T T T T
-2 -1 0 1 2

Theoretical Quantiles

Figure 3.4. Probability plot, using ggnorm (x).

3.2.3 Q-Qplots

One purpose of calculating the empirical cumulative distribution function
is to see whether data can be assumed normally distributed. For a bet-
ter assessment, you might plot the k’th smallest observation against the
expected value of the k’th smallest observation out of 7 in a standard nor-
mal distribution. The point is that in this way you would expect to obtain
a straight line if data come from a normal distribution with any mean and
standard deviation.

Creating such a plot is slightly complicated. Fortunately, there is a built-
in function for doing it, ggnorm. The result of using it can be seen in
Figure 3.4. You only have to write

> ggnorm(x)

As the title of the plot indicates, plots of this kind are also called “Q-Q
plots” (quantile versus quantile). Notice that x and y are interchanged rel-
ative to the empirical c.d.f. — the observed values are now drawn along
the y-axis. You should notice that with this convention, the distribution

3.3 Summary statistics by groups 65

has heavy tails if the outer parts of the curve are steeper than the middle
part.

Some readers will have been taught “probability plots” which are similar
but have the axes interchanged. It can be argued that the way R draws the
plot is the better one, since the theoretical quantiles are known in advance
while the empirical quantiles depend on data. You would normally choose
to draw fixed values horizontally and variable values vertically.

3.2.4 Boxplots

A “boxplot”, or more descriptively a “box-and-whiskers plot”, is a graph-
ical summary of a distribution. Figure 3.5 shows boxplots for IgM and its
logarithm; cf. the example on page 23 in Altman (1991).

Here is how a boxplot is drawn in R: The box in the middle indicates
“hinges” (nearly quartiles, see the help page for boxplot.stats) and
median. The lines (“whiskers”) show the largest/smallest observation that
falls within a distance of 1.5 times the box size from the nearest hinge. If
any observations fall farther away, the additional points are considered
“extreme” values and are shown separately.

The practicalities are these:

data (IgM)
par (mfrow=c(1,2))
boxplot (IgM)
boxplot (log(IgM))
par (mfrow=c(1,1))

vV V V V V

A layout with two plots side by side is specified using the mfrow graphical
parameter. It should be read as “multiframe, rowwise, 1 x 2 layout”. Indi-
vidual plots are organized in 1 row and 2 columns. As you might guess,
there is also an mfcol parameter to plot columnwise. In a 2 X 2 layout
the difference is whether plot no. 2 is drawn in the top right or bottom left
corner.

Notice that it is necessary to reset the layout parameter to ¢ (1, 1) at the
end, unless you also want two plots side by side subsequently.

3.3 Summary statistics by groups

When dealing with grouped data, you will often want to have vari-
ous summary statistics computed within groups. For example, a table of

66 3. Descriptive statistics and graphics

o o
< -

[_
|
|
|

o - |
|
o ©
o
o~ 8
[|
T
! .
|
- . R N
o]
| |
R N
o - o

Figure 3.5. Boxplots for IgM and log IgM.

means and standard deviations. To this end you can use tapply (see Sec-
tion 1.2.16). Here is an example concerning the folate concentration in red
blood cells according to three types of ventilation during anesthesia (Alt-
man, 1991, p. 208). We return to this example in Section 6.1, which also
contains the explanation of the category names.

> data(red.cell.folate)

> attach(red.cell.folate)

> tapply(folate,ventilation,mean)

N20+02,24h N20+02, op 02,24h
316.6250 256.4444 278.0000

The tapply call takes the folate variable, splits it according to
ventilation, and computes the mean for each group. In the same way,
standard deviations and number of observations in the groups can be
computed.

> tapply(folate,ventilation, sd)
N20+02,24h N20+02,op 02,24h
58.71709 37.12180 33.75648
> tapply(folate,ventilation, length)
N20+02,24h N20+02,op 02,24h
8 9 5

3.4 Graphics for grouped data 67

Try something like this for a nicer display:

xbar <- tapply(folate, ventilation, mean)
s <- tapply(folate, ventilation, sd)
n <- tapply(folate, ventilation, length)
cbind (mean=xbar, std.dev=s, n=n)
mean std.dev n
N20+02,24h 316.6250 58.71709 8
N20+02,0p 256.4444 37.12180 9
02,24h 278.0000 33.75648 5

>
>
>
>

For the juul data we might want the mean 1gfl by tanner group, but
of course we run into the problem of missing values again:

> tapply(igfl, tanner, mean)
I ITI ITIT 1IV v
NA NA NA NA NA

We need to get tapply to pass na.rm=T as a parameter to mean to make
it exclude the missing values. This is achieved simply by passing it as an
additional argument to tapply.

> tapply(igfl, tanner, mean, na.rm=T)
I IT ITT Iv \4
207.4727 352.6714 483.2222 513.0172 465.3344

3.4 Graphics for grouped data

In dealing with grouped data it is important to be able not only to cre-
ate plots for each group but also to be able to compare the plots between
groups. In this section we review some general graphical techniques, al-
lowing us to display similar plots for several groups on the same page.
Some functions have specific features for displaying data from more than
one group.

3.4.1 Histograms

We have already seen in Section 3.2.1 how to obtain a histogram simply by
typing hist (x), where x is the variable containing the data. R will then
choose a number of groups so that a reasonable number of data points
falls in each bin, while at the same time ensuring that the cutpoints are
“pretty” numbers on the x-axis.

It is also mentioned there that an alternative number of intervals can be
set via the argument breaks, although you do not always get exactly

68 3. Descriptive statistics and graphics

Histogram of expend.lean

<
T o
c
(3]
> [aV)
g
\C —

o [[T]

[I I 1
6 8 10 12
expend.lean
Histogram of expend.obese

<
T o
C
(3]
=] [aV)
o
£ !_i_ﬂ
L

e I I 1

6 8 10 12
expend.obese

Figure 3.6. Histograms with refinements.

the number you asked for since R reserves the right to choose “pretty”
column boundaries. For instance, multiples of 0.5 MJ are chosen in the
following example using the energy data introduced in Section 1.2.14 on
the 24-hour energy expenditure for two groups of women:

In this example some further techniques of general use are illustrated. The
end result is seen in Figure 3.6, but first we must fetch the data:

data (energy)

attach (energy)

expend.lean <- expend[stature=="lean"]
expend.obese <- expend[stature=="obese"]

vV V. V V

Notice how we separate the expend vector in the energy data frame into
two vectors according to the value of the factor stature.

Then the actual plotting;:

par (mfrow=c(2,1))
hist (expend.lean,breaks=10,xlim=c(5,13),ylim=c(0,4),col="white")
hist (expend.obese,breaks=10,xlim=c(5,13),ylim=c(0,4),col="grey")
par (mfrow=c(1l,1))

vV V. V VvV

3.4 Graphics for grouped data 69

We set par (mfrow=c (2,1)) to get the two histograms in the same plot.
In the hist commands themselves, we used the breaks argument as
already mentioned and col, whose effect should be rather obvious. We
also used x1im and ylim to get the same x- and y-axes in the two plots.
However, it is a coincidence that the columns have the same width.

A practical remark: When working with plots like the above where more
than a single line of code is necessary to achieve the result, it gets cum-
bersome to use command recall in the R console window every time
something needs modification. A better idea may be to start up a plain-
text editor and cut and paste entire blocks of code from there. You might
also take it as an incentive to start writing simple functions.

3.4.2 Parallel boxplots

You might want a set of boxplots from several groups in the same frame.
boxplot can handle this, both when data are given in the form of sepa-
rate vectors from each group and when data are in one long vector and
a parallel vector or factor defines the grouping. To illustrate the latter we
use the energy data introduced in Section 1.2.14

Figure 3.7 is created as follows:

> boxplot (expend ~ stature)

We could also have based the plot on the separate vectors expend. lean
and expend.obese. In that case a syntax is used specifying the vectors
as two separate arguments:

> boxplot (expend.lean, expend.obese)

The plot is not shown here, but the only difference lies in the labeling
of the x-axis. There is also a third form where data are given as a single
argument that is a list of vectors.

The bottom plot has been made using the complete expend vector and
the grouping variable fstature.

Notation of the type y ~ x should be read “y described using x”. This is
the first example we see of a model formula. We see considerably more ex-
amples of model formulas when we get to regression analysis and analysis
of variance in Chapters 5 and 6.

70 3. Descriptive statistics and graphics

[op
o
-
|
o _ |
o
|
-
- o
o _| [e]
e
T
o -
PR I
S —
© — []
T
PR I
~ —
© 4 o
T T
lean obese

Figure 3.7. Parallel boxplot.

3.4.3 Stripcharts

The boxplots made in the preceding section show a “Laurel & Hardy”
effect that is not really well founded in the data. The cause is that the in-
terquartile range is quite a bit larger in one group than in the other, making
the boxplot appear “fatter”. With groups as small as these, the quartiles
will be quite inaccurately determined, and it may therefore be more desir-
able to plot the raw data. If you were to do this by hand, you might draw a
dot diagram where every number is marked with a dot on a number line.
R’s automated variant of this is the function stripchart. Four variants
of stripcharts are seen in Figure 3.8.

The four plots were created as follows:

opar <- par (mfrow=c(2,2),mex=0.8,mar=c(3,3,2,1)+.1)
stripchart (expend~stature)

stripchart (expend~stature, method="stack")
stripchart (expend~stature,method="jitter")
stripchart (expend~stature, "jitter",jitter=.03)

par (opar)

V V V V V YV

3.4 Graphics for grouped data 71

Q

(%]

[ORE oo oo oo o

Q

o
[0
(%]
[N oo oo oo o
Qo
o

j C Hn

B_In Inlllll:l':In T |u u| T T g_In |n ull:In T |u u| T

6 7 8 9 10 11 12 13 6 7 8 9 10 11 12 13

@

% a o 27 9o fo "a "

=N a8 %o g °

3 @goo

-1 oo [=]
9 |p 0O0p o o §_n 0D Wogn o g
T T T T T T T T - T T T T T T T
6 7 8 9 10 1 12 13 6 7 8 9 10 11 12 13

Figure 3.8. Stripcharts in four variations.

Notice that a little par magic was used to reduce the spacing between the
four plots. The mex setting reduces the interline distance and mar reduces
the number of lines that surround the plot region. This can be done for
these plots since they have neither main title, subtitle, nor x and y labels.
All the original values of the changed settings can be stored in a variable
(here opar) and reestablished with par (opar).

The first plot is a standard stripchart, where the points are simply plotted
on a line. The problem with this is that some points can become invisible
because they are overplotted. This is why there is a method argument,
which can be set to either "stack" or "jitter".

The former method stacks points with identical values, but it only does
so if data are completely identical, so in the upper right plot, it is only the
two replicates of 7.48 that get stacked, whereas 8.08, 8.09, and 8.11 are still
plotted in almost the same spot.

The “jitter” method offsets all points a random amount vertically. The
standard jittering on plot no. 3 (bottom left) is a bit large; it may be prefer-
able to make it clearer that data are placed along a horizontal line. For that
purpose, you can set jitter lower than the default of 0.1, which isdone
in the fourth plot.

72 3. Descriptive statistics and graphics

In this example we have not bothered to specify data in several forms as
we did for boxplot but used expend~stature throughout. We could
also have written

stripchart (list (lean=expend.lean, obese=expend.obese))

but stripchart (expend.lean, expend.obese) cannot be used.
(This is so that method can be used as a positional argument.)

3.5 Tables

Categorical data are usually described in the form of tables. This section
outlines how you can create tables from your data and calculate relative
frequencies.

3.5.1 Generating tables

We deal mainly with two-way tables. In the first example we enter a table
directly, as is required for tables taken from a book or a journal article.

A two-way table needs to be in a matrix object (Section 1.2.6). Altman
(1991, p. 242) contains an example on caffeine consumption by marital
status among women giving birth. That table may be input as follows:

> caff.marital <- matrix(c(652,1537,598,242,36,46,38,21,218
+ ,327,106,67),
+ nrow=3, byrow=T)
> caff.marital
[,11 [,21 [,31 [,4]
[1,] 652 1537 598 242
[2,] 36 46 38 21
[3,1 218 327 106 67

The matrix function needs an argument containing the table values as
a single vector and also the number of rows in the argument nrow. By
default, the values are entered columnwise; if rowwise entry is desired,
then you need to specify byrow=T.

You might also give the number of columns instead of rows using ncol.
If exactly one of ncol and nrow is given, R will compute the other one so
that it fits the number of values. If both ncol and nrow are given and it
does not fit the number of values, the values will be “recycled”, which in
some (other!) circumstances can be useful.

3.5 Tables 73

To get readable printouts, you can add row and column names to the
matrices.

> colnames (caff.marital) <- c("0O","1-150","151-300",">300")
> rownames (caff.marital) <- c("Married", "Prev.married", "Single")
> caff.marital

0 1-150 151-300 >300

Married 652 1537 598 242
Prev.married 36 46 38 21
Single 218 327 106 67

In practice, the more frequent case is that you have a database of variables
for each person in a data set. In that case, you should do the tabulation
with table, xtabs, or ftable. These functions will generally work for
tabulating numeric vectors as well as factor variables, but the latter will
have their levels used for row and column names automatically. Hence,
it is recommended to convert numerically coded categorical data into fac-
tors. The table function is the oldest and most basic of the three. The
other two offer formula-based interfaces and better printing of multiway
tables.

The data set juul is introduced on p. 58. Here we look at some other
variables in that data set, namely sex and menarche; the latter indicates
whether or not a girl has had her first period. We can generate some simple
tables as follows:

> table(sex)
sex
M F
621 713
> table (sex,menarche)
menarche
sex No Yes
M 0 0
F 369 335
> table (menarche, tanner)
tanner
menarche I IT III IV \Y%
No 221 43 32 14 2
Yes 1 1 5 26 202

Of course, the table of menarche versus sex is just a check on internal con-
sistency of the data. The table of menarche versus Tanner stage of puberty
is more interesting.

There are also tables with more than two sides, but not many simple sta-
tistical functions use them. Briefly, to tabulate such data just write, for
example, table (factorl, factor2, factor3). To input a table of cell
counts, use the array function (an analog of matrix).

74 3. Descriptive statistics and graphics

Like any matrix, a table can be transposed with the t function:

> t(caff.marital)
Married Prev.married Single

0 652 36 218
1-150 1537 46 327
151-300 598 38 106
>300 242 21 67

For multiway tables, exchanging indices (generalized transposition) is
done by aperm.

3.5.2 Marginal tables and relative frequency

It is often desired to compute marginal tables, that is, the sums of the
counts along one or the other dimension of a table. Due to missing val-
ues, this might not coincide with just tabulating a single factor. This is
done fairly easily using the apply function (Section 1.2.16), but there is
also a simplified version called margin. table, described below.

First we need to generate the table itself:

> tanner.sex <- table(tanner, sex)

tanner.sex is an arbitrarily chosen variable name, which is used for the
crosstable of tanner and sex.

> tanner.sex
sex

tanner M F
I 291 224
II 55 48
IIT 34 38
v 41 40
v 124 204

Then we compute the marginal tables:

> margin.table(tanner.sex, 1)
tanner
I ITI ITIT IV \4
515 103 72 81 328
> margin.table (tanner.sex, 2)

sex
M F
545 554

The second argument to margin. table is the number of the marginal
index: 1 and 2 give row and column totals, respectively.

3.6 Graphical display of tables 75

Relative frequencies in a table are generally expressed as proportions of
the row or column totals. Tables of relative frequencies can be constructed
using prop . table, as follows:

> prop.table(tanner.sex, 1)

sex

tanner M F
I 0.5650485 0.4349515
II 0.5339806 0.4660194
IIT 0.4722222 0.5277778
IV 0.5061728 0.4938272
v 0.3780488 0.6219512

Note that the rows (1st index) sum to 1. If a table of percentages is desired,
just multiply the entire table by 100.

prop. table cannot be used to express the numbers relative to the grand
total of the table, but you can of course always write

> tanner.sex/sum(tanner.sex)

sex

tanner M F
I 0.26478617 0.20382166
IT 0.05004550 0.04367607
IIT 0.03093722 0.03457689
IV 0.03730664 0.03639672
v 0.11282985 0.18562329

The functions margin. table and prop. table also work on multiway
tables — the margin argument can be a vector if the relevant margin has
two or more dimensions.

3.6 Graphical display of tables

For presentation purposes, it may be desirable to display a graph rather
than a table of counts or percentages. In this section the main methods for
this are described.

3.6.1 Bar plots

Bar plots are made using barplot. This function takes an argument,
which can be a vector or a matrix. The simplest variant goes as follows
(Figure 3.9):

> total.caff <- margin.table(caff.marital,2)

76 3. Descriptive statistics and graphics

1500

1000

500
|

[I I]
0 1-150 151-300 >300

Figure 3.9. Simple barplot of total caffeine consumption.

> total.caff
0 1-150 151-300 >300
906 1910 742 330
> barplot (total.caff, col="white")

Without the col="white" argument, the plot comes out in colour, but
this is not suitable for a black and white book illustration.

If the argument is a matrix, then barplot creates by default a “stacked
bar plot”, where the columns are partitioned according to the con-
tributions from different rows of the table. If you want to place the
row contributions beside each other instead, you can use the argu-
ment beside=T. A series of variants is found in Figure 3.10, which is
constructed as follows:

par (mfrow=c(2,2))

barplot (caff.marital, col="white")

barplot (t(caff.marital), col="white")

barplot (t(caff.marital), col="white", beside=T)

barplot (prop.table(t(caff.marital),2), col="white", beside=T)
par (mfrow=c(1l,1))

V V.V V V YV

3.6 Graphical display of tables 77

1500

1000 2000 3000

I
]
I

500

T T T T T
0 1-150 >300 Married Single

o
o
3 =
o
o
o
@ I\
. —'_‘ d —'_‘ |—H_’_‘
=}
“ nll =
o
e f 1 = T 1
Married Single Married Single

Figure 3.10. Four variants of barplot on a two-way table.

In the last three plots we switched rows and columns with the trans-
position function t. In the very last one the columns are expressed as
proportions of the total number in the group. Thus, information is lost
on the relative sizes of the marital status groups, but the group of previ-
ously married women (recall that the data set deals with women giving
birth) is so small that it otherwise becomes almost impossible to compare
their caffeine consumption profile with those of the other groups.

As usual, there is a multitude of ways to “prettify” the plots. Here is one
possibility (Figure 3.11):

> barplot (prop.table(t(caff.marital),2),beside=T,
+ legend.text=colnames (caff.marital),
+ col=c("white", "grey80", "grey50", "black"))

Notice that the legend overlaps the top of one of the columns. R is not
designed to be able to find a clear area in which to place the legend.
However, you can get full control of the legend’s position if you insert
it explicitly with the 1egend function. For that purpose, it will be help-
ful to use locator (), which allows you to click a mouse button over the
plot and have the coordinates returned. See p. 174 for more about this.

78 3. Descriptive statistics and graphics

0 N
e

1 0

O [1-150
< | B |151-300
o M (>300
[} N
R
« N
P
g]
o _|
=} [I— 1

Married Prev.married Single

Figure 3.11. Bar plot with specified colours and legend.

3.6.2 Dotcharts

The Cleveland dotcharts, named after William S. Cleveland (1994), can be
employed to study a table from both sides at the same time. They contain
the same information as bar plots with beside=T but give quite a differ-

ent visual impression. We content ourselves with a single example here
(Figure 3.12):

> dotchart (t (caff.marital))

3.6.3 Pie charts

Pie charts are traditionally scorned upon by statisticians because they are
so often used to make trivial data look impressive and are difficult to
decode for the human mind. They very rarely contain information that
would not have been at least as effectively conveyed in a bar plot. Once
in a while they are useful, though, and it is no problem to get R to draw
them. Here is a way to represent the table of caffeine consumption versus

3.7 Exercises 79

Married
>300 o
151-300 o
1-150 o
0 o

Prev.married
>300
151-300
1-150
0

0po0©

Single
>300 o
151-300 o
1-150 o]

0 500 1000 1500

Figure 3.12. Dotchart of caffeine consumption.

marital status (Figure 3.13; see Section 3.4.3 for an explanation of the “par
magic” used to reduce the space between the subplots):

> opar <- par (mfrow=c(2,2),mex=0.8, mar=c(1,1,2,1))

> gslices <- c("white", "grey80", "grey50", "black")

> pie(caff.marital["Married",], main="Married", col=slices)
> pie(caff.marital["Prev.married",],

+ main="Previously married", col=slices)

> pie(caff.marital["Single",], main="Single", col=slices)

> par (opar)

The col argument sets the colour of the pie slices.

There are more possibilities with piechart. The help page for pie con-
tains an illustrative example concerning the distribution of pie sales(!) by

pie type.

3.7 Exercises

3.1 Explore the possibilities for different kinds of line and point plots.
Vary the plot symbol, line type, line width, and colour.

80 3. Descriptive statistics and graphics

Married Previously married

0
1-150
>300
151-300 151-300
Single
0

1-150 5300

151-300

Figure 3.13. Pie charts of caffeine consumption according to marital status.

3.2 If you make a plot like plot (rnorm(10), type="0o") with over-
plotted lines and points, the lines will be visible inside the plotting
symbols. How can this be avoided?

3.3 How can you overlay two ggnorm plots in the same plotting area?
What goes wrong if you try to generate the plot using type="1" and how
do you avoid that?

3.4 Plot a histogram for the react data set. Since these data are highly
discretized, the histogram will be biased. Why? You may want to try
truehist from the MASS package as a replacement.

3.5 Generate a sample vector z of 5 random numbers from the uniform
distribution and make a line plot of quantile(z,x) as a function of x
(use curve, for instance).

4

One- and two-sample tests

The rest of this book describes applications of R for actual statistical
analysis. The focus to some extent shifts from explanation of the syn-
tax to description of the output and of specific arguments to the relevant
functions.

Some of the most basic statistical tests deal with comparing continuous
data, either between two groups or against an a priori stipulated value.
This is the topic for this chapter.

Two functions are introduced here, namely t.test and wilcox.test
for t tests and Wilcoxon tests, respectively. Both can be applied to one-
and two-sample problems as well as to paired data. Notice that the “two-
sample Wilcoxon test” is the same as the one called the “Mann-Whitney
test” in many textbooks.

4.1 One-sample f test

The t tests are based on an assumption that data come from the Normal
distribution. In the one-sample case we thus have data x1, ..., x, assumed
independent realizations of random variables with distribution N(y, 02),
which denotes the normal distribution with mean p and variance 2, and
we wish to test the null hypothesis that u = py. We can estimate the param-

82 4. One- and two-sample tests

eters u and o by the empirical mean ¥ and standard deviation s, although
we must realize that we could never pinpoint their values exactly.

The key concept is that of the standard error of the mean, or SEM. This de-
scribes the variation of the average of n random values with mean p and
variance . This value is

SEM = o/v/n

and means that if you were to repeat the entire experiment several times
and calculate an average for each experiment, then these averages would
follow a distribution that is narrower than that of the original distribution.
The crucial point is that even based on a single sample, it is possible to cal-
culate an empirical SEM as s/+/n using the empirical standard deviation
of the sample. This value will tell us how far the observed mean may rea-
sonably have strayed from its true value. For normally distributed data,
the rule of thumb is that there is 95% probability of staying within p + 20
so we would expect that if 11y were the true mean, then ¥ should be within
2 SEM’s of it. Formally, you calculate

X —Ho

SEM

and see whether this falls within an acceptance region, outside which ¢
should fall with probability equal to a specified significance level. This is
often chosen as 5%, in which case the acceptance region is almost, but not
exactly, the interval from —2 to 2.

t:

In small samples it is necessary to correct for the fact that an empirical
SEM is used and that the distribution of ¢ therefore has somewhat “heavier
tails” than the N(0, 1): Large deviations happen more frequently than in
the normal distribution since they can result from normalizing with an
SEM that is too small. The correct values for the acceptance region can
be looked up as quantiles in the ¢ distribution with f = n — 1 degrees of
freedom.

If ¢ falls outside the acceptance region, then we reject the null hypothesis
at the chosen significance level. Alternatively (and equivalently), you can
calculate the p-value, which is the probability of obtaining a value as nu-
merically large as or larger than the observed t and reject the hypothesis
if the p-value is less than the significance level.

Sometimes you have prior information on the direction of an effect: for
instance, that all plausible mechanisms that would cause i not to equal
would tend to make it bigger. In those cases, you may choose to reject the
hypothesis only if t falls in the upper tail of the distribution. This is known
as testing against a one-sided alternative. Since removing the lower tail from
the rejection region effectively halves the significance level, a one-sided
test at a given level will have a smaller cutoff point. Similarly, p-values

4.1 One-sample t test 83

are calculated as the probability of a larger value than the observed rather
than a numerically larger one, effectively halving the p-value as long as
the observed effect is in the stipulated direction. One-sided tests should
be used with some care, preferably only when there is a clear statement
of the intent to use them in the study protocol. Switching to a one-sided
test to make an otherwise nonsignificant result significant could easily be
regarded as dishonest.

This is an example concerning daily energy intake in kJ for 11 women
(Altman, 1991, p. 183). First, the values are placed in a data vector:

> daily.intake <- c¢(5260,5470,5640,6180,6390,6515,
+ 6805,7515,7515,8230,8770)

Let’s first look at some simple summary statistics, even though these are
hardly necessary for such a small data set:

> mean (daily.intake)

[1] 6753.636

> sd(daily.intake)

[1] 1142.123

> quantile(daily.intake)
0% 25% 50% 75% 100%

5260 5910 6515 7515 8770

You might wish to investigate whether the women'’s energy intake devi-
ates systematically from a recommended value of 7725 k]. Assuming that
data comes from a normal distribution, the object is to test whether this
distribution might have mean p = 7725. This is done with t.test, as
follows:

> t.test(daily.intake,mu=7725)
One Sample t-test

data: daily.intake
t = -2.8208, df = 10, p-value = 0.01814
alternative hypothesis: true mean is not equal to 7725
95 percent confidence interval:
5986.348 7520.925
sample estimates:
mean of x
6753.636

This is an example of the exact same type as that used in the introductory
Section 1.1.4. The description of the output is quite superficial there. Here
it is explained more thoroughly.

The layout is common to many of the statistical standard tests, and a
“dissection” is given in the following:

84 4. One- and two-sample tests

One Sample t-test

This should be self-explanatory. It is simply a description of the test that
we have asked for. Notice that, by looking at the format of the function
call, t . test has automatically found out that a one-sample test is desired.

data: daily.intake

This tells us which data are being tested. Of course, this will be obvious,
unless output has been separated from the command that generated it.
This can happen, for example, when using the source function to read
commands from an external file.

t = -2.8208, df = 10, p-value = 0.01814

This is where it begins to get interesting. We get the f statistic, the asso-
ciated degrees of freedom, and the exact p-value. We do not need to use
a table of the t distribution to look up which quantiles the t-value can be
found between. You can immediately see that p < 0.05 and thus that (us-
ing the customary 5% level of significance) data deviate significantly from
the hypothesis that the mean is 7725.

alternative hypothesis: true mean is not equal to 7725

This contains two important pieces of information: (a) the value we
wanted to test whether the mean could be equal to (7725 kJ) and (b) that
the test is two-sided (“not equal to”).

95 percent confidence interval:
5986.348 7520.925

This is a 95% confidence interval for the true mean, that is, the set of (hy-
pothetical) mean values from which the data do not deviate significantly.
It is based on inverting the f test by solving for the values of p that cause
t to lie within its acceptance region. For a 95% confidence interval, the
solution is

X —toors(f) X s <u < X+togrs(f) xs

sample estimates:
mean of x
6753.636

This final item is the observed mean, that is, the (point) estimate of the
true mean.

The function t . test has a number of optional arguments, three of which
are relevant in one-sample problems. We have already seen the use of mu

4.2 Wilcoxon signed-rank test 85

to specify the mean value p under the null hypothesis (default is mu=0). In
addition, you can specify that a one-sided test is desired against alterna-
tives greater than u by using alternative="greater" or alternatives
less than p using alternative="1ess". The third item that can be spec-
ified is the confidence level used for the confidence intervals; you would
write conf.level=0.99 to geta 99% interval.

Actually, it is often allowable to abbreviate a longish argument specifica-
tion; for instance, it is sufficient to write alt="g" to get the test against
greater alternatives.

4.2 Wilcoxon signed-rank test

The f tests are fairly robust against departures from the normal distribu-
tion especially in larger samples, but sometimes you wish to avoid making
that assumption. To this end, the distribution-free methods are convenient.
These are generally obtained by replacing data with corresponding order
statistics.

For the one-sample Wilcoxon test, the procedure is to subtract the theoreti-
cal ug and rank the differences according to their numerical value ignoring
the sign, then calculate the sum of the positive or negative ranks. The point
is that assuming only that the distribution is symmetric around py, the test
statistic corresponds to selecting each number from 1 to n with probabil-
ity 1/2 and calculating the sum. The distribution of the test statistic can be
calculated exactly, at least in principle. It becomes computationally exces-
sive in large samples, but the distribution is then very well approximated
by a normal distribution.

Practical application of the Wilcoxon signed-rank test is done almost
exactly as the t test:

> wilcox.test (daily.intake, mu=7725)
Wilcoxon signed rank test with continuity correction

data: daily.intake
V = 8, p-value = 0.0293
alternative hypothesis: true mu is not equal to 7725

Warning message:
Cannot compute exact p-value with ties in: wilcox.test.default(...

There is not quite as much output as from t.test, due to the fact that
there is no such thing as a parameter estimate in a nonparametric test
and therefore no confidence limits, etc. either. Actually, it is possible under

86 4. One- and two-sample tests

some assumptions to define a location measure and calculate confidence
intervals for it. See the help files for wilcox. test for details.

The relative merits of distribution-free (or nonparametric) versus paramet-
ric methods like the t test are a contentious issue. If the model assumptions
of the parametric test are fulfilled, then it will be somewhat more efficient,
on the order of 5% in large samples, although the difference can be larger
in small samples. Notice, for instance, that unless the sample size is 6 or
above, the signed-rank test simply cannot become significant at the 5%
level. This is probably not too important, though; what is more impor-
tant is that the apparent lack of assumptions for these tests sometimes
misleads people into using them for data where the observations are not
independent or where a comparison is biased by an important covariate.

The Wilcoxon tests are susceptible to the problem of ties, where several ob-
servations share the same value. In such cases you simply use the average
of the tied ranks; for example, if there are four identical values corre-
sponding to places 6 to 9, they will all be assigned the value 7.5. This is
not a problem for the large-sample normal approximations, but the exact
small-sample distributions become much more difficult to calculate and
wilcox.test cannot do so.

The test statistic V is the sum of the positive ranks. In the example, the
p-value is computed from the normal approximation because of the tie at
7515.

The function wilcox. test takes arguments mu and alternative, just
like t . test. In addition, it has correct which turns a continuity correc-
tion on or off (default is “on”, as seen from the output title; correct=F
turns it off), and exact, which specifies whether exact tests should be cal-
culated. Recall that “on/off” options like these are specified using logical
values that can be either TRUE or FALSE.

43 Two-sample t test

The two-sample ¢ test is used to test the hypothesis that two samples may
be assumed to come from distributions with the same mean.

The theory for the two-sample ¢ test is not very different in principle from
that of the one-sample test. Data are now from two groups x11, ..., X1,
and x1, . .., X2,, which we assume are sampled from the normal distribu-
tions N (p1,02) and N(pp, 02) and it is desired to test the null hypothesis
W1 = Hp. You then calculate

X —x

~ SEDM

t

4.3 Two-sample ¢ test 87

where the standard error of difference of means is

SEDM = /SEM? -+ SEM3

There are two ways of calculating the SEDM depending on whether or not
you assume that the two groups have the same variance. The “classical”
approach is to assume that the variances are identical. With this approach
you first calculate a pooled s based on the standard deviations from the
two groups and plug that value into the SEM. Under the null hypothesis,
the t value will follow a ¢ distribution with n1 4 1, — 2 degrees of freedom.

An alternative procedure due to Welch is to calculate the SEMs from the
separate group standard deviations s; and s;. With this procedure, t is
actually not t-distributed, but its distribution may be approximated by a
t distribution with a number of degrees of freedom that can be calculated
from s1, s, and the group sizes. This is generally not an integer.

The Welch procedure is generally considered the safer one. Usually, the
two procedures give very similar results unless both the group sizes and
the standard deviations are very different.

We return to the daily energy expenditure data (see Section 1.2.14) and
consider the problem of comparing energy expenditure between lean and
obese women.

> data(energy)
> attach (energy)

> energy
expend stature

1 9.21 obese
7.53 lean

3 7.48 lean
20 7.58 lean
21 9.19 obese
22 8.11 lean

Notice that the necessary information is contained in two parallel columns
of a data frame. The factor stature contains the group and the numeric
variable expend the energy expenditure in mega-Joules. R allows data in
this format to be analyzed by t . test and wilcox. test using a model
formula specification. An older format (still available) requires you to
specify data from each group in a separate variable, but the newer for-
mat is much more convenient for data that are kept in data frames and
is also more flexible if you later want to group the same response data
according to other criteria.

The object is to see whether there is a shift in level between the two groups,
so we apply a t test as follows:

88 4. One- and two-sample tests

> t.test (expend~stature)
Welch Two Sample t-test

data: expend by stature
t = -3.8555, df = 15.919, p-value = 0.001411
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.459167 -1.004081
sample estimates:
mean in group lean mean in group obese
8.066154 10.297778

Notice the use of the tilde (~) operator to specify that expend is described
by stature.

The output is not much different from that of the one-sample test. The
confidence interval is for the difference in means and does not contain 0,
which is in accordance with the p-value indicating a significant difference
at the 5% level.

It is Welch'’s variant of the ¢ test that is calculated by default. This is the test
where you do not assume that the variance is the same in the two groups,
which (among other things) results in the fractional degrees of freedom.

To get the usual (textbook) ¢ test, you must specify that you are willing
to assume that the variances are the same. This is done via the optional
argument var . equal=T, that is:

> t.test (expend~stature, var.equal=T)
Two Sample t-test

data: expend by stature
t = -3.9456, df = 20, p-value = 0.000799
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.411451 -1.051796
sample estimates:
mean in group lean mean in group obese
8.066154 10.297778

Notice that the degrees of freedom now has become a whole number,
namely 13 +9 — 2 = 20. The p-value has dropped slightly (from 0.14%
to 0.08%) and the confidence interval is a little narrower, but overall the
changes are slight.

4.4 Comparison of variances 89

4.4 Comparison of variances

Even though it is possible in R to perform the two-sample f test without
the assumption that the variances are the same, you may still be interested
in testing that assumption, and R provides the var . test function for that
purpose, implementing an F test on the ratio of the group variances. It is
called the same way as t . test:

> var.test (expend~stature)
F test to compare two variances

data: expend by stature
F = 0.7844, num df = 12, denom df = 8, p-value = 0.6797
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.1867876 2.7547991
sample estimates:
ratio of variances
0.784446

It is seen that the test is not significant, so there is no evidence against the
assumption of the variances being identical. However, the confidence in-
terval is very wide. For small data sets such as this one, the assumption
of constant variance is largely a matter of belief. It may also be noted that
this test is not robust against departures from a normal distribution. The
ctest package which contains all the “classical tests”, also has several al-
ternative tests for variance homogeneity, each with its own assumptions,
benefits, and drawbacks, but it would be excessive to discuss them at
length.

Notice that the test is based on the assumption that the groups are
independent. You should not apply this test to paired data.

4.5 Two-sample Wilcoxon test

You might prefer a nonparametric test if you doubt the normal distribu-
tion assumptions of the f test. The two-sample Wilcoxon test is based on
replacing the data by their rank (without regard to grouping) and calcu-
lating the sum of the ranks in one group, thus reducing the problem to one
of sampling n; values without replacement from the numbers 1 to 11 + 1.

This is done using wilcox. test, which behaves similarly to t . test:

> wilcox.test (expend~stature)

90 4. One- and two-sample tests

Wilcoxon rank sum test with continuity correction

data: expend by stature
W = 12, p-value = 0.002122
alternative hypothesis: true mu is not equal to 0

Warning message:
Cannot compute exact p-value with ties in: wilcox.test.default(...

The test statistic W is the sum of ranks in the first group minus its theoreti-
cal minimum (i.e., it is zero if all the smallest values fall in the first group).
Some textbooks use a statistic that is the sum of ranks in the smallest group
with no minimum correction, which is of course equivalent. Notice that,
like in the one-sample example, we are having problems with ties and rely
on the approximate normal distribution of W.

4.6 The paired ¢ test

Paired tests are used when there are two measurements on the same ex-
perimental unit. Their theory is essentially based on taking differences and
thus reducing the problem to that of a one-sample test. Notice, though,
that it is implicitly assumed that such differences have a distribution that
is independent of the level. A useful graphical check is to make a scatter-
plot of the pairs with the line of identity added, or to plot the difference
against the average of the pair (sometimes called a Bland-Altman plot).
If there seems to be a tendency for the dispersion to change with the
level, then it may be useful to transform the data; frequently the stan-
dard deviation is proportional to the level, in which case a logarithmic
transformation is useful.

The data on pre- and postmenstrual energy intake in a group of women
are considered several times in Chapter 1 (and you may notice that the first
column is identical to daily.intake, which was used in Section 4.1).
There data are entered from the command line, but they are also available
as a data set in the ISwR package:

> data(intake)

attach (intake)

intake
pre post
5260 3910
5470 4220
5640 3885
6180 5160
6390 5645
6515 4680

Y

oUW N

4.6 The paired t test 91

7 6805 5265
8 7515 5975
9 7515 6790
10 8230 6900
11 8770 7335

The point is that the same 11 women are measured twice, so it makes sense
to look at individual differences:

> post - pre
[1] -1350 -1250 -1755 -1020 -745 -1835 -1540 -1540 -725 -1330
[11] -1435

— and it is immediately seen that they are all negative. All the women
have a lower energy intake postmenstrually than premenstrually. The
paired ¢ test is obtained as follows:

> t.test(pre, post, paired=T)
Paired t-test

data: pre and post
t = 11.9414, df = 10, p-value = 3.059e-07
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1074.072 1566.838
sample estimates:
mean of the differences
1320.455

There is not much new to say about the output; it is virtually identical to
that of a one-sample ¢ test on the elementwise differences.

Notice that you have to specify paired=T explicitly in the call, indicat-
ing that you want a paired test. In the old-style interface for the unpaired
t test, the two groups are specified as separate vectors and you would
request that analysis by omitting paired=T. If data are actually paired,
then it would be seriously inappropriate to analyze them without taking
the pairing into account.

Even though it might be considered pedagogically dubious to show what
you should not do, the following shows the results of an unpaired f test
on the same data for comparison:

> t.test(pre, post) #WRONG!
Welch Two Sample t-test
data: pre and post

t = 2.6242, df = 19.92, p-value = 0.01629
alternative hypothesis: true difference in means is not equal to 0

92 4. One- and two-sample tests

95 percent confidence interval:
270.5633 2370.3458

sample estimates:

mean of x mean of y
6753.636 5433.182

The number symbol (or “hash”) # introduces a comment in R. The rest of
the line is skipped.

It is seen that t has become considerably smaller, although still significant
at the 5% level. The confidence interval has become almost four times
wider than in the correct paired analysis. Both illustrate the loss of ef-
ficiency caused by not using the information that the “pre” and “post”
measurements are from the same persons. Alternatively, you could say
that it demonstrates the gain in efficiency obtained by planning the ex-
periment with two measurements on the same person, rather than having
two independent groups of pre- and postmenstrual women.

4.7 The matched-pairs Wilcoxon test

The paired Wilcoxon test is the same as a one-sample Wilcoxon signed-
rank test on the differences. The call is completely analogous to t . test:

> wilcox.test (pre, post, paired=T)
Wilcoxon signed rank test with continuity correction

data: pre and post
V = 66, p-value = 0.00384
alternative hypothesis: true mu is not equal to 0

Warning message:
Cannot compute exact p-value with ties in: wilcox.test.default(...

The result does not show any material difference from that of the ¢ test.
The p-value is not quite so extreme, not too surprising since the Wilcoxon
rank sum cannot get any larger than it does when all differences have the
same sign, whereas the ¢ statistic can become arbitrarily extreme.

Again, we have trouble with tied data invalidating the exact p calcula-
tions. This time it is the two identical differences of —1540.

In the present case it is actually very easy to calculate the exact p-value
for the Wilcoxon test. It is the probability of 11 positive differences + the
probability of 11 negative ones: 2 x (1/2)!! = 1/1024 = 0.00098, so the
approximate p-value is almost four times too large.

4.8 Exercises 93
4.8 Exercises

4.1 Do the values of the react data set (notice that this is a single vector,
not a data frame) look reasonably normally distributed? Does the mean
differ significantly from zero, according to a t test?

4.2 In the data set vitcap use a f test to compare the vital capacity for
the two groups. Calculate a 99% confidence interval for the difference. The
result of this comparison may be misleading. Why?

4.3 Perform the analyses of the react and vitcap data using nonpara-
metric techniques.

4.4 Perform the graphical checks of the assumptions for a paired f test in
the intake data set.

4.5 The function shapiro.test computes a test of normality based on
the degree of linearity of the Q-Q plot. Apply it to the react data. Does
it help to remove the outliers?

4.6 The crossover trial in ashina can be analyzed for a drug effect in
a simple way (how?) if you ignore a potential period effect. However,
you can do better. Hint: Consider the intra-individual differences; if there
were only a period effect present, how should the differences behave in the
two groups? Compare the results of the simple method and the improved
method.

4.7 Perform 10 one-sample t tests on simulated normally distributed
data sets of 25 observations each. Repeat the experiment, but instead sim-
ulate samples from a different distribution; try the t distribution with 2
degrees of freedom and the exponential distribution (in the latter case test
for mean equal to 1). Can you find a way to automate this so that you can
have a larger number of replications?

This page intentionally left blank

5

Regression and correlation

The main object of this chapter is to show how to perform basic regression
analyses, including plots for model checking and display of confidence
and prediction intervals. Furthermore, we describe the related topic of
correlation, in both its parametric and nonparametric variants.

5.1 Simple linear regression

We consider situations where you want to describe the relation be-
tween two variables using linear regression analysis. You may, for
instance, be interested in describing short.velocity as a function of
blood.glucose. This section deals only with the very basics, whereas
several more complicated issues are postponed until Chapter 10.

The linear regression model is given by
yi = a+ Bxi+ e

in which the ¢; are assumed independent and N (0,). The nonrandom
part of the equation describes the y; as lying on a straight line. The slope
of the line (the regression coefficient) is (3, the increase per unit change in x.
The line intersects the y-axis at the intercept «.

The parameters «, 3, and 02 can be estimated using the method of least
squares: Find the values of « and that minimize the sum of squared

96 5. Regression and correlation

residuals
SSres = Z(yi —(a+ ﬁxi))2
i
This is not actually done by trial and error. It is quite simple to find closed-

form expressions for the choice of parameters that gives the smallest
value.

&=7y—pBx

The residual variance is estimated as SSres/(n — 2) and the residual
standard deviation is of course the square root of that.

The empirical slope and intercept will deviate somewhat from the true
values due to sampling variation. If you were to generate several sets of y;
at the same set of x;, you would observe a distribution of empirical slopes
and intercepts. Just like you could calculate the SEM to describe the vari-
ability of the empirical mean, it is also possible from a single sample of
(x;,y;) to calculate the standard error of the computed estimates, s.e.(&)
and s.e.(). These standard errors can be used to compute confidence in-
tervals for the parameters and tests for whether a parameter has a specific
value.

It is usually of prime interest to test the null hypothesis that 3 = 0 since
that would imply that the line was horizontal and thus that the y have a
distribution that is the same, whatever the value of x. You can compute a
t test for that hypothesis simply by dividing the estimate by its standard
error

which follows a t distribution on n — 2 degrees of freedom if the true 3 is
zero. A similar test can be calculated for whether the intercept is zero, but
you should be aware that that is often a meaningless hypothesis, either be-
cause there is no natural reason to believe that the line should go through
the origin, or because it would involve an extrapolation far outside the
range of data.

For the example in this section, we need the data frame thuesen, which
can be loaded and attached with

> data(thuesen)
> attach (thuesen)

5.1 Simple linear regression 97

For linear regression analysis, the function 1m is used (linear model):
> Im(short.velocity~blood.glucose)

Call:
Im(formula = short.velocity ~ blood.glucose)

Coefficients:
(Intercept) blood.glucose
1.09781 0.02196

The argument to 1mis a model formula, in which the tilde symbol (~) should
be read as “described by”. This has been seen several times earlier, both
in connection with boxplots and stripcharts and with the t and Wilcoxon
tests.

The 1m function handles much more complicated models than simple lin-
ear regression. There can be many other things besides a dependent and a
descriptive variable in a model formula. A multiple linear regression anal-
ysis (which we discuss in Chapter 9) of, for example, y on x1, x2, and x3
is specified asy ~ x1 + x2 + x3.

In its raw form, the output of 1mis very brief. All you see is the estimated
intercept (&) and the estimated slope (/). The best-fitting straight line is
seen to be short.velocity = 1.098 + 0.0220 X blood.glucose, but
for instance no tests of significance are given.

The result of 1m is a model object. This is a distinctive concept of the S lan-
guage (of which R is a dialect). Where other statistical systems focus on
generating printed output that can be controlled by setting options, you
get instead the result of a model fit encapsulated in an object from which
the desired quantities can be obtained using extractor functions. An 1m ob-
ject does in fact contain much more information than you see when it is
printed.

A basic extractor function is summary:
> summary (1lm(short.velocity~blood.glucose))

Call:
Im(formula = short.velocity ~ blood.glucose)

Residuals:
Min 10 Median 30 Max
-0.40141 -0.14760 -0.02202 0.03001 0.43490

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.09781 0.11748 9.345 6.26e-09 ***
blood.glucose 0.02196 0.01045 2.101 0.0479 *

98 5. Regression and correlation

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 **’ 0.05 *.” 0.1 * " 1

Residual standard error: 0.2167 on 21 degrees of freedom
Multiple R-Squared: 0.1737, Adjusted R-squared: 0.1343
F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

The above is a format that looks more like what other statistical packages
would output. The following is a “dissection” of the output:

Call:
Im(formula = short.velocity ~ blood.glucose)

Like in t . test, etc., the output starts with something that is essentially
a repeat of the function call. This is not very interesting when one has
just given it as a command to R, but it is useful if the result is saved in a
variable that is printed later.

Residuals:
Min 1Q Median 30 Max
-0.40141 -0.14760 -0.02202 0.03001 0.43490

This gives a superficial view of the distribution of the residuals, which
may be used as a quick check of the distributional assumptions. The av-
erage of the residuals is zero by definition, so the median should not be
far from zero and the minimum and maximum should roughly be equal
in absolute value. In the example it can be noticed that the third quartile is
remarkably close to zero, but in view of the small number of observations,
this is not really something to worry about.

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 1.09781 0.11748 9.345 6.26e-09 ***
blood.glucose 0.02196 0.01045 2.101 0.0479 *
Signif. codes: 0 ‘***’ (0.001 ***’ 0.01 *’ 0.05 *.” 0.1 + 1

Here we see the regression coefficient and the intercept again, but this time
with accompanying standard errors, ¢ tests, and p-values. The symbols
to the right are graphical indicators of the level of significance. The line
below the table shows the definition of these indicators; one star means
0.01 < p < 0.05.

The graphical indicators have been the target of some controversy. Some
people like to have the possibility of seeing at a glance whether there is
“anything interesting” in an analysis, whereas others feel that the indica-
tors too often correspond to meaningless tests. For instance, the intercept
in the above analysis is hardly a meaningful quantity at all, and the three-
star significance of it is certainly irrelevant. If you are bothered by the
stars, turn them off with options (show.signif.stars=FALSE).

5.2 Residuals and fitted values 99

Residual standard error: 0.2167 on 21 degrees of freedom

This is the residual variation, an expression of the variation of the ob-
servations around the regression line, estimating the model parameter o.

Multiple R-Squared: 0.1737, Adjusted R-squared: 0.1343

The first item above is R?, which in a simple linear regression may be rec-
ognized as the squared Pearson correlation coefficient (see Section 5.4.1),
that is, R> = r2. The other one is the adjusted R?; if you multiply it by
100%, it can be interpreted as “% variance reduction” (this can, in fact,
become negative).

F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

This is an F test for the hypothesis that the regression coefficient is zero.
This test is not really interesting in a simple linear regression analysis since
it just duplicates information already given — it becomes more interesting
when there is more than one explanatory variable. Notice that it gives the
exact same result as the ¢ test for a zero slope. In fact, the F test is identical
to the square of the t test: 4.414 = (2.101)2. This is true in any model with
1 degree of freedom.

We see ahead how to draw residual plots and plots of data with confidence
and prediction limits. First, we draw just the points and the fitted line.
Figure 5.1 has been constructed as follows:

> plot(blood.glucose, short.velocity)
> abline(lm(short.velocity~blood.glucose))

abline draws lines based on the intercept and slope (2 and b, hence the
name). It can be used with scalar values as in abline(1.1,0.022), but
conveniently it can also extract the information from a linear model fitted
to data with 1m.

5.2 Residuals and fitted values

We have seen how summary can be used to extract information about
the results of a regression analysis. Two further extraction functions are
fitted and resid. They are used as follows. For convenience, we
first store the value returned by 1m under the name 1m.velo (short for
“velocity”, but you could of course use any other name).

> Im.velo <- 1lm(short.velocity~blood.glucose)

100 5. Regression and correlation

1.8

short.velocity

o o
-

5 10 15 20
blood.glucose

Figure 5.1. Scatterplot with regression line.

> fitted(lm.velo)

1 2 3 4 5 6 7

1.433841 1.335010 1.275711 1.526084 1.255945 1.214216 1.302066

8 9 10 11 12 13 14

1.341599 1.262534 1.365758 1.244964 1.212020 1.515103 1.429449

15 17 18 19 20 21 22

1.244964 1.190057 1.324029 1.372346 1.451411 1.389916 1.205431
23 24

1.291085 1.306459
resid(lm.velo)

\2

1 2 3 4 5
0.326158532 0.004989882 -0.005711308 -0.056084062 0.014054962
6 7 8 9 10
0.275783754 0.007933665 -0.251598875 -0.082533795 -0.145757649
11 12 13 14 15
0.005036223 -0.022019994 0.434897199 -0.149448964 0.275036223
17 18 19 20 21
-0.070057471 0.045971143 -0.182346406 -0.401411486 -0.069916424
22 23 24

-0.175431237 -0.171085074 0.393541161

The function fitted returns fitted values — the y-values that you
would expect for the given x-values according to the best-fitting straight
line: in the present case 1.098+0.0220*blood.glucose. The resid-

5.2 Residuals and fitted values 101

uals shown by resid is the difference between this and the observed
short.velocity.

Note that the fitted values and residuals are labeled with the row names
of the thuesen data frame. Notice in particular that they do not contain
observation no. 16, which had a missing value in the response variable.

It is necessary to discuss some awkward aspects that arise when there are
missing values in data.

To put the fitted line on the plot, you might, although it is easier to use
abline(1lm.velo), get the idea of doing it with 1ines, but

> plot(blood.glucose, short.velocity)
> lines (blood.glucose, fitted(lm.velo))
Error in xy.coords(x, y) : x and y lengths differ

— which is true. There are 24 observations but only 23 fitted values be-
cause one of the short.velocity values is NA. So we would need
blood.glucose, but only for those patients whose short.velocity
has been recorded.

> lines (blood.glucose[!is.na(short.velocity)], fitted(lm.velo))

Recall that the is.na function yields a vector that is TRUE wherever the
argument is NA (missing). One advantage to this method is that the fitted
line does not extend beyond the range of data. The technique works but
becomes clumsy if there are missing values in several variables:

...blood.glucose[!is.na(short.velocity) & !is.na(blood.glucose)]...

It becomes easier with the function complete.cases, which can find
observations that are nonmissing on several variables or across an entire
data frame.

> cc <- complete.cases (thuesen)

We could then attach thuesen[cc,] and work on from there. However,
there is a better alternative available in using the na . exclude method for
NA handling. This can be set either as an argument to 1m or as an option,
that is,

> options(na.action=na.exclude)
> Im.velo <- 1lm(short.velocity~blood.glucose)
> fitted(lm.velo)

1 2 3 4 5 6 7
1.433841 1.335010 1.275711 1.526084 1.255945 1.214216 1.302066
8 9 10 11 12 13 14

1.341599 1.262534 1.365758 1.244964 1.212020 1.515103 1.429449

102 5. Regression and correlation

1.8

1.6

1.4

short.velocity
o

1.2

1.0

I I I I
5 10 15 20

blood.glucose

Figure 5.2. Scatterplot of short.velocity versus blood.glucose with fitted
line and residual line segments.

15 16 17 18 19 20 21
1.244964 NA 1.190057 1.324029 1.372346 1.451411 1.389916
22 23 24

1.205431 1.291085 1.306459

Notice how the missing observation, no. 16, now appears in the fitted val-
ues with a missing fitted value. It is necessary to recalculate the 1m.velo
object after changing the option.

To create a plot where residuals are displayed by connecting observations
to corresponding points on the fitted line, you can do the following. The
final result will look like Figure 5.2. segments draws line segments; its
arguments are the endpoint coordinates in the order (x1, y1, x2, 2).

> segments (blood.glucose, fitted(1lm.velo),
+ blood.glucose, short.velocity)

A simple plot of residuals versus fitted values is obtained like this
(Figure 5.3):

> plot(fitted(lm.velo),resid(lm.velo))

5.3 Prediction and confidence bands 103

< | o
S o
o
o o
N
o
&)
g
- o
éo_ 000 le) o
T © o
8 ° o o °
o o
[V o o o
S
o
<
S o

I I I I I I I
1.20 1.25 1.30 1.35 1.40 1.45 1.50

fitted(Im.velo)

Figure5.3. short.velocity and blood.glucose: residuals versus fitted value.

and we can get an indication of whether residuals might have come from
a normal distribution by checking for a straight line on a Q-Q plot (see
Section 3.2.3) as follows (Figure 5.4):

> ggnorm(resid(lm.velo))

5.3 Prediction and confidence bands

Fitted lines are often presented with uncertainty bands around them.
There are two kinds of bands, often referred to as the “narrow” and
“wide” limits.

The narrow bands, confidence bands, reflect the uncertainty about the line
itself, like the SEM expresses the precision with which a mean is known.
If there are many observations, the bands will be quite narrow, reflecting
a well-determined line. These bands often show a marked curvature since
the line is better determined near the center of the point cloud. This is a
fact that can be shown mathematically, but you may also understand it
intuitively as follows: The predicted value at ¥ will be 7, whatever the

104 5. Regression and correlation

Normal Q-Q Plot

< o
o] o
o
o O

N

[«
0
Qo
<
5]
> o
O o | 00000
L o o
= o
IS oo
C‘B o

oo
N o o0
? .
o
<
oI—O
I I I I I
-2 -1 0 1 2

Theoretical Quantiles

Figure 5.4. short.velocity and blood.glucose: Q-Q plot of residuals.

slope is, and hence the standard error of the fitted value at that point is
the SEM of the ys. At other values of x there will also be a contribution
from the variability of the estimated slope, having increasing influence as
you move away from *. Technically, you also need to establish that 7 and
8 are uncorrelated.

The wide bands, prediction bands, include the uncertainty about future
observations. These bands should capture the majority of the observed
points and will not collapse to a line as the number of observations in-
creases. Rather, the limits approach the true line -2 standard deviations
(for 95% limits). In smaller samples, the bands do curve since they include
uncertainty about the line itself, but not as markedly as the confidence
bands. Obviously, these limits rely strongly on the assumption of normally
distributed errors with a constant variance, so you should not use such
limits unless you believe that it is a reasonable approximation for the data
at hand.

Predicted values, with or without prediction and confidence bands, may
be extracted with the function predict. With no arguments, it just gives
the fitted values:

> predict (1lm.velo)

5.3 Prediction and confidence bands 105

1 2 3 4 5 6 7

1.433841 1.335010 1.275711 1.526084 1.255945 1.214216 1.302066

8 9 10 11 12 13 14

1.341599 1.262534 1.365758 1.244964 1.212020 1.515103 1.429449

15 16 17 18 19 20 21

1.244964 NA 1.190057 1.324029 1.372346 1.451411 1.389916
22 23 24

1.205431 1.291085 1.306459

If you add interval="confidence" or interval="prediction"
then you get the vector of predicted values augmented with limits. The
arguments can be abbreviated:

> predict (lm.velo,int="c")
fit lwr upr

1 1.433841 1.291371 1.576312

2 1.335010 1.240589 1.429431

23 1.291085 1.191084 1.391086
24 1.306459 1.210592 1.402326
> predict(lm.velo, int="p")

fit lwr upr
1 1.433841 0.9612137 1.906469
2 1.335010 0.8745815 1.795439

23 1.291085 0.8294798 1.752690
24 1.306459 0.8457315 1.767186

fit is the expected values, here identical to the fitted values (it need not
be; read on). 1wr and upr (lower/upper) are the confidence limits for the
expected values, respectively, the prediction limits for short.velocity
for new persons with these values of blood.glucose.

The best way to add such intervals to a scatterplot is to use thematlines
function, which plots the columns of a matrix against a vector.

There are a few snags to this, however: (a) The blood.glucose values
are in random order; we do not want line segments connecting points
haphazardly along the confidence curves; (b) the prediction limits, partic-
ularly the lower one, extend outside the plot region; and (c) thematlines
command needs to be prevented from cycling through line styles and
colours. Notice that the na.exclude setting (p. 101) prevents us from
also having an observation omitted from the predicted values.

The solution is to predict in a new data frame, containing suitable x values
(here blood.glucose) at which to predict. It is done as follows:

pred. frame <- data.frame (blood.glucose=4:20)
pp <- predict(lm.velo, int="p", newdata=pred.frame)
pc <- predict(lm.velo, int="c", newdata=pred.frame)

>
>
>
> plot(blood.glucose, short.velocity,

106 5. Regression and correlation

ylim=range (short.velocity, pp, na.rm=T))
pred.gluc <- pred.frame$blood.glucose
matlines (pred.gluc, pc, lty=c(1l,2,2), col="black")
matlines (pred.gluc, pp, lty=c(1,3,3), col="black")

vV V. V +

This is what happens: First we create a new data frame in which the
blood.glucose variable contains the values at which we want pre-
dictions to be made. pp and pc are then made to contain the result of
predict for the new data in pred. frame with prediction limits and
confidence limits, respectively.

Now for the plotting: First we create a standard scatterplot, except that
we ensure that it has enough room for the prediction limits. This is
obtained by setting ylim=range (short.velocity, pp, na.rm=T).
The function range returns a vector of length 2, containing the minimum
and maximum value of its arguments. We need the na.rm=T argument
to cause missing values to be skipped for the range computation; notice
that short.velocity is included to ensure that points outside the pre-
diction limits are not missed (although in this case there are none). Finally,
the curves are added, using as x-values the blood. glucose used for the
prediction, and setting the line types and colours to more sensible values.
The final result is seen in Figure 5.5.

5.4 Correlation

A correlation coefficient is a symmetric, scale-invariant measure of associ-
ation between two random variables. It ranges from —1 to +1, where the
extremes indicate perfect correlation and 0 means no correlation. The sign
is negative when large values of one variable are associated with small
values of the other and positive if both variables tend to be large or small
simultaneously. The reader should be warned that there are many incor-
rect uses of correlation coefficients, particularly when they are used in
regression-type settings.

This section describes the computation of parametric and nonparametric
correlation measures in R.

5.4.1 Pearson correlation

The Pearson correlation is rooted in the two-dimensional normal distri-
bution where the theoretical correlation describes the contour ellipses for
the density. If both variables are scaled to have a variance of 1, then a
correlation of zero corresponds to circular contours, whereas the ellipses

5.4 Correlation 107

short.velocity
14 16 1.8

1.2

1.0

0.8

blood.glucose

Figure 5.5. Plot with confidence and tolerance bands.

become narrower and finally collapse into a line segment as the correlation
approaches +1.

The empirical correlation coefficient is

o 2Dy~)
VE(xi —%)?X(yi —)
It can be shown that |r| will be less than 1 unless there is a perfect linear

relation between x; and y;, and for that reason the Pearson correlation is
sometimes called the “linear correlation”.

It is possible to test the significance of the correlation by transforming it to
a t-distributed variable (the formula is not particularly elucidating so we
skip it here), which will be identical with the test obtained from testing
significance of the slope of either the regression of y on x, or vice versa.

The function cor can be used to compute the correlation between two
or more vectors. However, if it is naively applied to the two vectors in
thuesen, the following happens:

> cor (blood.glucose, short.velocity)
Error in cor (blood.glucose, short.velocity)

108 5. Regression and correlation

missing observations in cov/cor

All the elementary statistical functions in R require either that all values
are nonmissing or that you explicitly state what should be done with the
cases with missing values. For mean, var, sd, and similar one-vector func-
tions, you can give the argument na . rm=T to indicate that missing values
should be removed before the computation. For cor you can write

> cor (blood.glucose, short.velocity,use="complete.obs")
[1] 0.4167546

The reason that cor does not use na.rm=T like the other functions is
that there are more possibilities than just removing incomplete cases or
failing. If more than two variables are in play;, it is also possible to use in-
formation from all nonmissing pairs of measurements (this might result in
a correlation matrix that is not positive definite, though).

You can obtain the entire matrix of correlations between all variables in a
data frame by saying, for instance

> cor (thuesen,use='complete.obs’)
blood.glucose short.velocity

blood.glucose 1.0000000 0.4167546

short.velocity 0.4167546 1.0000000

Of course, this is more interesting when the data frame contains more than
two vectors!

However, the above calculations give no indication of whether the correla-
tion is significantly different from zero. To that end, you need cor. test.
It works simply by specifying the two variables:

> cor.test (blood.glucose, short.velocity)
Pearson’s product-moment correlation

data: blood.glucose and short.velocity
t =2.101, df = 21, p-value = 0.0479
alternative hypothesis: true correlation is not equal to 0
sample estimates:
cor
0.4167546

Notice that it is exactly the same p-value as in the regression analysis in
Section 5.1 and also as that based on the ANOVA table for the regression
model, which is described in Section 6.5.

5.4 Correlation 109
5.4.2 Spearman’s p

As with the one- and two-sample problems, you may be interested in
nonparametric variants. These have the advantage of not depending
on the normal distribution and, indeed, being invariant to monotone
transformations of the coordinates. The main disadvantage is that its in-
terpretation is not quite clear. A popular and simple choice is Spearman’s
rank correlation coefficient p. This is obtained quite simply by replac-
ing the observations by their rank and computing the correlation. Under
the null hypothesis of independence between the two variables the exact
distribution of p can be calculated.

Unlike group comparisons where there is essentially one function per
named test, correlation tests are all grouped into cor. test. There is no
special spearman. test function. Instead, the test is considered one of
several possibilities for testing correlations and is therefore specified via
an option to cor. test:

> cor.test(blood.glucose, short.velocity,method="spearman")
Spearman’s rank correlation rho

data: blood.glucose and short.velocity
S = 1380, p-value = 0.139
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.318002

Warning message:
p-values may be incorrect due to ties in: cor.test.default(...

5.4.3 Kendall's T

The third correlation method that you can choose is Kendall’s 7, which is
based on counting the number of concordant and discordant pairs. A pair
of points is concordant if the difference in the x-coordinate is of the same
sign as the difference in the y-coordinate. For a perfect monotone rela-
tion, either all pairs will be concordant or all pairs will be discordant.
Under independence, there should be as many concordant pairs as there
are discordant.

Since there are many pairs of points to check, this is quite a computation-
ally intensive procedure, compared to the two others. In small data sets
like the present, it does not matter at all, though, and it is generally usable
up to at least 5000 observations.

110 5. Regression and correlation

The 7 coefficient has the advantage of a more direct interpretation over
Spearman’s p, but apart from that there is little reason to prefer one over
the other.

> cor.test(blood.glucose, short.velocity,method="kendall")
Kendall’s rank correlation tau

data: blood.glucose and short.velocity
z.tau = 1.5706, p-value = 0.1163
alternative hypothesis: true tau is not equal to 0
sample estimates:
tau
0.2350616

Warning message:
Cannot compute exact p-value with ties in: cor.test.default(...

Notice that neither of the two nonparametric correlations is significant
at the 5% level, which the Pearson correlation is, albeit only borderline
significant.

5.5 Exercises

5.1 With the rmr data set, plot metabolic rate versus body weight. Fit
a linear regression model to the relation. According to the fitted model,
what is the predicted metabolic rate for a body weight of 70 kg? Give a
95% confidence interval for the slope of the line.

5.2 Inthe juul data set fit a linear regression model to the square root of
the IGF-I concentration versus age, to the group of subjects over 25 years
old.

5.3 Inthemalaria data set analyze the log-transformed antibody level
versus age. Make a plot of the relation. Do you notice anything peculiar?

5.4 One can generate simulated data from the two-dimensional normal
distribution as follows: (a) Generate X as a normal variate with mean 0
and standard deviation 1; (b) generate Y with mean pX and standard de-
viation /1 — p2. Use this to create scatterplots of simulated data with a
given correlation. Compute the Spearman and Kendall statistics for some
of these data sets.

6

Analysis of variance and the
Kruskal-Wallis test

In this section we consider comparisons among more than two groups
parametrically, using analysis of variance, as well as nonparametrically,
using the Kruskal-Wallis test. Furthermore, we see two-way analysis of
variance in the case of one observation per cell.

6.1 One-way analysis of variance

We start this section with a brief sketch of the theory underlying the one-
way analysis of variance. A little bit of notation is necessary. Let x;; denote
observation no. j in group i so that x35 is the fifth observation in group
3; X; is the mean for group i and %, is the grand mean (average of all
observations).

We can decompose the observations as

Xjj =X+ (fi — J?) + (x,-]- — J?i)

——
deviation of deviation of
group mean from observation from
grand mean group mean

informally corresponding to the model

Xjj=p+ai+ej ej~N(00%)

112 6. ANOVA and Kruskal-Wallis

in which the hypothesis that all the groups are the same implies that all
a; are zero. Notice that the error terms €;; are assumed to be independent
and have the same variance.

Now consider the sums of squares of the underbraced terms, known as
variation within groups

SSDw = ¥ 3'(x;j — %i)*
ij
and variation between groups

SSDp = ¥ 3 (% — %)% = X mi(% — %)
G ;

It is possible to prove that

SSDp + SSDyy = SSDioral = 3, 3. (xij — %.)?
i

That is, the total variation is split into a term describing differences be-
tween group means and a term describing differences between individual
measurements within the groups. One says that the grouping explains
part of the total variation, and obviously an informative grouping will
explain a large part of the variation.

However, the sums of squares can only be positive, so even a completely
irrelevant grouping will always “explain” some part of the variation. The
question is how small an amount of explained variation can be before it
might as well be due to chance. It turns out that in the absence of any
systematic differences between the groups, you should expect the sum of
squares to be partitioned according to the degrees of freedom for each
term: k — 1 for SSDp and N — k for SSDy, where k is the number of groups
and N is the total number of observations.

Accordingly, you can normalize the sums of squares, by calculating mean
squares:

MSy = SSDy /(N — k)
MSp = SSDg/(k — 1)

MSyy is the pooled variance obtained by combining the individual group
variances and thus an estimate of 2. In the absence of a true group effect,
MS; will also be an estimate of 2, but if there is a group effect, then the
differences between group means and hence MSg will tend to be larger.
Thus, a test for significant differences between the group means can be
performed by comparing two variance estimates. This is why the proce-
dure is called analysis of variance even though the objective is to compare
the group means.

6.1 One-way analysis of variance 113

A formal test needs to account for the fact that random variation will cause
some difference in the mean squares. You calculate

F = MSg/MSy

so that F is ideally 1, but some variation around that value is expected.
The distribution of F under the null hypothesis is an F distribution with
k —1and N — k degrees of freedom. You reject the hypothesis of identical
means if F is larger than the 95% quantile in that F distribution (if the
significance level is 5%). Notice that this test is one-sided; a very small F
would occur if the group means were very similar and that will of course
not signify a difference between the groups.

Simple analyses of variance can be performed in R using the function 1m,
which is also used for regression analysis. For more elaborate analyses,
there are also the functions aov and 1me (linear mixed effects mod-
els, from the nlme package). An implementation of Welch’s procedure,
relaxing the assumption of equal variances and generalizing the unequal-
variance ¢ test, is implemented in oneway.test (see Section 6.1.2).

The main example in this section is the “red cell folate” data from Alt-
man (1991, p. 208). To use 1m it is necessary to have the data values in
one vector and a factor variable (see Section 1.2.7) describing the division
into groups. The red. cell. folate data set contains a data frame in the
proper format.

> data(red.cell.folate)
> attach(red.cell.folate)
> summary (red.cell.folate)
folate ventilation
Min. :206.0 N20+02,24h:8
1st Qu.:249.5 N20+02,0p :9
Median :274.0 02,24h :5
Mean :283.2
3rd Qu.:305.5
Max. :392.0

Recall that summary applied to a data frame gives a short summary of
the distribution of each of the variables contained in it. The format of the
summary is different for numeric vectors and factors, so that provides a
check that the variables are defined correctly.

The category names for ventilation mean “N,O and O, for 24 hours”,
“NO and O, during operation”, and “only O, for 24 hours”.

In the following the analysis of variance is demonstrated first, and then a
couple of useful techniques for the presentation of grouped data as tables
and graphs are shown.

114 6. ANOVA and Kruskal-Wallis

The specification of a one-way analysis of variance is analogous to a re-
gression analysis. The only difference is that the descriptive variable needs
to be a factor and not a numeric variable. We calculate a model object using
1m and extract the analysis of variance table with anova.

> anova (lm(folate~ventilation))
Analysis of Variance Table

Response: folate
Df Sum Sg Mean Sg F value Pr(>F)

ventilation 2 15516 7758 3.7113 0.04359 *
Residuals 19 39716 2090
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 *.” 0.1 + "1

Here we have SSDg and MSg in the top line and SSDp and MSg in the
second line.

In statistical textbooks the sums of squares are most often labeled “be-
tween groups” and “within groups”. Like most other statistical software,
R uses a slightly different labeling. Variation between groups is labeled
by the name of the grouping factor (ventilation) and variation within
groups is labelled Residual. ANOVA tables can be used for a wide range
of statistical models, and it is convenient to use a format that is less linked
to the particular problem of comparing groups.

For a further example, consider the data set juul, introduced in Sec-
tion 3.1. Notice that the tanner variable in this data set is a numeric
vector and not a factor. For purposes of tabulation this makes little dif-
ference, but it would be a serious error to use it in this form in an analysis
of variance:

> data(juul)

> attach(juul)

> anova (lm(igfl~tanner)) ## WRONG!
Analysis of Variance Table

Response: igfl

Df Sum Sg Mean Sg F value Pr (>F)
tanner 1 10985605 10985605 686.07 < 2.2e-16 **x*
Residuals 790 12649728 16012
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’/ 0.05 ‘.” 0.1 * " 1

This does not describe a grouping of data but a linear regression on the
group number! Notice the telltale 1 DF for the effect of tanner.

Things can be fixed as follows:

> juul$Stanner <- factor (juul$tanner,

6.1 One-way analysis of variance 115

+ labels=c("I","II","III","IV","V"))
> detach (juul)
> attach(juul)
> summary (tanner)
I IT TIIT Iv V NA's
515 103 72 81 328 240

> anova (lm(igfl~tanner))
Analysis of Variance Table

Response: igfl
Df Sum Sg Mean Sg F value Pr (>F)
tanner 4 12696217 3174054 228.35 < 2.2e-16 ***
Residuals 787 10939116 13900
Signif. codes: 0 ‘***’ (0.001 ***’/ 0.01 **’ 0.05 ‘.’ 0.1 + " 1

We needed to reattach the juul data frame in order to use the changed
definition. An attached data frame is effectively a separate copy of it
(although it does not take up extra space as long as the original is un-
changed). The Df column has an entry of 4 for tanner now, as it should
have.

6.1.1 Pairwise comparisons and multiple testing

If the F test shows that there is a difference between groups, the ques-
tion quickly arises of wherein the difference lies. It becomes necessary to
compare the individual groups.

Part of this information can be found in the regression coefficients. You can
use summary to extract regression coefficients with standard errors and ¢
tests. These coefficients do not have their usual meaning as the slope of a
regression line but have a special interpretation, which is described below.

> summary (lm(folate~ventilation))

Call:

Im(formula = folate ~ ventilation)

Residuals:

Min 10 Median 30 Max
-73.625 -35.361 -4.444 35.625 75.375
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 316.63 16.16 19.588 4.65e-14 ***
ventilationN20+02, op -60.18 22.22 =-2.709 0.0139 *
ventilationO2,24h -38.63 26.06 -1.482 0.1548

116 6. ANOVA and Kruskal-Wallis

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 **’ 0.05 *.” 0.1 * " 1

Residual standard error: 45.72 on 19 degrees of freedom
Multiple R-Squared: 0.2809, Adjusted R-squared: 0.2052
F-statistic: 3.711 on 2 and 19 DF, p-value: 0.04359

The interpretation of the estimates is that the intercept is the mean in the
first group (N20+02, 24h), whereas the other two describe the difference
between the relevant group and the first one.

There are multiple ways of representing the effect of a factor variable in
linear models (and one-way analysis of variance is the simplest example of
a linear model with a factor variable). The representations are in terms of
contrasts, the choice of which can be controlled either by global options or
as part of the model formula. We do not go deeply into this; just mention
that the contrasts used by default are the so-called treatment contrasts in
which the first group is treated as a baseline and the other groups are
given relative to that. Concretely, the analysis is performed as a multiple
regression analysis (see Chapter 9) by introducing two dummy variables,
which are 1 for observations in the relevant group and 0 elsewhere.

Among the t tests in the table, you can immediately find a test for the hy-
pothesis that the first two groups have the same true mean (p = 0.0139)
and also whether the first and the third might be identical (p = 0.1548).
However, a comparison of the last two groups cannot be found. This can
be overcome by modifying the factor definition (see the help page for
relevel), but that gets tedious when there are more than a few groups.

If we want to compare all groups, we ought to correct for multiple testing.
Performing many tests will increase the probability of finding one of them
to be significant, that is, the p-values tend to be exaggerated. A common
adjustment method is the Bonferroni correction, which is based on the fact
that the probability of observing at least one of 1 events is less than the
sum of the probabilities for each event. Thus, by dividing the significance
level by the number of tests or, equivalently, multiplying the p-values, we
obtain a conservative test where the probability of a significant result is less
than or equal to the formal significance level.

A function called pairwise.t.test computes all possible two-group
comparisons. It is also capable of making adjustments for multiple
comparisons and works like this:

> pairwise.t.test(folate, ventilation, p.adj="bonferroni")
Pairwise comparisons using t tests with pooled SD

data: folate and ventilation

6.1 One-way analysis of variance 117

N20+02,24h N20+02, op
N20+02,0p 0.042 -
02,24h 0.464 1.000

P value adjustment method: bonferroni

The output is a table of p-values for the pairwise comparisons. Here, the
p-values have been adjusted by the Bonferroni method, where the unad-
justed values have been multiplied by the number of comparisons, namely
3. If that results in a value bigger than 1, then the adjustment procedure
sets the adjusted p-value to 1.

The default method for pairwise. t.test is actually not the Bonferroni
correction but a variant due to Holm. In this method only the smallest
p needs to be corrected by the full number of tests, the second smallest
is corrected by n — 1, etc. — unless that would make it smaller than the
previous one since the order of the p-values should be unaffected by the
adjustment.

> pairwise.t.test(folate,ventilation)
Pairwise comparisons using t tests with pooled SD
data: folate and ventilation
N20+02,24h N20+02, op
N20+02,0p 0.042 -

02,24h 0.310 0.408

P value adjustment method: holm

6.1.2 Relaxing the variance assumption

The traditional one-way ANOVA requires an assumption of equal vari-
ances for all groups. There is, however, an alternative procedure that does
not require that assumption. It is due to Welch and similar to the un-
equal variances t test. This has been implemented in the oneway . test
function:

> oneway.test (folate~ventilation)
One-way analysis of means (not assuming equal variances)

data: folate and ventilation
F =2.9704, num df = 2.000, denom df = 11.065, p-value = 0.09277

118 6. ANOVA and Kruskal-Wallis

In this case the p-value increased to a nonsignificant value, presumably
related to the fact that the group that seems to differ from the other two
also has the largest variance.

It is also possible to perform the pairwise t tests so that they do not use
a common pooled standard deviation. This is controlled by the argument
pool.sd.

> pairwise.t.test(folate,ventilation,pool.sd=F)
Pairwise comparisons using t tests with non-pooled SD
data: folate and ventilation

N20+02,24h N20+02, op
N20+02,0p 0.087 -
02,24h 0.321 0.321

P value adjustment method: holm

Again, it is seen that the significance disappears as we remove the
constraint on the variances.

6.1.3 Graphical presentation

Of course, there are many ways to present grouped data. Here we create
a somewhat elaborate plot where the raw data are plotted as a stripchart
and overlaid with an indication of means and SEMs (Figure 6.1):

xbar <- tapply(folate, ventilation, mean)

s <- tapply(folate, ventilation, sd)

n <- tapply(folate, ventilation, length)

sem <- s/sqgrt(n)

stripchart (folate~ventilation, "jitter",jit=0.05,pch=16,vert=T)
arrows (1:3,xbar+sem, 1:3,xbar-sem, angle=90,code=3, length=.1)
lines (1:3,xbar,pch=4, type="b", cex=2)

V V.V V V V Vv

Here we used pch=16 (small plotting dots) in stripchart and put
vertical=T to make the “strips” vertical.

The error bars have been made with arrows, which adds arrows to a plot.
We slightly abuse the fact that the angle of the arrowhead is adjustable to
create the little crossbars at either end. The first four arguments specify
the endpoints, (x1,y1,x2,Y2); the angle argument gives the angle be-
tween the lines of the arrowhead and -shaft, here set to 90°; and 1ength
is the length of the arrowhead (in inches on a printout). Finally, code=3
means that the arrow should have a head at both ends. Note that the x
coordinates of the stripcharts are simply the group numbers.

6.1 One-way analysis of variance 119

[]
o
o °
8] °
% .
o []
o -
™ ° e
[]
[] ./E
o
Al ° °
[]
o b o
IS T T T
N20+02,24h N20+02,0p 02,24h

Figure 6.1. “Red cell folate” data with ¥ & 1 SEM.

The indication of averages and the connecting lines are done with lines,
where type="b" (both) means that both points and lines are printed,
leaving gaps in the lines to make room for the symbols. pch=4 is a cross
and cex=2 requests that the symbols be drawn in double size.

It is debatable whether you should draw the plot using 1 SEM as is done
here or whether perhaps it is better to draw proper confidence intervals for
the means (approximately 2 SEM), or maybe even SD instead of SEM. The
latter point has to do with whether the plot is to be used in a descriptive or
an analytical manner. SEMs are not useful for describing the distributions
in the groups; they only say how precisely the mean is determined. On the
other hand, SDs do not enable the reader to see at a glance which groups
are significantly different.

In many fields it appears to have become the tradition to use 1 SEM
“because they are the smallest”, that is, it makes differences look more
dramatic. Probably, the best thing to do is to follow the traditions in the
relevant field and “calibrate your eyeballs” accordingly.

One word of warning, though: At small group sizes, the rule of thumb
that the confidence interval is mean 4 2 SEM becomes badly misleading.
At a group size of 2, it actually has to be 12.7 SEM! and that is a correction

120 6. ANOVA and Kruskal-Wallis

depending heavily on data having the normal distribution. If you have
such small groups, it may be advisable to use a pooled SD for the entire
data set rather than the group-specific SDs. This does, of course, require
that you can reasonably assume that the true standard deviation actually
is the same in all groups.

6.1.4 Bartlett’s test

Testing whether the distribution of a variable has the same variance in all
groups can be done using Bartlett’s test, although like the F test for com-
parison of two variances, it is rather nonrobust against departures from
the assumption of normal distributions. As in var.test it is assumed
that the data are from independent groups. The procedure is performed
as follows:

> bartlett.test (folate~ventilation)
Bartlett test for homogeneity of variances

data: folate by ventilation
Bartlett’s K-squared = 2.0951, df = 2, p-value = 0.3508

— thar is, in this case, nothing in data contradicts the assumption of equal
variances in the three groups.

6.2 Kruskal-Wallis test

A nonparametric counterpart of a one-way analysis of variance is the
Kruskal-Wallis test. As in the Wilcoxon two-sample test (see Section 4.5),
data are replaced with their ranks without regard to the grouping, only
this time the test is based on the between-group sum of squares calcu-
lated from the average ranks. Again, the distribution of the test statistic
can be worked out based on the idea that under the hypothesis of irrel-
evant grouping, the problem reduces to a combinatorial one of sampling
the within-group ranks from a fixed set of numbers.

You can make R calculate the Kruskal-Wallis test as follows:
> kruskal.test (folate~ventilation)
Kruskal-Wallis rank sum test

data: folate by ventilation
Kruskal-Wallis chi-squared = 4.1852, df = 2, p-value = 0.1234

6.3 Two-way analysis of variance 121

It is seen that there is no significant difference using this test. This should
not be too surprising in view of the fact that the F test in the one-way anal-
ysis of variance was only borderline significant. Also, the Kruskal-Wallis
test is less efficient than its parametric counterpart if the assumptions
hold, although it does not invariably give a larger p-value.

6.3 Two-way analysis of variance

One-way analysis of variance deals with one-way classifications of data.
It is also possible to analyze data that are cross-classified according to
several criteria. When a cross-classified design is balanced, then you can
almost read the entire statistical analysis from a single analysis of variance
table, and that table generally consists of items that are simple to compute
— something that was very important before the computer era. Balanced-
ness is a concept that is hard to define exactly; for a two-way classification,
a sufficient condition is that the cell counts are equal, but there are other
balanced designs.

Here we restrict ourselves to the case of a single observation per cell.
This typically arises from having multiple measurements on the same
experimental unit and in this sense generalizes the paired f test.

Let x;; denote the observation in row i and column j of the m x n table.
This is similar to the notation used for one-way analysis of variance, but
notice that there is now a connection between observations with the same
j, so that it makes sense to look at both row averages X;. and column aver-
ages x.;. Consequently, it now makes sense to look at both variation between
rows:

SSDr =n Y (%;. — %.)°
i

and variation between columns:

SSDc =m Y (%.;— %.)*
j

Subtracting these two from the total variation leaves the residual variation,
which works out as

SSDyes = Z Z(Xij — X — f] + f,,)z
ij

122 6. ANOVA and Kruskal-Wallis

This corresponds to a statistical model in which it is assumed that the
observations are composed of a general level, a row effect, and a column
effect plus a noise term:

Xij:H+“i+ﬁj+€ij €1‘]‘NN(0,0'2)

The parameters of this model are not uniquely defined unless we impose
some restriction on the parameters. If we impose ¥ o; = 0 and X 3; = 0,
then the estimates of «;, fa’j, and p turn outtobe ;. — %, Xj—Xx, and ¥_.

Dividing the sums of squares by their respective degrees of freedom m — 1
for SSDg, n — 1 for SSD¢, and (m — 1)(n — 1) for SSDyes, we get a set of
mean squares. F tests for no row and column effect can be carried out by
dividing the respective mean squares with the residual mean square.

It is important to notice that this works out so nicely only because of the
balanced design. If you have a table with “holes” in it, the analysis is con-
siderably more complicated. The simple formulas for the sum of squares
are no longer valid and, in particular, the order independence is lost, so
that there is no longer a single SSD¢, but one with and without adjusting
for row effects.

To perform a two-way ANOVA, it is necessary to have data in one vec-
tor, with the two classifying factors parallel to it. We consider an example
concerning heart rate after administration of enalaprilate (Altman, 1991,
p- 327). Data are found in this form in the heart . rate data set:

> data(heart.rate)
> attach (heart.rate)
> heart.rate

hr subj time

1 96 1 0
2 110 2 0
3 89 3 0
4 95 4 0
5 128 5 0
6 100 6 0
7 72 7 0
8 79 8 0
9 100 9 0
10 92 1 30
11 106 2 30
12 86 3 30
13 78 4 30
14 124 5 30
15 098 6 30
16 68 7 30
17 175 8 30
18 106 9 30

6.3 Two-way analysis of variance 123

19 86 1 60
20 108 2 60
21 85 3 60
22 78 4 60
23 118 5 60
24 100 6 60
25 67 7 60
26 74 8 60
27 104 9 60
28 92 1 120
29 114 2 120
30 83 3 120
31 83 4 120
32 118 5 120
33 94 6 120
34 71 7 120
35 74 8 120
36 102 9 120

If you look inside the heart.rate.R file in the data directory of the
ISwR package, you will see that the actual definition of the data frame is

heart.rate <- data.frame(hr = c¢(96,110,89,95,128,100,72,79,100,
92,106,86,78,124, 98,68,75,106,
86,108,85,78,118,100,67,74,104,
92,114,83,83,118,94,71,74,102),
subj=gl(9,1,36),
time=gl(4,9,36,labels=c(0,30,60,120)))

The g1 function (generate levels) is specially designed for generating pat-
terned factors for balanced experimental designs. It has three arguments:
the number of levels, the block length (how many times each level should
repeat), and the total length of the result. The two patterns in the data

frame are thus
> gl(9,1,36

[1] 1 2
[31] 4 5
Levels: 1 23 456 789
> gl(4,9,36,labels=c(0,30,60,120))

[1] © 0 0 0 0 0 0 0 0 30 30 30 30 30 30
[16] 30 30 30 60 60 60 60 60 60 60 60 60 120 120 120
[31] 120 120 120 120 120 120
Levels: 0 30 60 120

36)
3456789123456789123456789123
6 789

Once the variables have been defined, the two-way analysis of variance is
specified simply by

> anova (1lm(hr~subj+time))
Analysis of Variance Table

124 6. ANOVA and Kruskal-Wallis

Response: hr

Df Sum Sg Mean Sg F value Pr (>F)
subj 8 8966.6 1120.8 90.6391 4.863e-16 ***
time 3 151.0 50.3 4.0696 0.01802 *
Residuals 24 296.8 12.4
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 **’ 0.05 *.” 0.1 * " 1

Interchanging subj and time in the model formula (hr~time+subj)
yields exactly the same analysis except for the order of the rows of the
ANOVA table. This is because we are dealing with a balanced design (a
complete two-way table with no missing values). In unbalanced cases the
factor order will matter.

6.3.1 Graphics for repeated measurements

At least for your own use, it is useful to plot a “spaghettigram” of the data,
that is, a plot where data from the same subject are connected with lines.
To this end, you can use the function interaction.plot, which graphs
the values against one factor, while connecting data for the other factor
with line segments to form traces.

> interaction.plot(time, subj, hr)

In fact there is a fourth argument, which specifies what should be done
in case, there is more than one observation per cell. By default, the mean
is taken, which is the reason why the y-axis in Figure 6.2 reads “mean of
hr”.

If you prefer to have the values plotted according to the time of measure-
ment (which are not equidistant in this example), you could instead write
(resulting plot not shown)

> interaction.plot (ordered(time), subj, hr)

6.4 The Friedman test

A nonparametric counterpart of two-way analysis of variance exists for
the case with one observation per cell. Friedman’s test is based on ranking
observations within each row assuming that if there is no column effect then
all orderings should be equally likely. A test statistic based on the column
sum of squares can be calculated and normalized to give a x*-distributed
test statistic.

6.4 The Friedman test 125

130
|

120
I
/

mean of hr
1

100
|
N AW DON O

90
/

80
|

70

0 30 60 120

time

Figure 6.2. Interaction plot of heart-rate data.

In the case of two columns the Friedman test is equivalent to the sign
test, in which one uses the binomial distribution to test for equal probabil-
ity of positive and negative differences within pairs. This is a rather less
sensitive test than the Wilcoxon signed-rank test discussed in Section 4.2.

Practical application of the test is as follows:
> friedman.test (hr~time|subj,data=heart.rate)
Friedman rank sum test

data: hr and time and subj
Friedman chi-squared = 8.5059, df = 3, p-value = 0.03664

Notice that the blocking factor is specified in a model formula using the
vertical bar, which may be read as “time within subj”. It is seen that the
test is not quite as strongly significant as the parametric counterpart. This
is unsurprising since the latter test is more powerful when its assumptions
are met.

126 6. ANOVA and Kruskal-Wallis

6.5 The ANOVA table in regression analysis

A substantial part of this chapter is about analysis of variance tables and
we have seen their use in grouped and cross-classified experimental de-
signs. However, their use is not restricted to these designs but applies to
the whole class of linear models (more on this in Chapter 10).

The variation between and within groups for a one-way analysis of
variance generalizes to model variation and residual variation

SSDmodel = 2(91 - ?)2

1
SSDyes = Z(]/i -]?i)Z
i
which partition the total variation ¥;(y; — #.)2. This applies only when the
model contains an intercept; see Section 10.2. The role of the group means
in the one-way classification is taken over by the fitted values §; in the
more general linear model.

An F test for significance of the model is available in direct analogy with
Section 6.1. In simple linear regression this test is equivalent to testing that
the regression coefficient is zero.

The analysis of variance table corresponding to a regression analysis
can be extracted with the function anova, just as for one- and two-way
analyses of variance. For the thuesen example, it will look like this:

data (thuesen)

attach(thuesen)

Ilm.velo <- 1lm(short.velocity~blood.glucose)
anova (1lm.velo)

Analysis of Variance Table

vV V. V VvV

Response: short.velocity

Df Sum Sg Mean Sqg F value Pr (>F)
blood.glucose 1 0.20727 0.20727 4.414 0.0479 *
Residuals 21 0.98610 0.04696

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 **’ 0.05 *.” 0.1 * " 1

Notice that the F test gives the same p-value as the t test for a zero slope
from Section 5.1. It is the same F test that gets printed at the end of the
summary output:

Residual standard error: 0.2167 on 21 degrees of freedom
Multiple R-Squared: 0.1737, Adjusted R-squared: 0.1343
F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

6.6 Exercises 127

The remaining elements of the three output lines above may also be de-
rived from the ANOVA table. “Residual standard error” is the square
root of “Residual mean squares”, namely 0.2167 = 1/0.04696. R? is the
proportion of the total sum of squares explained by the regression line,
that is, 0.1737 = 0.2073/(0.2073 + 0.9861); and, finally, the adjusted
R? is the relative improvement of the residual variance, 0.1343 = (v —
0.04696) /v, where v = (0.2073 + 0.9861) /22 = 0.05425 is the variance of
short.velocity if the glucose values are not taken into account.

6.6 Exercises

6.1 The zelazo data are in the form of a list of vectors, one for each of
the four groups. Convert the data to a form suitable for the use of 1m, and
calculate the relevant test. Consider ¢ tests comparing selected subgroups
or obtained by combining groups.

6.2 Inthe 1ung data do the three measurement methods give systemati-
cally different results? If so, which ones appear to be different?

6.3 Repeat the previous exercises using the zelazo and lung data with
the relevant nonparametric tests.

6.4 The igf1l variable in the juul data set is arguably skewed and has
different variance across Tanner groups. Try to compensate for this us-
ing logarithmic and square-root transformations, and use the Welch test.
However, the analysis is still problematic — why?

This page intentionally left blank

7
Tabular data

This chapter describes a series of functions designed to analyze tabular
data. Specifically, we look at the functions prop.test, binom. test,
chisqg.test,and fisher.test.

7.1 Single proportions

Tests of single proportions are generally based on the binomial distribu-
tion (see Section 2.3) with size parameter N and probability parameter p.
For large sample sizes, this can be well approximated by a normal distri-
bution with mean Np and variance Np(1 — p). As a rule of thumb, the
approximation is satisfactory when the expected number of “successes”
and “failures” are both larger than 5.

Denoting the observed number of “successes” by x, the test for the
hypothesis that p = pg can be based on

x — Npo
vV Npo(1 = po)

which has an approximate normal distribution with mean zero and stan-
dard deviation 1, or on u2, which has an approximate x? distribution with
1 degree of freedom.

130 7. Tabular data

The normal approximation can be somewhat improved by the Yates correc-
tion, which shrinks the observed value by half a unit toward the expected
value when calculating u.

We consider an example (Altman, 1991, p. 230) where 39 of 215 randomly
chosen patients are observed to have asthma, and one wants to test the
hypothesis that the probability of a “random patient” having asthma is
0.15. This can be done using prop . test:

> prop.test (39,215, .15)
l-sample proportions test with continuity correction

data: 39 out of 215, null probability 0.15
X-squared = 1.425, df = 1, p-value = 0.2326
alternative hypothesis: true p is not equal to 0.15
95 percent confidence interval:

0.1335937 0.2408799

sample estimates:

P
0.1813953

The three arguments to prop . test are the number of positive outcomes,
the total number, and the (theoretical) probability parameter that you
want to test for. The latter is 0.5 by default, which makes sense for sym-
metrical problems, but this is not the case here. The amount 15% is a bit
synthetic since it is rarely the case that one has a specific a priori value to
test for. It is usually more interesting to compute a confidence interval for
the probability parameter, such as is given in the last part of the output.
Notice that we have a slightly unfortunate double usage of the symbol p
as the probability parameter of the binomial distribution and as the test
probability or p-value.

You can also use binom. test to obtain a test in the binomial distribution.
In that way you get an exact test probability, so it is generally preferable
to using prop.test, but prop.test can do more than testing single
proportions. The procedure to obtain the p-value is to calculate the point
probabilities for all the possible values of x and sum those that are less
than or equal to the point probability of the observed x.

> binom.test (39,215, .15)
Exact binomial test

data: 39 and 215
number of successes = 39, number of trials = 215, p-value = 0.2135
alternative hypothesis: true probability ... not equal to 0.15
95 percent confidence interval:

0.1322842 0.2395223

sample estimates:

7.2 Two independent proportions 131

probability of success
0.1813953

The “exact” confidence intervals at the 0.05 level are actually constructed
from the two one-sided tests at the 0.025 level. Finding an exact confi-
dence interval using two-sided tests is not a well-defined problem (see
Exercise 7.5).

7.2 Two independent proportions

The function prop. test can also be used to compare two or more pro-
portions. For that purpose, the arguments should be given as two vectors,
where the first contains the numbers of positive outcomes and the second
the total numbers for each group.

The theory is similar to that for a single proportion: Consider the
difference in the two proportions d = x1/Nj — x2/N,, which will be ap-
proximately normally distributed with mean zero and variance V,(d) =
(1/Ny +1/Ny) * p(1 — p) if the counts are binomially distributed with
the same p parameter. So to test the hypothesis that p; = p», plug the
common estimate p = (x1 + x2)/(n1 + ny) into the variance formula and

look at u = d//Vy(d), which approximately follows a standard normal

distribution, or look at u2, which is approximately x?(1)-distributed. A
Yates-type correction is possible, but we skip the details.

For illustration, we use an example originally due to Lewitt and Machin
(Altman, 1991, p. 232):

> lewitt.machin.success <- c(9,4)
> lewitt.machin.total <- c(12,13)
> prop.test(lewitt.machin.success, lewitt.machin.total)

2-sample test for equality of proportions with
continuity correction

data: lewitt.machin.success out of lewitt.machin.total
X-squared = 3.2793, df = 1, p-value = 0.07016
alternative hypothesis: two.sided
95 percent confidence interval:
0.01151032 0.87310506
sample estimates:
prop 1 prop 2
0.7500000 0.3076923

132 7. Tabular data

The confidence interval given is for the difference in proportions. The the-
ory behind its calculation is similar to that of the test, but there are some
technical complications and a different approximation is used.

You can also perform the test without the Yates continuity correction.
This is done by adding the argument correct=F. The continuity cor-
rection makes the confidence interval somewhat wider than it would
otherwise be, but notice that it nevertheless does not contain zero. Thus,
the confidence interval is contradicting the test, which says that there
is no significant difference between the two groups with a two-sided
test. The explanation lies in the different approximations, which becomes
important for tables as sparse as the present one.

If you want at least to be sure that the p-value is correct, you can use
Fisher’s exact test. We illustrate this using the same data as in the preced-
ing section. The test works by making the calculations in the conditional
distribution of the 2 x 2 table given both the row and column marginals.
This can be difficult to envision, but think of it like this: Take 13 white
balls and 12 black balls (success and failure, respectively), and sample the
balls without replacement into two groups of size 12 and 13. The num-
ber of white balls in the first group obviously defines the whole table, and
the point is that its distribution can be found as a purely combinatorial
problem. The distribution is known as the hypergeometric distribution.

The relevant function is £isher. test, which requires data to be given
in matrix form. This is obtained as follows:

> matrix(c(9,4,3,9),2)
[,11 [,2]

[1,1 9 3

[2,1 4 9

> lewitt.machin <- matrix(c(9,4,3,9),2)
> fisher.test(lewitt.machin)

Fisher’s Exact Test for Count Data

data: lewitt.machin
p-value = 0.04718
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.9006803 57.2549701
sample estimates:
odds ratio
6.180528

Notice that the second column of the table needs to be the number of
negative outcomes, not the total number of observations.

7.3 k proportions, test for trend 133

Notice also that the confidence interval is for the odds ratio, that is, for the
estimate of (p1/(1 — p1))/(p2/(1 — p2)). One can show that if the ps are
not identical, then the conditional distribution of the table depends only
on the odds ratio, so it is the natural measure of association in connection
with the Fisher test. The exact distribution of the test can be worked out
also when the odds ratio differs from 1, but there is the same complication
as with binom. test that a two-sided 95% confidence interval must be
pasted together from two one-sided 97.5% intervals. This leads to the op-
posite inconsistency as with prop. test: The test is (barely) significant,
but the confidence interval for the odds ratio includes 1.

The standard x? test (see also Section 7.4) in chisqg.test works with
data in matrix form, like fisher.test does. For a 2 x 2 table, the test is
exactly equivalent to prop. test.

> chisqg.test(lewitt.machin)

Pearson’s Chi-squared test with Yates’ continuity
correction

data: lewitt.machin
X-squared = 3.2793, df = 1, p-value = 0.07016

7.3k proportions, test for trend

Sometimes you want to compare more than two proportions. In that
case the categories are often ordered so that you would expect to find a
decreasing or increasing trend in the proportions with the group number.

This example used in this section concerns data from a group of women
giving birth where it was recorded whether the child was delivered by
Caesarean section and what shoe size the mother used (Altman, 1991,
p- 229). The data are given as a table and can be entered as follows:

> caesar.shoe <- matrix(c(5,7,6,7,8,10,

+ 17,28,36,41,46,140), nrow=2, byrow=T)
> colnames (caesar.shoe) <- c("<4","4","4.5","5","5.,5","6+")
> rownames (caesar.shoe) <- c("Yes", "No")

The data can also be loaded using data (caesarean). Either way, we
obtain this table:

> caesar.shoe

<4 4 4.5 5 5.5 6+
Yes 5 7 6 7 8 10
No 17 28 36 41 46 140

134 7. Tabular data

To compare k > 2 proportions, another test based on the normal approx-
imation is available. It consists of the calculation of a weighted sum of
squared deviations between the observed proportions in each group and
the overall proportion for all groups. The test statistic has an approximate
x? distribution with k — 1 degrees of freedom.

To use prop. test on a table like caesar . shoe, we need to convert it to
a vector of “successes” (which in this case is close to being the opposite)
and a vector of “trials”. The two vectors can be computed like this:

> caesar.shoe.yes <- caesar.shoe["Yes",]
> caesar.shoe.total <- margin.table(caesar.shoe, 2)
> caesar.shoe.yes
<4 4 4.5 5 5.5 6+
5 7 6 7 8 10
> caesar.shoe.total
<4 4 4.5 5 5.5 6+
22 35 42 48 54 150

Thereafter it is easy to perform the test:

> prop.test (caesar.shoe.yes, caesar.shoe.total)
6-sample test for equality of proportions without
continuity correction

data: caesar.shoe.yes out of caesar.shoe.total
X-squared = 9.2874, df = 5, p-value = 0.09814
alternative hypothesis: two.sided

sample estimates:

prop 1 prop 2 prop 3 prop 4 prop 5
0.22727273 0.20000000 0.14285714 0.14583333 0.14814815
prop 6
0.06666667

Warning message:
Chi-squared approximation may be incorrect in: prop.test(...

It is seen that the test comes out nonsignificant, but the subdivision is re-
ally unreasonably fine in view of the small number of Caesarean sections.
Notice, by the way, the warning about the x* approximation being dubi-
ous, which is prompted by some cells having an expected count less than
5.

You can test for a trend in the proportions using prop.trend. test. It
takes three arguments: x, n, and score. The first two of these are ex-
actly like in prop. test, whereas the last one is the score given to the
groups, by default simply 1,2, ..., k. The basis of the the test is essentially
a weighted linear regression of the proportions on the group scores, where
we test for a zero slope, which becomes a X% teston 1 degree of freedom.

74 r x ctables 135

> prop.trend.test (caesar.shoe.yes, caesar.shoe.total)
Chi-squared Test for Trend in Proportions

data: caesar.shoe.yes out of caesar.shoe.total ,
using scores: 1 2 3 4 5 6
X-squared = 8.0237, df = 1, p-value = 0.004617

So if we assume that the effect of shoe size is linear in the group score,
then we can see a significant difference. This kind of assumption should
not be thought of as something that must hold for the test to be valid.
Rather, it indicates the rough type of alternative to which the test should
be sensitive.

The effect of using a trend test can be viewed as an approximate subdivi-
sion of the test for equal proportions (x> = 9.29) into a contribution from
the linear effect (2 = 8.02) on 1 degree of freedom and a contribution
from deviations from the linear trend (x> = 1.27) on 4 degrees of free-
dom. So you could say that the test for equal proportions is being diluted
or wastes degrees on freedom on testing for deviations in a direction we
are not really interested in.

74 r X ctables

For the analysis of tables with more than two classes on both sides, you
can use chisqg.test or fisher. test although you should note that
the latter can be very computationally demanding if the cell counts are
large and there are more than two rows or columns. We have already seen
chisqg. test in a simple example, but with larger tables, some additional
features are of interest.

An r x ¢ table looks like this:

nip Mg s Mye | A
np1 MNpp v Mpe | N2
M1 Myp -0 Nye | N
ni np - N | N

Such a table can arise from several different sampling plans, and the
notion of “no relation between rows and columns” is correspondingly dif-
ferent. The total in each row might be fixed in advance and you would be
interested in testing whether the distribution over columns is the same
for each row, or vice versa if the column totals were fixed. It might also
be the case that only the total number is chosen and the individuals are

136 7. Tabular data

grouped randomly according to the row and column criteria. In the latter
case you would be interested in testing the hypothesis of statistical inde-
pendence, that the probability of an individual falling into the ijth cell is
the product p;.p.; of the marginal probabilities. However, the analysis of
the table turns out to be the same in all cases.

If there is no relation between rows and columns, then you would expect
to have the following cell values:
n;. X n.;
E.: =
" n.

This can be interpreted as distributing each row total according to the pro-
portions in each column (or vice versa) or as distributing the grand total
according to the products of the row and column proportions.

The test statistic
(O—E)?

x2=3 :

has an approximate x? distribution with (r — 1) x (c — 1) degrees of free-
dom. Here the sum is over the entire table and the ij indices have been
omitted. O denotes the observed values and E the expected values as
described above.

We consider the table with caffeine consumption and marital status from
Section 3.5 and compute the x? test:

caff.marital <- matrix(c(652,1537,598,242,36,46,38,21,218
,327,106,67),
nrow=3, byrow=T)
colnames (caff.marital) <- c("O","1-150","151-300",">300")
rownames (caff.marital) <- c("Married", "Prev.married", "Single")
caff.marital

0 1-150 151-300 >300

vV V.V + + V

Married 652 1537 598 242
Prev.married 36 46 38 21
Single 218 327 106 67

> chisqg.test (caff.marital)
Pearson’s Chi-squared test

data: caff.marital
X-squared = 51.6556, df = 6, p-value = 2.187e-09

The test is highly significant, so we can safely conclude that the data con-
tradict the hypothesis of independence. However, you would generally
also like to know the nature of the deviations. To that end, you can look at
some extra components of the return value of chisqg. test.

74 r x ctables 137

Notice that chisq. test (just like 1m) actually returns more information
than what is commonly printed:

> chisqg.test(caff.marital) Sexpected

0 1-150 151-300 >300
Married 705.83179 1488.01183 578.06533 257.09105
Prev.married 32.85648 69.26698 26.90895 11.96759
Single 167.31173 352.72119 137.02572 60.94136

> chisqg.test (caff.marital) Sobserved
0 1-150 151-300 >300

Married 652 1537 598 242
Prev.married 36 46 38 21
Single 218 327 106 67

These two tables may then be scrutinized to see wherein the differences
lie. It is often useful to look at a table of the contributions from each cell
to the total x2. Such a table cannot be directly extracted, but it is easy to
calculate:

> E <- chisqg.test(caff.marital) Sexpected
> O <- chisqg.test(caff.marital) Sobserved
> (O-E)"2/E

0 1-150 151-300 >300
Married 4.1055981 1.612783 0.6874502 0.8858331
Prev.married 0.3007537 7.815444 4.5713926 6.8171090
Single 15.3563704 1.875645 7.0249243 0.6023355

There are some large contributions, particularly from too many “abstain-
ing” singles, and the distribution among previously married is shifted
in the direction of a larger intake — insofar as they consume caffeine at
all. Still, it is not easy to find a simple description of the deviation from
independence in these data.

You can also use chisg. test directly on raw (untabulated) data, here
using the juul data set from Section 3.5:

> data(juul)
> attach(juul)
> chisqg.test (tanner, sex)

Pearson’s Chi-squared test

data: tanner and sex
X-squared = 28.8672, df = 4, p-value = 8.318e-06

It may not really be relevant to test for independence between these par-
ticular variables. The definition of Tanner stages is gender-dependent by
nature.

138 7. Tabular data

7.5 Exercises

7.1 Reconsider the situation of Exercise 2.3 where 10 consecutive pa-
tients had operations without complications and the expected rate was
20%. Calculate the relevant one-sided test in the binomial distribution.
How large a sample (still with zero complications) would be necessary to
obtain statistical significance?

7.2 In 747 cases of “Rocky Mountain spotted fever” from the west-
ern United States, 210 patients died. Out of 661 cases from the eastern
United States, 122 died. Is the difference statistically significant? (See also
Exercise 11.4.)

7.3 Two drugs for the treatment of peptic ulcer were compared (Camp-
bell and Machin, 1993, p. 72). The results were as follows:

Healed Nothealed | Total
Pirenzepine 23 7 30
Trithiozine 18 13 31
Total 41 20 61

Compute the x? test and Fisher’s exact test and discuss the difference.
Find an approximate 95% confidence interval for the difference in healing
probability.

7.4 (From “Mathematics 5” exam, U. Copenhagen, Summer 1969) From
September 20, 1968, to February 1, 1969, an instructor consumed 254 eggs.
Every day, he recorded how many eggs broke during the boiling so that
the white ran out, and how many cracked so that the white did not run
out. Additionally, he recorded whether it was size A eggs or size B. From
February 4, 1969, until April 10, 1969, he consumed 130 eggs, but this time
he used a “piercer” for creating a small hole in the egg to prevent breaking
and cracking. The results were as follows:

Period | Size | Total | Broken | Cracked
Sept. 20-Feb. 1 A 54 4 8
Sept. 20-Feb. 1 B 200 15 28
Feb. 4-Apr. 10 A 60 4 9
Feb. 4-Apr. 10 B 70 1 7

Investigate whether or not the piercer seems to have had an effect.

7.5 Make a plot of the two-sided p value for testing that the probability
parameter is x when the observations are 3 successes in 15 trials, for x
varying from 0 to 1 in steps of 0.001. Explain what makes the definition of
a two-sided confidence interval difficult.

8

Power and the computation of
sample size

A statistical test will not be able to detect a true difference if the sam-
ple size is too small compared to the magnitude of the difference. When
designing experiments, the experimenter should try to ensure that a suf-
ficient amount of data is collected to be reasonably sure that a difference
of a specified size will be detected. R has methods for doing these calcu-
lations in the simple cases of comparing means using one- or two-sample
t tests and comparing two proportions.

8.1 The principles of power calculations

This section outlines the theory of power calculations and sample-size
choice. If you are practically inclined and just need to find the necessary
sample size in a particular situation, you can safely skim this section and
move quickly to subsequent sections that contain the actual R calls.

The basic idea of a hypothesis test should be clear by now. A test statistic is
defined and its value is used to decide whether or not you can accept the
(null) hypothesis. Acceptance and rejection regions are set up so that the
probability of getting a test statistic that falls into the rejection region is a
specified significance level () if the null hypothesis is true. In the present
context it is useful to stick to this formulation (as opposed to the use of p
values), as rigid as it might be.

140 8. Power and the computation of sample size

Since data are sampled at random, there is always a risk of reaching a
wrong conclusion, and things can go wrong in two ways:

* The hypothesis is correct, but the test rejects it (type I error).
¢ The hypothesis is wrong, but the test accepts it (type II error).

The risk of a type I error is the significance level. The risk of a type II
error will depend on the size and nature of the deviation you are trying
to detect. If there is very little difference, then you do not have much of
a chance of detecting it. For this reason, some statisticians disapprove of
terms like “acceptance region” because you can never prove that there is
no difference — you can only not prove that there is one.

The probability of rejecting a false hypothesis is called the power of the
test, and methods exist for calculating or approximating the power in the
most important practical situations. It is inconvenient to talk further about
these matters in the abstract, so let’s move on to some concrete examples.

8.1.1 The power of one-sample and paired t tests

Consider the case of the comparison of a sample mean to a given value.
For example, in a matched trial we wish to test whether the difference be-
tween treatment A and treatment B is zero using a paired ¢ test (described
in Chapter 4).

We call the true difference 4. Even if the null hypothesis is not true, we can
still work out the distribution of the test statistic, provided the other model
assumptions hold. It is called the noncentral t distribution and depends on
a noncentrality parameter as well as the usual degrees of freedom. For the
paired ¢ test, the noncentrality parameter v is a function of 6, the standard
deviation of differences o, and the sample size # and equals

8
o/\/n

that is, it is simply the true difference divided by the standard error of the
mean.

The cumulative noncentral ¢ distribution is available in R simply by
adding an ncp argument to the pt function. As of version 1.5.0, the den-
sity is not available. Figure 8.1 shows a plot of pt with ncp=3 and d£=25.
In the same figure, a vertical line indicates the upper end of the accep-
tance region for a two-sided test at the 0.05 significance level. The plot
was created as follows:

8.1 The principles of power calculations 141

o]
=
© _|
IS
)
I g—
Q
(&)
c
Te)
9o«
X o
=
a
o
o
O__/
o

Figure 8.1. The cumulative noncentral ¢ distribution with v = 3 and 25 degrees of
freedom. The vertical line marks the upper significance limit for a two-sided test
at the 0.05 level.

> curve(pt(x,25,ncp=3), from=0, to=6)
> abline(v=gt(.975,25))

The plot shows the main part of the distribution falling in the rejection
region. The probability of getting a value in the acceptance region can be
seen from the graph as the intersection between the curve and the vertical
line. (Almost! See Exercise 8.4.) This value is easily calculated as

> pt(gt(.975,25),25,ncp=3)
[1] 0.1779891

or roughly 0.18. The power of the test is the opposite, the probability of
getting a significant result. In this case it is 0.82, and it is of course desirable
to have the power as close to 1 as possible.

Notice that the power (traditionally denoted) depends on four quanti-
ties: 4, o, n, and «a. If we fix any three of these, we can adjust the fourth to
achieve a given power. This can be used to determine the necessary sam-
ple size for an experiment: You need to specify a desired power (3 = 0.80
and 3 = 0.90 are common choices), the significance level (usually given by

142 8. Power and the computation of sample size

convention as « = 0.05), a guess of the standard deviation, and §, which
is known as the “minimal relevant difference” (MIREDIF) or “smallest
meaningful difference” (SMD). This gives an equation that you can solve
for n. The result will generally be a fractional number, which should of
course be rounded up.

You can also work on the opposite problem and answer the following
question: Given a feasible sample size, how large a difference should you
reasonably be able to detect?

Sometimes a shortcut is made by expressing 4 relative to the standard
deviation, in which case you would simply set o to 1.

8.1.2 Power of two-sample t test

Procedures for two-sample ¢ tests are essentially the same as for the one-
sample case, except for the calculation of the noncentrality parameter,
which is calculated as

1)

o/1/n1+1/ny

It is generally assumed that the variance is the same in the two groups,
that is, using the Welch procedure is not considered. In sample-size calcu-
lations, one usually assumes that the group sizes are the same, since that
gives the optimal power for a given total number of observations.

8.1.3 Approximate methods

For hand calculations, the power calculations can be considerably simpli-
fied by assuming that the standard deviation is known, so that the ¢ test
is replaced by a test in the standard normal distribution. The practical ad-
vantage is that the approximate formula for the power is easily inverted
to give an explicit formula for n. For the one- and two-sample cases, this
works out as

Dyt Op 2
n= <‘X/2/3> one-sample
5/o
Oup+@
n=2x (“/2 p

2
50) two-sample, each group

8.2 Two-sample problems 143

with the @, denoting quantiles on the normal distribution. This is for two-
sided tests. For one-sided tests, use « instead of o/2.

These formulas are often found in textbooks, and some computer pro-
grams implement them rather than the more accurate method described
earlier. They do have the advantage of more clearly displaying theoreti-
cal properties like the proportionality of § and 1/+/n for a given power.
However, they become numerically unsatisfactory when the degrees of
freedom falls below 20 or so.

8.1.4 Power of comparisons of proportions

Suppose you wish to compare the morbidity between two popula-
tions and have to decide the number of persons to sample from each
population. That is, you plan to perform a comparison of two bi-
nomial distributions as described in Section 7.2 using prop.test or
chisqg.test.

For binomial comparisons exact power calculations become unwieldy,
so we rely on normal approximations to the binomial distribution. The
power will depend on the probability in both groups, not just their dif-
ference. As for the ¢ test, the group sizes are assumed to be equal. The
theoretical derivation of the power proceeds along the same lines as be-
fore, by calculating the distribution of p1 — p, when p; # p; and the
probability that it falls outside the range of values compatible with the
hypothesis p; = py. Assuming equal numbers in the two groups, this
leads to the sample-size formula

. (q)oc/Z\/zp(l —p)+ @p/p1(1—p1) + p2(1 —P2)>2

lp2 — p1

in which p = (p1 + p2)/2.

Since the method is only approximate, the results are not reliable unless
the expected number in each of the four cells in the 2 x 2 table is greater
than 5.

8.2 Two-sample problems

The following example is from Altman (1991, p. 457) and concerns the
influence of milk on growth. Two groups are to be given different diets,
and their growth will be measured. We wish to compute the sample size
that with a power of 90%, using a two-sided test at the 1% level, can find

144 8. Power and the computation of sample size

a difference of 0.5 cm in a distribution with a standard deviation of 2 cm.
This is done as follows:

> power.t.test (delta=0.5, sd=2, sig.level = 0.01, power=0.9)
Two-sample t test power calculation

n = 477.8021
delta = 0.5

sd = 2
sig.level = 0.01
power = 0.9
alternative = two.sided

NOTE: n is number in *each* group

delta stands for the “true difference”, and sd is the standard deviation.
As is seen, the calculation may return a fractional number of experimental
unit. This would, of course, in practice be rounded up to 478. In the origi-
nal reference, a method employing nomograms (a graphical technique) is
used and the value obtained is 450. The difference is probably due to diffi-
culty in reading the value off the nomogram scale. To know which power
you would actually obtain with 450 in each group, you would enter

> power.t.test(n=450, delta=0.5, sd=2, sig.level = 0.01)

Two-sample t test power calculation

n = 450
delta = 0.5
sd = 2

sig.level = 0.01
power = 0.8784433
alternative = two.sided

NOTE: n is number in *each* group

The system is that exactly four out of five arguments (power, sig. level,
delta, sd, and n) are given, whereafter the function computes the miss-
ing one (defaults exist to set sd=1 and sig.level=0.05 — if you wish
to have those calculated, then you must explicitly pass them as NULL). In
addition, there are two optional arguments: alternative, which can be
used to specify one-sided tests; and type, which can be used to specify
that you want to handle a one-sample problem. The former is used like
this (recall that the + is R’s secondary prompt indicating that it is waiting
for the remainder of an unfinished command):

> power.t.test(delta=0.5, sd=2, sig.level = 0.01, power=0.9,
+ alt="one.sided")

8.3 One-sample problems and paired tests 145

Two-sample t test power calculation

n = 417.898
delta = 0.5

sd = 2
sig.level = 0.01
power = 0.9

alternative = one.sided

NOTE: n is number in *each* group

8.3 One-sample problems and paired tests

One-sample problems are handled by adding type="one.sample" in
the call to power.t.test. Similarly, paired tests are specified with
type="paired"; although these reduce to one-sample tests by forming
differences, the printout will be slightly different.

One pitfall when planning a study with paired data is that the literature
sometimes gives the intra-individual variation as “standard deviation of
repeated measurements on the same person” or similar. These may be cal-
culated by measuring a number of persons several times and computing
a common standard deviation within persons. This needs to be multiplied
by V/2 to get the standard deviation of differences, which power.t.test
requires for paired data. If, for instance, it is known that the standard de-
viation within persons is about 10, and you want to use a paired test at the
5% level to detect a difference of 10 with a power of 85%, then you should
enter

> power.t.test(delta=10, sd=10*sgrt(2), power=0.85, type="paired")

Paired t test power calculation

n = 19.96892
delta = 10
sd = 14.14214

sig.level = 0.05
power = 0.85
alternative = two.sided

NOTE: n is number of *pairs*, sd is std.dev. of
differences within pairs

Notice that sig.level=0.05 was taken as the default.

146 8. Power and the computation of sample size

8.4 Comparison of proportions

To calculate sample sizes and related quantities for comparisons of
proportions, you should use power.prop.test. This is based on ap-
proximations with the normal distribution, so do not trust the results if
any of the expected cell counts drop below 5.

The use of power .prop. test is analogous to power. t . test, although
delta and sd are replaced by the hypothesized probabilities in the two
groups, pl and p2. Currently, it is not possible to specify that one wants
to consider a one-sample problem.

An example is given in Altman (1991, p. 459) in which two groups are
administered or not administered nicotine chewing gum and the binary
outcome is smoking cessation. The stipulated values are p; = 0.15 and
p2 = 0.30. We want a power of 85%, and the significance level is the
traditional 5%. Inserting these values yields

> power.prop.test (power=.85,pl=.15,p2=.30)

Two-sample comparison of proportions power calculation

n = 137.6040
pl = 0.15
p2 = 0.3
sig.level = 0.05
power = 0.85
alternative = two.sided

NOTE: n is number in *each* group

8.5 Exercises

8.1 The ashina trial was designed to have 80% power if the true
treatment difference was 15% and the standard deviation of differences
within a person was 20%. Comment on the sample size chosen. (The
power calculation was originally done using the approximative formula.
The imbalance between the group sizes is due to the use of an open
randomization procedure.)

8.2 In a trial comparing a binary outcome between two groups, find the
required number of patients to find an increase in the success rate from
60% to 75% with a power of 90%. What happens if we reduce the power
requirement to 80%?

8.3 (Theoretical.) Even though dt does not allow the ncp argument, it is
quite easy to get the approximate density of the noncentral ¢ distribution

8.5 Exercises 147

by numerical differentiation of the pt function. Plot the density for ncp=3
and d£=25 and compare it to the distribution of t + 3, where t has a central
t distribution with d£=25.

8.4 In two-sided tests there is also a risk of falling into the rejection re-
gion on the opposite side of the true value. The power calculations in R
do not take this into account. Discuss the consequences.

8.5 It is occasionally suggested to choose n to “make the true differ-
ence significant”. What power would result from choosing n by such a
procedure?

This page intentionally left blank

9

Multiple regression

This chapter discusses the case of regression analysis with multiple pre-
dictors. There is not really much new here, since model specification and
output do not differ a lot from what has been described for regression
analysis and analysis of variance. The news is mainly the model search
aspect, namely, among a set of potential descriptive variables to look for a
subset that describes the response sufficiently well.

The basic model for multiple regression analysis is
y=PBo+Brxr+---+ Brxg+e€

where x1, ... x; are explanatory variables (also called predictors) and the
parameters f31, ..., Bk can be estimated using the method of least squares
(see Section 5.1). A closed-form expression for the estimates can be derived
using matrix calculus, but we do not go into details with that here.

9.1 Plotting multivariate data

As an example in this chapter, we use a study concerning lung function in
patients with cystic fibrosis in Altman (1991, p. 338).

Data are in the ISwR package and can be loaded into the workspace with

> data(cystfibr)

150 9. Multiple regression

0.0 0.6 20 50 20 40 100 200 60 120 200
1111 111)11 111 1 11 1| L]l
ool ol oo wo s I
o°| o 8 ‘g g o b 9lo ©° &
o | Q0.0 & o % o |C oo |
| 3B Bl FopeoB e [W5 lw™ [
Sow s Hah 22D oot oS- B ko
g sex
o
= ELAH
F 3
F o
3
&
-8
bmp F g
ke £Opad” gpYes° [Bop cogBo oo §Rep o8 ° [2
4© o0 g o Lo g q o 66 & fo R RE
3—&00% g o 8 080 % ¢ fev1 Q‘po § ”% 00
P o6 P og 8,90 (38) & °°Qg;5 B
PP op o © X §P °0 °a®o 2%P o P, 2
) d°% o) o o Y ® L~
o q o o o P o (<] o -
§&°° b g o®o ano ® o o“’;io v ooc: °o§?8m o |8
dq ? 0 00| o b o q-
Béeg o3 3 gl &% | Bed T 5
o P o EO [o °O °O o % °O
& p o B H ® R0 ® 8 PRo eg° frc °g>°o 9 @°
cPd (% I FIB Jel. ArBolef S LSS | 8% 2 <
S o O 9 O g O
P 0,0] o o o° 0 © 0o o [
Wil Tas At s @ a5 L ek
o o { -~
o | % § © B oo 4 o%p ogJadi 0o P& © §8°8 ¢~
§ +—od 48 ge- g o ofe 12 8
3 oco%P 0odo o0 d o odmo bo ® o
< 7 p o % , |o® e 9% Oo ° @ o, pemax
“BEod pe SR (B Alse, & oobug
© LI TTTTTTTT TTTTTIT TTITT TTTTTT
10 20 110 150 65 80 95 150 300 450 80 110

Figure 9.1. Pairwise plots for cystic fibrosis data.

You can obtain pairwise scatterplots between all the variables in the data
set. This is done using the function pairs. To get Figure 9.1, you simply
write

> par (mex=0.5)
> pairs(cystfibr, gap=0, cex.labels=0.9)

The arguments gap and cex.labels control the visual appearance by
removing the space between subplots and decreasing the font size. The
mex graphics parameter reduces the interline distance in the margins.

A similar plot is obtained by simply saying plot (cystfibr) since the
plot function is generic and behaves differently depending on the class
of its arguments (see Section 1.4.2). Here the argument is a data frame and
apairs plotis a fairly reasonable thing to get when asking for a plot of an

9.2 Model specification and output 151

entire data frame (although you might equally reasonably have expected
a histogram or a bar chart of each variable instead).

The individual plots do get rather small, probably not suitable for di-
rect publication, but it is quite an effective way of obtaining an overview
of multidimensional issues. For example, the close relations among age,
height, and weight appear clearly on the plot.

In order to be able to refer directly to the variables in cystfibr, we add
it to the search path:

> attach(cystfibr)

Because this data set contains common variable names like height and
weight, itis a good idea to ensure that you do not have identically named
variables in the workspace at this point. In particular, such names were
used in the introductory session.

9.2 Model specification and output

Specification of a multiple regression analysis is done by setting up a
model formula with + between the explanatory variables:

1m(pemax~age+sex+height+weight+bmp+fevl+rv+frc+tlc)

which is meant to be read as “pemax is described using a model that
is additive in age, sex, and so forth.” (pemax is the maximal expira-
tory pressure. See Appendix B for a description of the other variables in
cystfibr.)

As usual, there is not much output from 1m itself, but with the aid of
summary you can obtain some more interesting output:

> summary (lm(pemax~age+sex+height+weight+bmp+fevl+rv+frc+tlc))

Call:
Im(formula = pemax ~ age + sex + height + weight + bmp + fevl +
rv + frc + tlc)

Residuals:
Min 10 Median 30 Max
-37.338 -11.532 1.081 13.386 33.405

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 176.0582 225.8912 0.779 0.44s8
age -2.5420 4.8017 -0.529 0.604

152 9. Multiple regression

sex -3.7368 15.4598 -0.242 0.812
height -0.4463 0.9034 -0.494 0.628
weight 2.9928 2.0080 1.490 0.157
bmp -1.7449 1.1552 -1.510 0.152
fevl 1.0807 1.0809 1.000 0.333
rv 0.1970 0.1962 1.004 0.331
frc -0.3084 0.4924 -0.626 0.540
tlc 0.1886 0.4997 0.377 0.711

Residual standard error: 25.47 on 15 degrees of freedom
Multiple R-Squared: 0.6373, Adjusted R-squared: 0.4197
F-statistic: 2.929 on 9 and 15 DF, p-value: 0.03195

The layout should be wellknown by now. Notice that there is not one sin-
gle significant ¢t value, but the joint F test is nevertheless significant, so
there must be an effect somewhere. The reason is that the ¢ tests say any-
thing about what happens only if you remove one variable and leave in
all the others. You cannot see whether a variable would be statistically
significant in a reduced model; all you can see is that no variable must be
included.

Note further that there is quite a large difference between the unadjusted
and the adjusted R?, which is due to the large number of variables relative
to the number of degrees of freedom for the variance. Recall that the for-
mer is the change in residual sum of squares relative to an empty model,
whereas the latter is the similar change in residual variance:

> 1-25.5%2/var (pemax)
[1]

1] 0.4183949

The 25.5 comes from “residual standard error” in the summary output.

The ANOVA table for a multiple regression analysis is obtained using
anova and gives a rather different picture:

> anova (1lm(pemax~age+sex+height+weight+bmp+fevl+rv+frc+tlc))
Analysis of Variance Table

Response: pemax
Df Sum Sg Mean Sg F value Pr (>F)

age 1 10098.5 10098.5 15.5661 0.001296 **
sex 1 955.4 955.4 1.4727 0.243680
height 1 155.0 155.0 0.2389 0.632089
weight 1 632.3 632.3 0.9747 0.339170
bmp 1 2862.2 2862.2 4.4119 0.053010
fevl 1 1549.1 1549.1 2.3878 0.143120

rv 1 561.9 561.9 0.8662 0.366757
frc 1 194.6 194.6 0.2999 0.592007
tlc 1 92.4 92.4 0.1424 0.711160
Residuals 15 9731.2 648.7

9.2 Model specification and output 153

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 **’ 0.05 *.” 0.1 * " 1

Note that except for the very last line (“t1c”), there is practically no
correspondence between these F tests and the f tests from summary. In
particular, the effect of age is now significant. That is because these tests
are successive; they correspond to (reading upward from the bottom) a
stepwise removal of terms from the model until finally only age is left.
During the process, bmp came close to the magical 5% limit, but in view of
the number of tests, this is hardly noteworthy.

The probability that 1 out of 8 independent tests gives a p value of 0.053
or below is actually just over 35%! The tests in the ANOVA table are not
completely independent, but the approximation should be good.

The ANOVA table indicates that there is no significant improvements of
the model once the age is included. It is possible to perform a joint test for
whether all the other variables can be removed by adding up the sums of
squares contributions and use the sum for an F test, that is:

> 955.4+155.0+632.3+2862.2+1549.1+561.9+194.6+92.4

[1] 7002.9

> 7002.9/8

[1] 875.3625

> 875.36/648.7

[1] 1.349407

> 1-pf(1.349407,8,15)
[1] 0.2935148

This corresponds to collapsing the eight lines of the table so that it would
look like this:

Df Sum Sg Mean Sg F Pr (>F)
age 1 10098.5 10098.5 15.566 0.00130
others 8 7002.9 875.4 1.349 0.29351
Residual 15 9731.2 648.7

(note that this is “cheat output” in which we have manually inserted the
numbers computed above).

A procedure leading directly to the result is:

> ml<-1lm(pemax~age+sex+height+weight+bmp+fevl+rv+frc+tlc)
> m2<-1lm(pemax~age)

> anova (ml,m2)

Analysis of Variance Table

Model 1: pemax ~ age + sex + height + weight + bmp + fevl + rv +
frc + tlc
Model 2: pemax ~ age
Res.Df RSS Df Sum of Sg F Pr(>F)

154 9. Multiple regression

1 15 9731.2
2 23 16734.2 -8 -7002.9 1.3493 0.2936

which gives the appropriate F test with no manual computation.

Notice, however, that you need to be careful to ensure that the two mod-
els are actually nested. R does not check this although it does verify that
the number of response observations is the same to safeguard against the
more obvious mistakes. (When there are missing values in the descriptive
variables, it’s easy for the smaller model to contain more data points.)

From the ANOVA table we can thus see that it is allowable to remove all
variables except age. However, that this particular variable is left in the
model is primarily due to the fact that it was mentioned first in the model
specification, as we see below.

9.3 Model search

R has the step () function for performing model searches by the Akaike
Information Criterion. Since that is well beyond the scope of this book, we
use simple manual variants of backward elimination.

In the following, we go through a practical model reduction for the exam-
ple data. Notice that the output has been slightly edited to take up less
space.

> summary (lm(pemax~age+sex+height+weight+bmp+fevl+rv+frc+tlc))

Estimate Std. Error t value Pr(>|t])
(Intercept) 176.0582 225.8912 0.779 0.448
age -2.5420 4.8017 -0.529 0.604
sex -3.7368 15.4598 -0.242 0.812
height -0.4463 0.9034 -0.494 0.628
weight 2.9928 2.0080 1.490 0.157
bmp -1.7449 1.1552 -1.510 0.152
fevl 1.0807 1.0809 1.000 0.333
rv 0.1970 0.1962 1.004 0.331
frc -0.3084 0.4924 -0.626 0.540
tlc 0.1886 0.4997 0.377 0.711

One advantage of doing model reductions by hand is that you may im-
pose some logical structure on the process. In the present case, it may, for
instance, be natural to try to remove other lung function indicators first.

> summary (lm(pemax~age+sex+height+weight+bmp+fevl+rv+frc))

9.3 Model search 155

Estimate Std. Error t value Pr(>|t])

(
(Intercept) 221.8055 185.4350 1.196 0.2491
age -3.1346 4.4144 -0.710 0.4879
sex -4.6933 14.8363 -0.316 0.7558
height -0.5428 0.8428 -0.644 0.5286
weight 3.3157 1.7672 1.876 0.0790
bmp -1.9403 1.0047 -1.931 0.0714
fevl 1.0183 1.0392 0.980 0.3417
rv 0.1857 0.1887 0.984 0.3396
frc -0.2605 0.4628 -0.563 0.5813

> summary (1lm(pemax~age+sex+height+weight+bmp+fevl+rv))

Estimate Std. Error t value Pr(>|t])

(
(Intercept) 166.71822 154.31294 1.080 0.2951
age -1.81783 3.66773 -0.496 0.6265
sex 0.10239 11.89990 0.009 0.9932
height -0.40981 0.79257 -0.517 0.6118
weight 2.87386 1.55120 1.853 0.0814
bmp -1.94971 0.98415 -1.981 0.0640
fevl 1.41526 0.74788 1.892 0.0756
rv 0.09567 0.09798 0.976 0.3425

> summary (lm(pemax~age+sex+height+weight+bmp+fevl))

Estimate Std. Error t value Pr(>|t])

(
(Intercept) 260.6313 120.5215 2.163 0.0443 *
age -2.9062 3.4898 -0.833 0.4159
sex -1.2115 11.8083 -0.103 0.9194
height -0.6067 0.7655 -0.793 0.4384
weight 3.3463 1.4719 2.273 0.0355 *
bmp -2.3042 0.9136 -2.522 0.0213 *
fevl 1.0274 0.6329 1.623 0.1219

> summary (1lm(pemax~age+sex+height+weight+bmp))

Estimate Std. Error t value Pr(>|t])
(Intercept) 280.4482 124.9556 2.244 0.0369 *
age -3.0750 3.6352 -0.846 0.4081
sex -11.5281 10.3720 -1.111 0.2802
height -0.6853 0.7962 -0.861 0.4001
weight 3.5546 1.5281 2.326 0.0312 *
bmp -1.9613 0.9263 -2.117 0.0476 *

As seen, there was no obstacle to removing the four lung function vari-
ables. Next we try to reduce among the variables that describe the
patient’s state of physical development or size. Initially, we avoid remov-
ing weight and bmp, since they appear to be close to the 5% significance
limit.

> summary (1lm(pemax~age+height+weight+bmp))

156 9. Multiple regression

Estimate Std. Error
(Intercept) 274.5307 125.5745

age -3.0832 3.6566
height -0.6985 0.8008
weight 3.6338 1.5354
bmp -1.9621 0.9317

t value
2.186
-0.843
-0.872
2.367
-2.106

> summary (1lm(pemax~height+weight+bmp))

Pr(>|t])
0.0409
0.4091
0.3934
0.0282
0.0480

Estimate Std. Error t value Pr(>|t])

(Intercept) 245.3936 119.8927

height -0.8264 0.7808
weight 2.7717 1.1377
bmp -1.4876 0.7375

> summary (1lm(pemax~weight+bmp))

2.047
-1.058
2.436
-2.017

0.0534
0.3019
0.0238
0.0566

Estimate Std. Error t value Pr(>|t])

(Intercept) 124.8297 37.4786
weight 1.6403 0.3900
bmp -1.0054 0.5814

> summary (lm(pemax~weight))

3.331
4.206
-1.729

0.003033
0.000365
0.097797

Estimate Std. Error t value Pr(>|t])

(Intercept) 63.5456 12.7016
weight 1.1867 0.3009

Notice that once age and height were removed, bmp was no longer sig-
nificant. In the original reference Altman (1991), weight, fevl, and bmp
all ended up with p-values below 5%. However, far from all elimination

procedures lead to that result.

It is also a good idea to pay close attention to the age, weight, and
height variables, which are heavily correlated since we are dealing with

children and adolescents.

5.003
3.944

> summary (lm(pemax~age+weight+height))

4.63e-05
0.000646

Estimate Std. Error t value Pr(>|t])

(Intercept) 64.65555 82.40935

age 1.56755 3.14363
weight 0.86949 0.85922
height -0.07608 0.80278

> summary (1lm(pemax~age+height))

0.785
0.499
1.012
-0.095

0.441
0.623
0.323
0.925

Estimate Std. Error t value Pr(>|t])

(Intercept) 17.8600 68.2493
age 2.7178 2.9325

0.262
0.927

0.796
0.364

* *

* kK

* kK

* Kk Kk

9.4 Exercises 157

height 0.3397 0.6900 0.492 0.627
> summary (lm(pemax~age))

Estimate Std. Error t value Pr(>|t])
(Intercept) 50.408 16.657 3.026 0.00601 **
age 4.055 1.088 3.726 0.00111 =**

> summary (1lm(pemax~height))

Estimate Std. Error t value Pr(>|t])
(Intercept) -33.2757 40.0445 -0.831 0.41453
height 0.9319 0.2596 3.590 0.00155 =**

As it turns out, there is really no reason to prefer one of the three vari-
ables to the other two. The fact that an elimination method ends up with a
model containing only weight is essentially a coincidence. You can easily
be misled by model search procedures ending up with one highly signif-
icant variable — it is far from certain that the same variable would be
chosen if you were to repeat the analysis on a new, similar data set.

What you may reasonably conclude is that there is probably a connection
with the patient’s physical development or size, which may be described
in terms of age, height, or weight. Which description to use is arbitrary. If
you want to choose one before the others, a decision cannot be based on
the data, although possibly on theoretical considerations and/or results
from previous investigations.

9.4 Exercises

9.1 The secher data are best analyzed after log-transforming birth
weight as well as the abdominal and biparietal diameters. Fit a prediction
equation for birth weight. How much is gained by using both diameters in
a prediction equation? The sum of the two regression coefficients is almost
exactly 3 — can this be given a nice interpretation?

9.2 The t1lc data set contains a variable also called t1c. This may create
some difficulties when analyzing it. Explain why, and suggest ways to
overcome the problem. Describe t1c using the other variables in the data
set and discuss the validity of the model.

9.3 The analyses of cystfibr involve sex, which is a binary variable.
How would you interpret the results for this variable?

9.4 Consider the juul2 data set and select the group of those over 25
years old. Perform a regression analysis of /igfl on age, and extend

158 9. Multiple regression

the model by including height and weight. Generate the analysis of
variance table for the extended model. What is the surprise and why does
it happen?

9.5 Analyze and interpret the effect of explanatory variables on the milk
intake in the kfm data set using a multiple regression model. Notice that
sex is a factor here; what does that imply for the analyses?

10

Linear models

Many data sets are inherently too complex to be handled adequately by
standard procedures and thus require the formulation of ad-hoc models.
The class of linear models provides a flexible framework into which many
— although not all — of these cases can be fitted.

You may have noticed that the 1m function is applied to data classified into
groups (Chapter 6) as well as to (multiple) linear regression (Chapters 5
and 9) problems, even though the theory for these procedures appears to
be quite different. However, they are, in fact, special cases of the same
general model.

The basic point is that a multiple regression model can describe a wide va-
riety of situations if you choose the explanatory variables suitably. There
is no requirement that the explanatory variables should follow a normal
distribution, or any continuous distribution for that matter. One simple
example (which we use without comment in Chapter 9) is that a group-
ing into two categories can be coded as a 0/1 variable and used in a
regression analysis. The regression coefficient in that case corresponds to
a difference between two groups rather than the slope of an actual line. To
encode a grouping with more than two categories, you can use multiple
0/1 variables.

Generating these dummy variables becomes tedious, but it can be auto-
mated by the use of model formulas. Among other things, they provide
a convenient abstraction by treating classification variables (factors) and
continuous variables symmetrically. You will need to learn exactly what

160 10. Linear models

model formulas do in order to become able to express your own modeling
ideas.

This chapter contains a collection of models and their handling by 1m,
mainly in the form of relatively minor extensions and modifications of
methods described earlier. It is meant only to give you a feel for the scope
of possibilities and does not pretend to be complete.

10.1 Polynomial regression

One basic observation showing that multiple regression analysis can do
more than meets the eye is that you can include second-order and higher
powers of a variable in the model along with the original linear term. That
is, you can have a model like

Y=o+ Brx+pBax’ +- -+ B +e

This obviously describes a nonlinear relation between y and x, but that
does not matter; the model is still a linear model. What does matter is that
the relation between the parameters and the expected observations is linear.
It also does not matter that there is a deterministic relation between the re-
gression variables x, x2,x3,... as long as there is no linear relation between
them. However, fitting high-degree polynomials can be difficult because

near-collinearity between terms makes the fit numerically unstable.

We return to the cystic fibrosis data set for an example. The plot of pemax
and height in Figure 9.1 may suggest that the relation is not quite linear.
One way to test this is to try to add a term that is the square of the height.

> data(cystfibr)
> attach(cystfibr)
> summary (1lm(pemax~height+I (height”~2)))

Estimate Std. Error t value Pr(>|t])
(Intercept) 615.36248 240.95580 2.554 0.0181 *
height -8.08324 3.32052 -2.434 0.0235 *
I (height”2) 0.03064 0.01126 2.721 0.0125 *

Notice that the computed height® in the model formula needs to be
“protected” by I (.. .).This technique is often used to prevent special in-
terpretation of operators in a model formula. Such interpretation will not
take place inside a function call, and I is the identity function that returns
its argument unaltered.

10.1 Polynomial regression 161

We find a significant deviation from linearity. However, considering the
process that led to doing this particular analysis, the p values have to
be taken with more than a grain of salt. This is getting dangerously
close to “data dredging”, fishing expeditions in data. Consider it more
an illustration of a technique than an exemplary data analysis.

To draw a plot of the fitted curve with prediction and confidence bands,
we can use predict. To avoid problems caused by data not being sorted
by height, we use newdata, which allows the prediction of values for a
chosen set of predictors. Here we choose a set of heights between 110 and
180 cm in steps of 2 cm:

> pred.frame <- data.frame (height=seq(110,180,2))

> Im.pemax.hqg <- lm(pemax~height+I (height”"2))

> predict (lm.pemax.hq, interval="pred",newdata=pred. frame)
fit lwr upr

1 96.90026 37.94461 155.8559

2 94.33611 36.82985 151.8424

3 92.01705 35.73077 148.3033

34 141.68922 88.70229 194.6761
35 147.21294 93.51117 200.9147
36 152.98174 98.36718 207.5963

Based on these predicted data, Figure 10.1 is obtained as follows:

pp <- predict (lm.pemax.hqg,newdata=pred. frame, interval="pred")
pc <- predict(lm.pemax.hqg,newdata=pred.frame, interval="conf")
plot (height, pemax,ylim=c(0,200))

matlines (pred. framesheight,pp,lty=c(1,2,2),col="black")
matlines (pred. frameSheight,pc,lty=c(1,3,3),col="black")

vV V.V V V

It is seen that the fitted curve is slightly decreasing for small heights. This
is probably an artifact caused by the choice of a second-order polynomial
to fit data. More likely, the reality is that pemax is relatively constant up
to about 150 cm, whereafter it increases quickly with height. Note also
that there seems to be a discrepancy between the prediction limits and
the actual distribution of data for the smaller heights. The standard devi-
ation might be larger for larger heights, but it is not impossible to obtain
a similar distribution of points by coincidence. It is really not advisable to
construct prediction intervals based on data as limited as these unless you
are sure that the model is correct.

162 10. Linear models

150 200
| |

pemax
100
L

I I I I I I I I
110 120 130 140 150 160 170 180

height

Figure 10.1. Quadratic regression with confidence- and prediction limits.
10.2 Regression through the origin

It sometimes makes sense to assume that a regression line passes through
(0,0) — that the intercept of the regression line is zero. This can be spec-
ified in the model formula by adding the term -1 (“minus intercept”) to
the right-hand side: y ~ x - 1.

The logic of the notation can be seen by writing the linear regression
model as ¥ = a X 1+ 3 X x + €. The intercept corresponds to having an
extra descriptive variable, which is the constant 1. Removing this variable
yields regression through the origin.

This is a simulated example of a linear relationship through the origin
(y =2x+e):

> x <- runif(20)
> y <- 2*x+rnorm(20,0,0.3)
> summary (1lm(y~x))

Call:
Im(formula = y ~ x)

10.2 Regression through the origin 163

Residuals:
Min 10 Median 30 Max
-0.50769 -0.08766 0.03802 0.14512 0.26358

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -0.14896 0.08812 -1.69 0.108
x 2.39772 0.15420 15.55 7.05e-12 ***
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 **’ 0.05 ‘.’ 0.1 + " 1

Residual standard error: 0.2115 on 18 degrees of freedom
Multiple R-Squared: 0.9307, Adjusted R-squared: 0.9269
F-statistic: 241.8 on 1 and 18 DF, p-value: 7.047e-12

> summary (1m(y~x-1))

Call:
Im(formula =y ~ x - 1)

Residuals:
Min 10 Median 30 Max
-0.62178 -0.16855 -0.04019 0.12044 0.27346

Coefficients:
Estimate Std. Error t value Pr(>|t])
x 2.17778 0.08669 25.12 4.87e-16 **x*
Signif. codes: 0 ‘***’ (0.001 ***’ 0.01 *’ 0.05 *.” 0.1 + " 1

Residual standard error: 0.2216 on 19 degrees of freedom
Multiple R-Squared: 0.9708, Adjusted R-squared: 0.9692
F-statistic: 631.1 on 1 and 19 DF, p-value: 4.873e-16

In the first analysis, the intercept is not significant, which is, of course
not surprising. In the second analysis we force the intercept to be zero,
resulting in a slope estimate with a substantially improved accuracy.

Comparison of the R2-values in the two analyses shows something that
occasionally causes confusion: R? is much larger in the model with no in-
tercept! This does not, however, mean that the relation is “more linear”
when the intercept is not included or that more of the variation is ex-
plained. What is happening is that the definition of R? itself changes. It
is most easily seen from the ANOVA tables in the two cases:

> anova (lm(y~x))
Analysis of Variance Table

Response: y

Df Sum Sg Mean Sg F value Pr (>F)
x 1 10.8134 10.8134 241.80 7.047e-12 **x*
Residuals 18 0.8050 0.0447

164 10. Linear models

Signif. codes: 0 ‘***’/ (0.001 ‘**’ 0.01 **’ 0.05 ‘.’ 0.1 + " 1
> anova (lm(y~x-1))
Analysis of Variance Table

Response: y

Df Sum Sg Mean Sqg F value Pr (>F)
x 1 30.9804 30.9804 631.06 4.873e-16 ***
Residuals 19 0.9328 0.0491

Signif. codes: 0 ‘***’ 0.001 ***’ 0.01 **’ 0.05 *.” 0.1 * " 1

Notice that the total sum of squares and the total number of degrees of
freedom is not the same in the two analyses. In the model with an intercept
there are 19 DF in all and the total sum of squares is Y(y; — 7)?, while
the model without an intercept has a total of 20 DF and the total sum of
squares is defined as ¥ y7. Unless 7 is close to zero, the latter “total SS”
will be much larger than the former, so if the residual variance is similar,
R? will be much closer to 1.

The reason for defining the total sum of squares like this for models with-
out intercepts is that it has to correspond to the residual sum of squares in
a minimal model. The minimal model has to be a submodel of the regres-
sion model; otherwise the ANOVA table simply does not make sense. In
an ordinary regression analysis the minimal model is ¥ = & + €, but when
the regression model does not include «, the only sensible minimal model
isy=0+e.

10.3 Design matrices and dummy variables

The function model . matrix gives the design matrix for a given model. It
can look like this:

> data(cystfibr)

> attach(cystfibr)

> model .matrix (pemax~height+weight)
(Intercept) height weight

1 1 109 13.1
2 1 112 12.9
3 1 124 14.1
4 1 125 16.2
24 1 175 51.1
25 1 179 71.5

attr(,"assign")
[1] 01 2

10.3 Design matrices and dummy variables 165

You should not worry about the "assign" attribute at this stage, but the
three columns are important. If you add them together, weighted by the
corresponding regression coefficients, you get exactly the fitted values.
Notice that the intercept enters as coefficient to a column of ones.

If the same is attempted for a model containing a factor, the following
happens. We return to the anesthetic ventilation example on p. 113.

> data(red.cell.folate)
attach(red.cell.folate)
> model .matrix(folate~ventilation)

\%

(Intercept) ventilationN20+02,o0p ventilationO2,24h

1 1 0 0
2 1 0 0
16 1 1 0
17 1 1 0
18 1 0 1
19 1 0 1
20 1 0 1
21 1 0 1
22 1 0 1
attr(,"assign")

[1] 01 1

attr(, "contrasts")
attr(, "contrasts")$ventilation
[1] "contr.treatment"

The two columns of zeros and ones are sometimes called dummy variables.
They are interpreted exactly as above: Multiplying them by the respective
regression coefficients and adding the results yields the fitted value. No-
tice that, for example, the second column is 1 for observations in group 2
and 0 otherwise; that is, the corresponding regression coefficient describes
something that is added to the intercept for observations in that particular
group. Both columns have zeros for observations from the first group, the
mean value of which is described by the intercept (3¢) alone. The regres-
sion coefficient 31 thus describes the difference in means between groups 1
and 2, and f3; between groups 1 and 3.

You may be confused by the use of the term “regression coefficients” even
though no regression lines are present in models like that above. The point
is that you formally rewrite a model for groups as a multiple regression
model, so that you can use the same software. As seen, there is a unique
correspondence between the formal regression coefficients and the group
means.

You can define dummy variables in several different ways to describe a
grouping. This particular scheme is called treatment contrasts because if
the first group is “no treatment” then the coefficients immediately give

166 10. Linear models

the treatment effects for each of the other groups. We do not discuss other
choices here; see Venables and Ripley (2002) for a much deeper discussion.
Note only that contrast type can be set on a per-term basis and that this is
what is reflected in the "contrasts" attribute of the design matrix.

For completeness, this is what the "assign" attribute means: It indicates
which columns belong together. When, for instance, you request an anal-
ysis of variance using anova, the sum of squares for ventilation will
have 2 degrees of freedom, corresponding to removal of both columns
simultaneously.

Removing the intercept from a model containing a factor term will not
correspond to a model in which a particular group has mean zero, since
such models are usually nonsensical. Instead, R generates a simpler set of
dummy variables, which are indicator variables of the levels of the factor.
This corresponds to the same model as when the intercept is included (the
fitted values are identical), but the regression coefficients have a different
interpretation.

10.4 Linearity over groups

Sometimes data are grouped according to a division of a continuous scale
(e.g., by age group) or an experiment was designed to take several mea-
surements at each of a fixed set of x-values. In both cases it is relevant
to compare the results of a linear regression with those of an analysis of
variance.

In the case of grouped x-values you might take a central value as represen-
tative for everyone in a given group, for instance formally letting everyone
ina “20-29-year” category be 25 years old. If individual x-values are avail-
able, they may of course be used in a linear regression, but it makes the
analysis a little more complicated so we discuss only the situation when
that is not the case.

We thus have two alternative models for the same data. Both belong to the
class of linear models that 1m is capable of handling. The linear regression
model is a submodel of the model for one-way analysis of variance, because
the former can be obtained by placing restrictions on the parameters of the
latter (namely that the true group means lie on a straight line).

It is possible to test whether or not a model reduction is allowable by com-
paring the reduction in the amount of variation explained to the residual
variation in the larger model, resulting in an F test.

10.4 Linearity over groups 167

In the following example on trypsin concentrations in age groups (Alt-
man, 1991, p. 212), data are given as the mean and SD within each of six
groups. This is a kind of data that R is not quite prepared to handle, and it
has therefore been necessary to create “fake” data giving the same means
and SDs. These can be obtained via

> data(fake.trypsin)
> attach(fake.trypsin)

The actual results of the analysis of variance depend only on the means
and SDs and are therefore independent of the faking. Readers inter-
ested in how to perform the actual faking should take a look at the file
fake.trypsin.Rin the data directory of the ISwR package.

The fake. trypsin data frame contains three variables, as seen by

> summary (fake.trypsin)

trypsin grp grpf
Min. :-34.10 Min. :1.000 1: 32
lst Qu.:121.25 1st Qu.:2.000 2:137
Median :165.47 Median :2.000 3: 38
Mean :168.68 Mean :2.583 4: 44
3rd Qu.:206.57 3rd Qu.:3.000 5: 16
Max. :357.95 Max. :6.000 6: 4

Notice that there are both grp, which is a numerical vector, and grpf,
which is a factor with six levels. Note also that the faking process involves
random number generation in the data (fake.trypsin) step, so you
will get varying results for the trypsin column.

Performing a one-way analysis of variance on the fake data gives the
following ANOVA table:

> anova (lm(trypsin~grpf))
Analysis of Variance Table

Response: trypsin

Df Sum Sg Mean Sg F value Pr (>F)
grpf 5 224103 44821 13.508 9.592e-12 ***
Residuals 265 879272 3318
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 **’ 0.05 ‘.’ 0.1 + " 1

If you had used grp instead of grpf in the model formula, you would
have obtained a linear regression on the group number instead. In some
circumstances that would have been a serious error, but here it actually
makes sense. The midpoints of the age intervals are equidistant so the
model is equivalent to assuming a linear development with age (the in-
terpretation of the regression coefficient requires some care, though). The
ANOVA table looks as follows:

168 10. Linear models

> anova (lm(trypsin~grp))
Analysis of Variance Table

Response: trypsin

Df Sum Sg Mean Sg F value Pr (>F)
grp 1 206698 206698 62.009 8.451le-14 ***
Residuals 269 896677 3333
Signif. codes: 0 ‘***’ (0.001 ***’ 0.01 *’ 0.05 *.” 0.1 » " 1

Notice that the residual mean squares did not change very much, indicat-
ing that the two models describe the data nearly equally well. If you want
to have a formal test of the simple linear model against the model where
there is a separate mean for each group, it can be done easily as follows:

> modell <- 1lm(trypsin~grp)
> model2 <- lm(trypsin~grpf)
> anova (modell,model?2)
Analysis of Variance Table

Model 1: trypsin ~ grp
Model 2: trypsin ~ grpf

Res.Df RSS Df Sum of Sg F Pr (>F)
1 269 896677
2 265 879272 4 17405 1.3114 0.2661

So we see that the model reduction has a nonsignificant p-value and hence
that model2 does not fit data significantly better than model1.

This technique works only when one model is a submodel of the other,
which is the case here since the linear model is defined by a restriction on
the group means:

Another way to achieve the same result is formally to add the two models
together as follows.

> anova (lm(trypsin~grp+grpf))
Analysis of Variance Table

Response: trypsin

Df Sum Sg Mean Sg F value Pr (>F)
grp 1 206698 206698 62.2959 7.833e-14 ***
grpf 4 17405 4351 1.3114 0.2661
Residuals 265 879272 3318
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 **’ 0.05 *.” 0.1 * r 1

This model is exactly the same as when only grpf was included. How-
ever, the ANOVA table now contains a subdivision of the model sum of
squares in which the grpf£ line describes the change incurred by expand-

10.4 Linearity over groups 169

200 300 400
|
L[]

100

Figure 10.2. “Fake” data for the trypsin example with fitted line and empirical
means.

ing the model from one to five parameters. The ANOVA table in Altman
(1991, p. 213) is different, erroneously.

The plot in Figure 10.2 is made like this:

xbar.trypsin <- tapply(trypsin,grpf,mean)

stripchart (trypsin~grp, "jitter",jitter=.1,vertical=T,pch=20)
lines(1:6,xbar.trypsin, type="b",pch=4,cex=2,1ty=2)

abline (lm(trypsin~grp))

vV V. V VvV

The graphical techniques used here are essentially identical to those used
for Figure 6.1, so do not go into further details.

Notice that the fakeness of the data is exposed by a point showing a neg-
ative trypsin concentration! The original data are unavailable but would
likely show a distribution slightly skewed upward.

Actually, it is possible to analyze the data in R without generating fake
data. A weighted regression analysis of the group means, with weights
equal to the number of observations in each group, will yield the first two
lines of the ANOVA table and the last one can be computed from the SDs.
The details are as follows:

170 10. Linear models

> n <- c(32,137, 38,44,16,4)

> tryp.mean <- c¢(128,152,194,207,215,218)

> tryp.sd <-c(50.9,58.5,49.3,66.3,60,14)

> gr<-1:6

> anova (lm(tryp.mean~gr+factor (gr) ,weights=n))
Analysis of Variance Table

Response: tryp.mean
Df Sum Sg Mean Sq F value Pr (>F)

gr 1 206698 206698
factor(gr) 4 17405 4351
Residuals 0 0

Notice that the “Residuals” line is zero and that the F tests are not cal-
culated. Omitting the factor (gr) term will cause that line to go into
the Residuals and be treated as an estimate of the error variation, but
that is not what you want since it does not include the information
about the variation within groups. Instead, you need to fill in the miss-
ing information computed from the group standard deviations and sizes.
The following gives the residual sum of squares and the corresponding
degrees of freedom and mean squares:

> sum(tryp.sd”2* (n-1))

[1] 879271.9
> sum(n-1)
[1] 265

> sum(tryp.sd”2* (n-1)) /sum(n-1)
[1] 3318.007

There is no simple way of updating the ANOVA table with an external
variance estimate, but it is easy enough to do the computations directly:

> 206698/3318.007 # F statistic for gr

[1] 62.29583

> 1-pf(206698/3318.007,1,265) # p-value

[1] 7.838175e-14

> 4351/3318.007 # F statistic for factor(gr)
[1] 1.311329

> 1-pf(4351/3318.007,4,265) # p-value

[1] 0.2660733

10.5 Interactions

A basic assumption in a multiple regression model is that terms act ad-
ditively on the response. However, this does not mean that linear models
cannot describe nonadditivity. You can add special interaction terms that
specify that the effect of one term is modified according to the level of an-

10.6 Two-way ANOVA with replication 171

other. In the model formulas in R such terms are generated using the colon
operator, for example, a : b. Usually, you will also include the terms a and
b, and R allows the notation a*b for a+b+a:b. Higher-order interactions
among three or more variables are also possible.

The exact definition of the interaction terms and the interpretation of their
associated regression coefficients can be elusive. Some peculiar things
happen if an interaction term is present but one or more of the main effects
is missing. The full details are probably best revealed through experimen-
tation. However, depending on the nature of the terms a and b as factors
or numerical variables, the overall effect of including interaction terms can
be described as follows:

e [Interaction between two factors. This is conceptually the simplest case.
The model with interaction corresponds to having different levels
for all possible combinations of levels of the two factors.

e Interaction between a factor and a numerical variable. In this case the
model with interaction contains linear effects of the continuous vari-
able, but with different slopes within each group defined by the
factor.

* Interaction between two continuous variables. This gives a slightly pecu-
liar model containing a new regression variable that is the product
of the two. The interpretation is that you have a linear effect of vary-
ing one variable while keeping the other constant, but with a slope
that changes as you vary the other variable.

10.6 Two-way ANOVA with replication

The coking data set comes from Johnson (1994, Section 13.1). The time to
make coke from coal is analyzed in a 2 x 3 experiment varying the oven
temperature and the oven width. There were three replications at each
combination.

> data (coking)

> attach (coking)

> anova (lm(time~width*temp))
Analysis of Variance Table

Response: time

Df Sum Sg Mean Sg F value Pr (>F)
width 2 123.143 61.572 222.102 3.312e-10 ***
temp 1 17.209 17.209 62.076 4.394e-06 ***

width:temp 2 5.701 2.851 10.283 0.002504 =**
Residuals 12 3.327 0.277

172 10. Linear models

Signif. codes: 0 ‘***’/ (0.001 ‘**’ 0.01 **’ 0.05 ‘.’ 0.1 + " 1

We see that the interaction term is significant. If we take a look at the cell
means, we can get an idea of why this happens:

> tapply(time,list (width, temp) ,h mean)
1600 1900

4 3.066667 2.300000

8 7.166667 5.533333

12 10.800000 7.333333

The difference between high and low temperatures increases with oven
width, making an additive model inadequate. When this is the case, the
individual tests for the two factors make no sense. If the interaction had
not been significant, then we would have been able to perform separate F
tests for the two factors.

10.7 Analysis of covariance

As the example in this section we use a data set concerning growth condi-
tions of Tetrahymena cells, collected by Per Hellung-Larsen. Data are from
two groups of cell cultures where glucose was either added or not added
to the growth medium. For each culture the average cell diameter (i) and
cell concentration (count per ml) were recorded. The cell concentration
was set at the beginning of the experiment, and there is no systematic dif-
ference in cell concentration between the two glucose groups. However, it
is expected that the cell diameter is affected by the presence of glucose in
the medium.

Data are in the data frame hellung, which can be loaded and viewed like
this:

> data (hellung)

> hellung

glucose conc diameter
1 1 631000 21.2
2 1 592000 21.5
3 1 563000 21.3
4 1 475000 21.0
49 2 14000 24.4
50 2 13000 24.3
51 2 11000 24.2

The coding of glucose is such that 1/2 means yes/no. There are no
missing values.

10.7 Analysis of covariance 173

Summarizing the data frame yields

> summary (hellung)

glucose conc diameter
Min. :1.000 Min. : 11000 Min. :19.20
l1st Qu.:1.000 1st Qu.: 27500 1st Qu.:21.40
Median :1.000 Median : 69000 Median :23.30
Mean :1.373 Mean :164325 Mean :23.00
3rd Qu.:2.000 3rd Qu.:243000 3rd Qu.:24.35
Max. :2.000 Max. :631000 Max. :26.30

Notice that the distribution of the concentrations is strongly right-skewed
with a mean more than twice as big as the median. Note also that glucose
is regarded as a numerical variable by summary, even though it has only
two different values.

It will be more convenient to have glucose as a factor, so it is recoded as
shown below. Recall that to change a variable inside a data frame, you use
$-notation 19 to specify the component you want to change:

> hellungS$glucose <- factor (hellung$glucose, labels=c("Yes", "No"))
> summary (hellung)
glucose conc diameter
Yes:32 Min. : 11000 Min. :19.20
No :19 1st Qu.: 27500 1st Qu.:21.40
Median : 69000 Median :23.30
Mean :164325 Mean :23.00
3rd Qu.:243000 3rd Qu.:24.35
Max. :631000 Max. :26.30

It is convenient to be able to refer to the variables of hellung without the
hellungs prefix, so we put hellung in the search path.

> attach (hellung)

10.7.1 Graphical description

First we plot the raw data (Figure 10.3):

> plot(conc,diameter, pch=as.numeric (glucose))

By calculating as .numeric (glucose), we convert the factor glucose
to the underlying codes, 1 and 2. The specification of pch thus implies that
group 1 (“Yes”) is drawn using plotting character 1 (circles) and group 2
with plotting character 2 (triangles).

To get different plotting symbols, you must first create a vector containing
the symbol numbers and give that as the pch argument. The following

174 10. Linear models

o

© _|

“18

%o o glucose
o | A no glucose
[V o
éooo
<
Q1 o
®o
5 £ %
3 R
o

g 2N o ©
T A o

N

o o o
A o o o
—
bR A A A o
A
o
o
N A
A
o | A
=

T T T T T T T
0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

conc

Figure 10.3. Plot of diameter versus concentration for Tetrahymena data.

form yields open and filled circles: c (1,16) [glucose]. It looks a bit
cryptic at first, but it is really just a consequence of R’s way of indexing.
For indexing purposes, a factor like glucose behaves as a vector of 1s
and 2s, so you get the first element of ¢ (1,16), namely 1, whenever an
observation is from group 1; when the observation is from group 2 you
similarly get 16.

The explanatory text is inserted with 1egend like this:
> legend(locator (n=1),legend=c("glucose", "no glucose"),pch=1:2)

Notice that both the function and one of its arguments is named legend.

The function locator returns the coordinates of a point on a plot. It
works so that the function awaits a click with a mouse button and then re-
turns the cursor position. You may want to call locator () directly from
the command line to see the effect. Notice that if you do not specify a value
for n, then you need to right-click when you are done selecting points.

The plot shows a clear inverse and nonlinear relation between concentra-
tion and cell diameter. Further, it is seen that the cultures without glucose
are systematically below cultures with added glucose.

10.7 Analysis of covariance 175

o
©o _|
N o o
o o
o o
wn _l
Y [e]
o
I °
QT 20 o
A o0 o
5 a® o %
e & AA o
g A o ©
T o« A o
N
A o .0 ooo
bR AN A o
A
o
o _|
N A
A
o | A
- T T T T T T
1e+04 2e+04 5e+04 1e+05 2e+05 5e+05

conc

Figure 10.4. Tetrahymena data with logarithmic x-axis.

You get a much nicer plot (Figure 10.4) by using a logarithmic x-axis:

> plot(conc,diameter, pch=as.numeric (glucose), log="x")

Now the relation suddenly looks linear!

You could also try a log-log plot (shown in Figure 10.5 with regression
lines as described below):

> plot (conc,diameter, pch=as.numeric (glucose), log="xy")

As seen, this really does not change much, but it was nevertheless decided
to analyze data with both diameter and concentration log-transformed,
because a power-law relation was expected (y = axf, which gives a
straight line on a log-log plot).

When adding regression lines to a log plot or log-log plot, you should
notice that abline interprets them as lines in the coordinate system ob-
tained after taking (base-10) logarithms. Thus, you can add a line for
each group with abline applied to the results of a regression analysis
of 1ogl0 (diameter) on 1logl0 (conc). First, however, it is convenient
to define data frames corresponding to the two glucose groups:

176 10. Linear models

diameter

19

T T T T T T
1e+04 2e+04 5e+04 1e+05 2e+05 5e+05

conc

Figure 10.5. Tetrahymena data, log-log plot with regression lines.

> tethym.gluc <- hellung[glucose=="Yes",]
> tethym.nogluc <- hellung[glucose=="No",]

Notice that you have to use the names, not the numbers, of the factor
levels.

Since we only need the two data frames for adding lines to the figure,
it would be cumbersome to add them in turn to the search path with
attach, do the plotting, and then use detach to remove them. It is eas-
ier to use the data argument to 1m; this allows you to explicitly specify
the data frame in which to look for variables. The two regression lines are
drawn with

Im.nogluc <- 1lm(loglO (diameter)~ loglO (conc),data=tethym.nogluc)
Im.gluc <- 1m(loglO(diameter)~ loglO (conc),data=tethym.gluc)
abline (1lm.nogluc)

abline(lm.gluc)

vV V. V VvV

— whereafter the plot looks like Figure 10.5. It is seen that the lines fit the
data quite well and that they are almost, but not perfectly, parallel. The
question is whether the difference in slope is statistically significant. This
is the topic of the next section.

10.7 Analysis of covariance 177

10.7.2 Comparison of regression lines

Corresponding to the two lines from before, we have the following
regression analyses:

> summary (1lm(logl0 (diameter)~ loglO (conc), data=tethym.gluc))

Call:
Im(formula = loglO(diameter) ~ loglO(conc), data = tethym.gluc)

Residuals:
Min 10 Median 30 Max
-0.0267219 -0.0043361 0.0006891 0.0035489 0.0176077

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 1.63134 0.01345 121.29 <2e-16 ***
logl0(conc) -0.05320 0.00272 -19.56 <2e-16 **x*
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 **’/ 0.05 ‘.” 0.1 * " 1

Residual standard error: 0.008779 on 30 degrees of freedom
Multiple R-Squared: 0.9273, Adjusted R-squared: 0.9248
F-statistic: 382.5 on 1 and 30 DF, p-value: < 2.2e-16

> summary (1lm(logl0 (diameter)~ loglO (conc), data=tethym.nogluc))
Call:
Im(formula = loglO(diameter) ~ loglO(conc), data = tethym.nogluc)
Residuals:

Min 10 Median 30 Max

-2.192e-02 -4.977e-03 5.598e-05 5.597e-03 1.663e-02

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.634761 0.020209 80.89 < 2e-16 **xx*
logl0(conc) -0.059677 0.004125 -14.47 5.48e-11 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 **’ 0.05 *.” 0.1 * " 1

Residual standard error: 0.009532 on 17 degrees of freedom
Multiple R-Squared: 0.9249, Adjusted R-squared: 0.9205
F-statistic: 209.3 on 1 and 17 DF, p-value: 5.482e-11

Notice that you can use arithmetic expressions in the model formula
[here 10g10 (.. .)]. There are limitations, though, because, for example,
z~x+y means a model where z is described by an additive model in x and
y, which is not the same as a regression analysis on the sum of the two.
The latter may be specified using z~I (x+y) (I for “identity”).

178 10. Linear models

A quick assessment of the significance of the difference between the
slopes of the two lines can be obtained as follows: The difference be-
tween the slope estimates is 0.0065, and the standard error of that is
v/0.00412 + 0.00272 = 0.0049. Since t = 0.0065/0.0049 = 1.3, it would
seem that we are allowed to assume that the slopes are the same.

It is, however, preferable to fit a model to the entire data set and test the
hypothesis of equal slopes in that model. One reason that this approach
is preferable is that it can be generalized to more complicated models.
Another reason is that even though there is nothing seriously wrong with
the simple test for equal slopes, that procedure gives you little information
on how to proceed. If the slopes are the same, you would naturally want
to find an estimate of the common slope and of the distance between the
parallel lines.

First we set up a model that allows the relation between concentration and
cell diameter to have different slopes and intercepts in the two glucose
groups:

> summary (1lm(logl0 (diameter)~1logl0 (conc) *glucose))

Call:
Im(formula = loglO(diameter) ~ loglO(conc) * glucose)

Residuals:
Min 10 Median 3Q Max
-2.672e-02 -4.888e-03 5.598e-05 3.767e-03 1.76le-02

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.631344 0.013879 117.543 <2e-16 ***
logl0 (conc) -0.053196 0.002807 -18.954 <2e-16 ***
glucoseNo 0.003418 0.023695 0.144 0.886
logl0(conc) :glucoseNo -0.006480 0.004821 -1.344 0.185
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 **’ 0.05 *.” 0.1 * " 1

Residual standard error: 0.009059 on 47 degrees of freedom
Multiple R-Squared: 0.9361, Adjusted R-squared: 0.9321
F-statistic: 229.6 on 3 and 47 DF, p-value: < 2.2e-16

These regression coefficients should be read as follows: The expected
value of the log cell diameter for an observation with cell concentration
C is obtained as the sum of the following four quantities:

1. The intercept, 1.6313
2. —0.0532 x log;, C
3. 0.0034, but only for a culture without glucose

10.7 Analysis of covariance 179
4. —0.0065 x log;, C, only for cultures without glucose

Accordingly, for cell cultures with glucose, we have the linear relation
log,y D = 1.6313 — 0.0532 x log;, C
and for cultures without glucose we have
log,y D = (1.6313 + 0.0034) — (0.0532 4+ 0.0065) x log,,C

Put differently, the first two coefficients in the joint model can be inter-
preted as the estimates for intercept and slope in group 1, whereas the
latter two are the differences between group 1 and group 2 in intercept
and slope, respectively. Comparison with the separate regression analyses
shows that slopes and intercepts are the same as in the joint analysis. The
standard errors differ a little from the separate analyses because a pooled
variance estimate is now used. Notice that the rough test of difference in
slope outlined above is essentially the ¢ test for the last coefficient.

Notice also that the glucose and 10gl10 (conc) .glucose terms indi-
cate items to be added for cultures without glucose. This is because the
factor levels are ordered yes = 1 and no = 2, and the base level is the first

group.

Fitting an additive model, we get
> summary (1lm(loglO (diameter)~logl0 (conc)+glucose))

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.642132 0.011417 143.83 < 2e-16 ***
loglO(conc) -0.055393 0.002301 -24.07 < 2e-16 ***
glucoseNo -0.028238 0.002647 -10.67 2.93e-14 ***

Here the interpretation of the coefficients is that the estimated relation for
cultures with glucose is

log,y D = 1.6421 — 0.0554 x log;, C
and for cultures without glucose it is
log,o D = (1.6421 — 0.0282) — 0.0554 x log,, C

That is, the lines for the two cultures are parallel, but the log diame-
ters for cultures without glucose are 0.0282 below those with glucose. On
the original (nonlogarithmic) scale, this means that the former are 6.3%
lower (a constant absolute difference on a logarithmic scale corresponds to
constant relative differences on the original scale and 10790282 = 0.937).

The joint analysis presumes that the variance around the regression line
is the same in the two groups. This assumption should really have been

180 10. Linear models

tested before embarking on the above analysis. A formal test can be
performed with var. test, which conveniently allows a pair of linear
models as arguments instead of a model formula or two group vectors:

> var.test (lm.gluc, Im.nogluc)
F test to compare two variances

data: 1Im.gluc and lm.nogluc
F = 0.8482, num df = 30, denom df = 17, p-value = 0.6731
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.3389901 1.9129940
sample estimates:
ratio of variances
0.8481674

When there are more than two groups, Bartlett’s test is the one to use. It too
allows linear models to be compared. The reservations about robustness
against nonnormality apply here, too.

It is seen that it is possible to assume that the lines have the same slope
and that they have the same intercept, but — as we see below — not both
at once. The hypothesis of a common intercept is silly anyway unless the
slopes are also identical: The intercept is by definition the y-value at x = 0,
which because of the log scale corresponds to a cell concentration of 1.
That is far outside the region the data cover, and it is a completely arbitrary
point, which will change if the concentrations are measured in different
units.

The ANOVA table for the model is

> anova (lm(logl0 (diameter)~ loglO (conc) *glucose))
Analysis of Variance Table

Response: logl0O(diameter)
Df Sum Sg Mean Sg F value Pr (>F)

logl0 (conc) 1 0.046890 0.046890 571.436 < 2.2e-16 ***
glucose 1 0.009494 0.009494 115.698 2.89e-14 ***
logl0O(conc) :glucose 1 0.000148 0.000148 1.807 0.1853
Residuals 47 0.003857 0.000082

Signif. codes: 0 ‘***’ (0.001 ***’ 0.01 *’ 0.05 *.” 0.1 + "1

The model formula a*b, where in the present case a is 1ogl0 (conc)
and bisglucose,isashortformfora + b + a:b,which isread “effect
of a plus effect of b plus interaction”. The F test in the penultimate line
of the ANOVA table is a test for the hypothesis that the last term (a:b)
can be omitted, reducing the model to be additive in 10g10 (conc) and
glucose, which corresponds to the parallel regression lines. The F test

10.7 Analysis of covariance 181

one line earlier indicates whether you can subsequently remove glucose,
and the one in the first line to removing 10g10 (conc), leaving an empty
model.

Alternatively, you can read the table from top to bottom as adding terms
describing more and more of the total sum of squares. To those familiar
with the SAS system, this kind of ANOVA table is known as type I sums
of squares.

The p value for 10g10 (conc) :glucose can be recognized as that of the
t test for the coefficient labeled 10g10 (conc) .glucose in the previous
output. The F statistic is exactly the square of t as well. However, this is
true only because there are just two groups. Had there been three or more
then there would have been several regression coefficients and the F test
would have tested them all against zero simultaneously, just like when all
groups are tested equal in a one-way analysis of variance.

Note that the test for removing 10g10 (conc) does not make sense, be-
cause you would have to remove glucose first, which is “forbidden”
when glucose has a highly significant effect. It makes perfectly good
sense to test 1ogl0 (conc) without removing glucose — that corre-
sponds to testing that the two parallel regression lines can be assumed
horizontal — but that test is not found in the ANOVA table. You can
get the right test by changing the order of terms on the model formula;
compare, for instance, these two regression analyses:

> anova (1lm(logl0 (diameter)~glucose+logl0 (conc)))
Analysis of Variance Table

Response: 1logl0O(diameter)

Df Sum Sg Mean Sg F value Pr (>F)
glucose 1 0.008033 0.008033 96.278 4.696e-13 ***
loglO(conc) 1 0.048351 0.048351 579.494 < 2.2e-16 ***
Residuals 48 0.004005 0.000083
Signif. codes: 0 ‘***’ (0.001 ***’ 0.01 **’ 0.05 ‘.’ 0.1 + " 1
> anova (1lm(logl0 (diameter)~1loglO (conc)+ glucose))
Analysis of Variance Table

Response: 1logl0O(diameter)

Df Sum Sg Mean Sg F value Pr (>F)
loglO(conc) 1 0.046890 0.046890 561.99 < 2.2e-16 ***
glucose 1 0.009494 0.009494 113.78 2.932e-14 **x*

Residuals 48 0.004005 0.000083

Signif. codes: 0 ‘***’ (0.001 ***’ 0.01 *’ 0.05 *.” 0.1 + 1

They both describe exactly the same model, as seen by the residual sum
of squares being identical. The partitioning of the sum of squares is not
the same, though — and the difference may be much more dramatic than

182 10. Linear models

it is here. The difference is whether 10g10 (conc) is added to a model
already containing glucose, or vice versa. Since the second F test in both
tables is highly significant, no model reduction is possible and the F test
in the line above it is irrelevant.

If you go back and look at the regression coefficients in the model with
parallel regression lines, you will see that the squares of the t tests are
579.49 and 113.8, precisely the last F test in the above two tables.

It is informative to compare the above covariance analysis with the
simpler analysis in which the effect of cell concentration is ignored:

> t.test(loglO(diameter)~glucose)
Welch Two Sample t-test

data: loglO(diameter) by glucose
t = 2.7037, df = 36.31, p-value = 0.01037
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.006492194 0.045424241
sample estimates:
mean in group Yes mean in group No
1.370046 1.344088

Notice that the p-value is much less extreme. It is still significant in this
case, but in smaller data sets the statistical significance could easily disap-
pear completely. The difference in mean between the two groups is 0.026,
which is comparable to the 0.028 that was the glucose effect in the analysis
of covariance. However, the confidence interval goes from 0.006 to 0.045,
where the analysis of covariance had 0.023 to 0.034 [0.0282 = ¢t 975(48) x
0.0026], which is almost four times as narrow, obviously a substantial gain
in efficiency.

10.8 Diagnostics

Regression diagnostics are used to evaluate the model assumptions and in-
vestigate whether or not there are observations with a large influence on
the analysis. A basic set of these is available via the plot method for 1m
objects. Four different plots are in the set, so it is convenient to display
them in a 2 x 2 layout (Figure 10.6):

data (thuesen)

attach(thuesen)

options (na.action="na.exclude")

Ilm.velo <- 1lm(short.velocity~blood.glucose)
par (mfrow=c(2,2), mex=0.6)

vV V V V V

10.8 Diagnostics 183

Residuals vs Fitted Normal Q-Q plot
< | 130 ® 130
I ° Ry 0
| ° g oo
(%] —
57 E
S < 00 ¢ 0 % o o
§ Slo® o o o g o 00000
4 o o o <
° ® o 000%°
s | o
< n
9 200 v 1o
T T T T T T T T T T T T
1.20 1.30 1.40 1.50 -2 -1 0 1 2
Fitted values Theoretical Quantiles
o Scale-Location plot Cook’s distance plot
2 130
Rl 240 200 1
g o ©
ke o o 2 S
g2 ° 5
=—1 o ° o 8
3 o o 2 < |
N 5o
SHle ° o ol x
R o 8 o
S o O o]
= o
2| e |
= o | S R I | | o I |
o T T T T T T T © T T T T
1.20 1.30 1.40 1.50 5 10 15 20
Fitted values Obs. number

Figure 10.6. Default regression diagnostics.

> plot(lm.velo)
> par (mfrow=c(1l,1), mex=1)

The par commands set up for a 2 x 2 layout with compressed margin
texts and go back to normal after plotting.

The first panel shows residuals versus fitted values. The second is a Q-Q
normal distribution plot of standardized residuals. Notice that there are
residuals and standardized residuals; the latter have been corrected for
differences in the SD of residuals depending on their position in the de-
sign. (Residuals corresponding to extreme x-values generally have a lower
SD due to overfitting.) The third plot is of the square root of the absolute
value of the standardized residuals; this reduces the skewness of the dis-
tribution and makes it much easier to detect if there might be a trend in the
dispersion. The fourth plot is of “Cook’s distance” which is a measure of
the influence of each observation on the regression coefficients. We return
to Cook’s distance shortly.

The plots for the thuesen data show observation no. 13 as extreme in
several respects. It has the largest residual as well as a prominent spike in
the Cook’s distance plot. Observation no. 20 also has a large residual, but
quite as conspicuous a Cook’s distance.

184 10. Linear models

o o
N o o A o
o ° o o oS °
o ~ % o o
> S — A
£ £
® o4 00 © 0 %o ° Eod 00 0 0 oo °
§ o ° o) 8 ° o o
s — | ° o o oo | 2| ° o o o0
2 o = °
G o i o
T T T T T T T T
5 10 15 20 5 10 15 20
Index Index
Q]
s 3
g] 2
. O
£ g
= [2]
2 Q] <
5° g
0 o
d -
T
T T T T
5 10 15 20
Index
Figure 10.7. Further regression diagnostics.
> par (mfrow=c(2,2), mex=0.6)
> plot(rstandard(lm.velo))
> plot (rstudent (1lm.velo))
> plot(dffits(lm.velo), type="1")
> matplot (dfbetas(lm.velo), type="1", col="black")
> lines (sgrt(cooks.distance(lm.velo)), 1lwd=2)
> par (mfrow=c(1l,1), mex=1)

It is also possible to obtain individual diagnostics; a selection is shown
in Figure 10.7. The function rstandard gives the standardized residuals
discussed above. There is also rstudent, which gives leave-out-one residu-
als, in which the fitted value is calculated omitting the current point; if the
model is correct, then these will follow a (Student’s) t distribution. (Unfor-
tunately, some texts use “studentized residuals” for residuals divided by
their standard deviation, i.e., what rstandard calculates in R.) It takes a
keen eye to see the difference between the two types of residuals, but the
extreme residuals tend to be a little further out in the case of rstudent.

The function dffits expresses how much an observation affects the as-
sociated fitted value. As with the residuals, observations 13 and maybe
20 seem to stick out. Notice that there is a gap in the line. This is due
to the missing observation 16 and the use of na.exclude. This looks

10.8 Diagnostics 185

a little awkward but has the advantage of making the x-axis match the
observation number.

The function dfbetas gives the change in the estimated parameters if
an observation is excluded, relative to its standard error. It is a matrix, so
matplot is useful to plot them all in one plot. Notice that observation 13
affects both « (the solid line) and 3 by nearly one standard error.

The name dfbetas refers to its use in multiple regression analysis, where
you write the model as ¥y = o + 31x1 + B2x2 + ---. This gets a little
confusing in a simple regression analysis where the intercept is otherwise
called .

Cook’s distance D calculated by cooks.distance is essentially a joint
measure of the components of dfbetas. The exact procedure is to take
the unnormalized change in coefficients and use the norm defined by the
estimated covariance matrix for (3, and then divide by the number of co-
efficients. v/D is on the the same scale as dfbetas and was added to that
plot as a double-width line. (If you look inside the R functions for some
of these quantities, you will find them apparently quite different from the
descriptions above, but they are in fact the same, only computationally
more efficient.)

Thus, the picture is that observation 13 seems to be influential. Let’s look
at the analysis without this observation:

We use the subset argument to 1m, which, like other indexing operations,
can be used with negative numbers to remove observations.

> summary (1lm(short.velocity~blood.glucose, subset=-13))

Call:
Im(formula = short.velocity ~ blood.glucose, subset = -13)
Residuals:

Min 10 Median 30 Max

-0.31346 -0.11136 -0.01247 0.06043 0.40794

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 1.18929 0.11061 10.752 9.22e-10 ***
blood.glucose 0.01082 0.01029 1.052 0.305
Signif. codes: 0 ‘***’ (0.001 ***’ 0.01 **’ 0.05 ‘.7 0.1 + " 1

Residual standard error: 0.193 on 20 degrees of freedom
Multiple R-Squared: 0.05241, Adjusted R-squared: 0.005026
F-statistic: 1.106 on 1 and 20 DF, p-value: 0.3055

186 10. Linear models

O
o _| [)
~
o
8 o)
(0]
3 (0] (@]
£ o}
=) ()
D (@)
g 9 08
o (e}
8_ o OO
(@)
Q 4 (@]
OO
@0 ©

I I I I I I I I
110 120 130 140 150 160 170 180

height

Figure 10.8. Cook’s distance (colour coded) in pemax ~ height + weight.

The relation practically vanished in thin air! The whole analysis actually
hinges on a single observation. If data and model are valid, then of course
the original p-value is correct, and perhaps you could also say that there
will always be influential observations in small datasets, but some caution
in the interpretation does seem advisable.

The methods for finding influential observations and outliers are even
more important in regression analysis with multiple descriptive variables.
One of the big problems is how to present the quantities graphically in a
sensible way. This might be done using three-dimensional plots (the add-
on package scatterplot3d makes this possible), but you can get quite
far using colour coding.

Here, we see how to display the value of Cook’s distance (which is always
positive) graphically for a model where pemax is described using height
and weight:

cookd <- cooks.distance (1lm(pemax~height+weight))
cookd <- cookd/max (cookd)

cook.colors <- gray(l-sqgrt (cookd))

plot (height,weight,bg=cook.colors,pch=21,cex=1.5)
points (height,weight,pch=1,cex=1.5)

vV V.V V V

10.8 Diagnostics 187

o
9 —
A\VAV4
o _|
(o))
E 81
A v
v
o _|
N~
v

A

[[[[[[[

70 80 90 100 110 120 130

ad

Figure 10.9. Studentized residuals in the Secher data, colour coded. Positive values
are marked with upward-pointing triangles; negative ones point down.

The above is how Figure 10.8 is drawn. The first line computes Cook’s
distance and the second scales it to a value between 0 and 1. Thereafter,
a colour coding of the values in cookd is made with the function gray.
The latter interprets its argument as degree of whiteness, so if you want a
large distance represented as black, you need to subtract the value from 1.
Furthermore, it is convenient to take the square root of cookd because it
is a quadratic distance measure (which in practice shows up in the form
of too many white or nearly white points). Then a scatterplot of height
versus weight is drawn with the chosen colors. A filled plotting symbol in
enlarged symbol size is used to get the grayscale to stand out more clearly.

You can use similar techniques to describe other influence measures. In
the case of signed measures, you might use different symbols for positive
and negative values. Here is an example on Studentized residuals in a
data set describing birth weight as a function of abdominal and biparietal
diameters determined by ultrasonography of the fetus immediately before
birth, also used in Exercise 9.1 (Figure 10.9):

> data(secher)
> attach (secher)
> rst <- rstudent (Im(loglO (bwt)~1ogl0 (ad)+1logl0 (bpd)))

188 10. Linear models

> range(rst)

[1] -3.707509 3.674050

> rst <- rst/3.71

> plot(ad, bpd, log="xy",bg=gray (l-abs(rst)),
+ pch=ifelse(rst>0,24,25), cex=1.5)

10.9 Exercises

10.1 Set up an additive model for the ashina data (see Exercise 4.6),
containing additive effects of subjects, period, and treatment. Compare
the results with those obtained from ¢ tests.

10.2 Perform a two-way analysis of variance on the tb.dilute data.
Modify the model to have a dose effect that is linear in log dose. Com-
pute a confidence interval for the slope. An alternative approach could
be to calculate a slope for each animal and perform a test based on these.
Compute a confidence interval for the mean slope, and compare it to the
preceding result.

10.3 Consider the following definitions:

<- gl(2, 2, 8)
<- gl(2, 4, 8)
1:8

<- c(1:4,8:5)
<- rnorm(8)

N KO
i

Generate the model matrices for models z ~ a*b, z ~ a:b, etc. Dis-
cuss the implications. Carry out the model fits, and notice which models
contain singularities.

10.4 (Advanced) In the secretin experiment you may expect to find
interindividual differences, not only between the level of glucose, but also
in the change induced by the injection of secretin. The factor time.comb
combines time values at 30, 60, and 90 minutes. The factor time20plus
combines all values from 20 minutes and onward. Discuss the differences
and relations among the following linear models:
modell <- 1lm(gluc ~ person * time)
model2 <- lm(gluc ~ person time)

(

(

+
model3 <- lm(gluc ~ person * time20plus + time)
modeld <- 1lm(gluc ~ person * time20plus + time.comb)

10.5 Analyze the blood pressure in the bp . obese data set as a function
of obesity and gender.

10.6 Analyze the vitcap2 data set using analysis of covariance. Revisit
Exercise 4.2 and compare the conclusions. Try using the dropl function
with test="F" instead of summary in this model.

10.9 Exercises 189

10.7 Inthe juul data set make regression analyses for prepubescent chil-
dren (Tanner stage 1) of /igf1l versus age separately for boys and girls.
Compare the two regression lines.

10.8 Try step on the kfm data and discuss the result. One observation
appears to be influential on the diagnostic plot for this model — explain
why. What happens if you reduce the model further?

10.9 For the juul data, fit a model for igf1 with interactions between
age, sex, and Tanner stage for those under 25 years old. Explain the inter-
pretation of this model. Hint: A plot of the fitted values against age should
be helpful. Use diagnostic plots to evaluate possible transformations of the
dependent variable: untransformed, log, or square root.

This page intentionally left blank

11

Logistic regression

Sometimes you wish to model binary outcomes, variables that can have
only two possible values: diseased/nondiseased, and so forth. For in-
stance, you want to describe the risk of getting a disease depending on
various kinds of exposures. Chapter 7 discusses some simple techniques
based on tabulation, but you might also want to model dose-response re-
lationships (where the predictor is a continuous variable) or model the
effect of multiple variables simultaneously. It would be very attractive to
be able to use the same modeling techniques as for linear models.

However, it is not really attractive to use additive models for probabili-
ties since they have a limited range and regression models could predict
off-scale values below zero or above 1. It makes better sense to model
the probabilities on a transformed scale; this is what is done in logistic
regression analysis.

A linear model for transformed probabilities can be set up as

logit p= Bo+ B1x1+ Boxo + ... Brxx

in which logit p = log[p(1 — p)] is the log odds. A constant additive ef-
fect on the logit scale corresponds to a constant odds ratio. The choice of
the logit function is not the only one possible, but it has some mathemat-
ically convenient properties. Other choices do exist; the probit function
(the quantile function of the normal distribution) or log(— log p), which
has a connection to survival analysis models.

192 11. Logistic regression

One thing to notice about the logistic model is that there is no error term as
in linear models. We are modelling the probability of an event directly, and
that in itself will determine the variability of the binary outcome. There is
no variance parameter like in the normal distribution.

The parameters of the model can be estimated by the method of maximum
likelihood. This is a quite general technique, similar to the least-squares
method in that it finds a set of parameters that optimizes a goodness-of-
fit criterion (in fact, the least-squares method itself is a slightly modified
maximum-likelihood procedure). The likelihood function L(3) is simply the
probability of the entire observed data set for varying parameters.

The deviance is the difference between the maximized value of —21log L
and the similar quantity under a “maximal model” that fits data perfectly.
Changes in deviance caused by a model reduction will be approximately
x2-distributed with degrees of freedom equal to the change in the number
of parameters.

In this chapter we see how to perform logistic regression analysis in R.
There naturally is quite a large overlap with the material on linear models
since the description of models is quite similar, but there are also some
special issues concerning deviance tables and the specification of models
for pretabulated data.

11.1 Generalized linear models

Logistic regression analysis belongs to the class of generalized linear mod-
els. These models are characterized by their response distribution (here,
the binomial distribution) and a link function, which transfers the mean
value to a scale in which the relation to background variables is described
as linear/additive. In a logistic regression analysis the link function is
logit p = log[p/(1 —p)]-

There are several other examples of generalized linear models; for in-
stance, analysis of count data is often handled by the multiplicative
Poisson model where the link function is log A, with A the mean of the
Poisson distributed observation. All of these models can be handled using
the same algorithm, which also allows the user some freedom to define his
or her own models by defining suitable link functions.

In R generalized linear models are handled by the glm function. This
function is very similar to 1m, which we have used many times for lin-
ear normal models. The two functions use essentially the same model
formulas and extractor functions (summary, etc.), but glm also needs to
have specified which generalized linear model is desired. This is done via

11.2 Logistic regression on tabular data 193

the family argument. To specify a binomial model with logit link (i.e.,
logistic regression analysis), you write family=binomial ("logit").

11.2 Logistic regression on tabular data

In this section we analyze the example concerning hypertension from
Altman (1991, p. 353). First, we need to enter data, which is done as
follows:

no.yes <- c("No", "Yes")

smoking <- gl(2,1,8,no.yes)

obesity <- gl(2,2,8,no.yes)

snoring <- gl(2,4,8,no.yes)

n.tot <- c¢(60,17,8,2,187,85,51,23)

n.hyp <- ¢(5,2,1,0,35,13,15,8)

data. frame (smoking, obesity, snoring,n.tot,n.hyp)
smoking obesity snoring n.tot n.hyp

V V.V V V VvV V

1 No No No 60 5
2 Yes No No 17 2
3 No Yes No 8 1
4 Yes Yes No 2 0
5 No No Yes 187 35
6 Yes No Yes 85 13
7 No Yes Yes 51 15
8 Yes Yes Yes 23 8

The g1 function, to “generate levels” is briefly introduced in Section 6.3.
The three first arguments to gl are, respectively, the number of levels,
the repeat count of each level, and the total length of the vector. A fourth
argument can be used to specify the level names of the resulting factor.
The result is apparent from the printout of the generated variables. They
were put together in a data frame to get a nicer layout.

R is able to fit logistic regression analyses for tabular data in two different
ways. You have to specify the response as a matrix, where one column is
the number of “diseased” and the other is the number of “healthy” (or
“success” /“failure”, depending on context).

> hyp.tbl <- cbind(n.hyp,n.tot-n.hyp)

> hyp.tbl
n.hyp
[1,] 5 55
[2,1] 2 15
[3,1] 1 7
, 0 2
[5,1] 35 152
[6,1 13 72

[7,1 15 36

194 11. Logistic regression

[8,1 8 15

The cbind function (“c” for “column”) is used to bind variables together,
columnwise, to form a matrix. Note that it would be a horrible mistake to
use the total count for column 2 instead of the number of failures.

Then, you can specify the logistic regression model as
> glm(hyp.tbl~smoking+obesity+snoring, family=binomial ("logit"))

Actually, "logit" is the default for binomial and the family argument
is the second argument to glm, so it suffices to write

> glm(hyp.tbl~smoking+obesity+snoring,binomial)

The other way to specify a logistic regression model is to give the
proportion of diseased in each cell:

> prop.hyp <- n.hyp/n.tot
> glm.hyp <- glm(prop.hyp~smoking+obesity+snoring,
+ binomial,weights=n.tot)

It is necessary to give weights because R cannot see how many
observations a proportion is based on.

As output, you get in either case (except for minor details)

Call: glm(formula = hyp.tbl ~ smoking + obesity + snoring,

Coefficients:

(Intercept) smokingYes obesityYes snoringYes
-2.37766 -0.06777 0.69531 0.87194
Degrees of Freedom: 7 Total (i.e. Null); 4 Residual

Null Deviance: 14.13
Residual Deviance: 1.618 ATIC: 34.54

— which is in a minimal style, similar to that used for printing 1m objects.
Also in the result of glm is some nonvisible information, which may be
extracted with particular functions. You can, for instance, save the result
of a fit of a generalized linear model in a variable and obtain a table of
regression coefficients and so forth, using summary:

> glm.hyp <- glm(hyp.tbl~smoking+obesity+snoring,binomial)
> summary (glm.hyp)

Call:
glm(formula = hyp.tbl ~ smoking + obesity + snoring, family

Deviance Residuals:

11.2 Logistic regression on tabular data 195

[1] -0.04344 0.54145 -0.25476 -0.80051 0.19759 -0.46602
[7] -0.21262 0.56231

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.37766 0.38012 -6.255 3.98e-10 ***
smokingYes -0.06777 0.27811 -0.244 0.8075

obesityYes 0.69531 0.28508 2.439 0.0147 *

snoringYes 0.87194 0.39752 2.193 0.0283 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 **’ 0.05 *.” 0.1 * " 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 14.1259 on 7 degrees of freedom
Residual deviance: 1.6184 on 4 degrees of freedom
AIC: 34.537

Number of Fisher Scoring iterations: 3

In the following, we go through the components of summary output for
generalized linear models:

Call:
glm(formula = hyp.tbl ~ smoking + obesity + snoring, family =

As usual, we start off with a repeat of the model specification. Obviously,
more interesting is when the output is not viewed in connection with the
function call that generated it.

Deviance Residuals:
[1] -0.04344 0.54145 -0.25476 -0.80051 0.19759 -0.46602
[7] -0.21262 0.56231

This is the contribution of each cell of the table to the deviance of the
model (the deviance corresponds to the sum of squares in linear normal
models), with a sign according to whether the observation is larger or
smaller than expected. They can be used to pinpoint cells that are par-
ticularly poorly fitted, but you have to be wary of the interpretation in
sparse tables.

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.37766 0.38012 -6.255 3.98e-10 ***
smokingYes -0.06777 0.27811 -0.244 0.8075

obesityYes 0.69531 0.28508 2.439 0.0147 *

snoringYes 0.87194 0.39752 2.193 0.0283 *

Signif. codes: 0 ‘***’/ (0.001 ‘**’/ 0.01 ‘*’ 0.05 ‘.’ 0.1 + " 1

(Dispersion parameter for binomial family taken to be 1)

196 11. Logistic regression

This is the table of primary interest. Here, we get estimates of the re-
gression coefficients, standard errors of same, and tests for whether each
regression coefficient can be assumed to be zero. The layout is nearly
identical to the corresponding part of the 1m output.

The note about the dispersion parameter is related to the fact that the bino-
mial variance depends entirely on the mean. There is no scale parameter
like the variance in the normal distribution.

Null deviance: 14.1259 on 7 degrees of freedom
Residual deviance: 1.6184 on 4 degrees of freedom
AIC: 34.537

“Residual deviance” corresponds to the residual sum of squares in ordi-
nary regression analyses which is used to estimate the standard deviation
about the regression line. In binomial models, however, the standard devi-
ation of the observations is known, and you can therefore use the deviance
in a test for model specification. The AIC (Akaike information criterion) is
a measure of goodness of fit which takes the number of fitted parameters
into account.

Ris reluctant to associate a p-value with the deviance. Just as well, because
no exact p-value can be found, only an approximation that is valid for
large expected counts. In the present case, there are actually a couple of
places where the expected cell count is rather small.

The asymptotic distribution of the residual deviance is a x? distribution
with the stated degrees of freedom, so even though the approximation
may be poor, nothing in the data indicates that the model is wrong (the
5% significance limit is at 9.49 and the value found here is 1.62).

The null deviance is the deviance of a model that contains only the inter-
cept, that is, describes a fixed probability (here: for hypertension) in all
cells. What you would normally be interested in is the difference to the
residual deviance, here 14.13 — 1.62 = 12.51, which can be used for a
joint test for whether any effects are present in the model. In the present
case a p-value of approximately 6 %o is obtained.

Number of Fisher Scoring iterations: 3

This refers to the actual fitting procedure and is a purely technical item.
There is no statistical information in it, but you should keep an eye on
whether the number of iterations becomes too large, because that might be
a sign that the model is too complex to fit based on the available data. Nor-
mally, glm halts the fitting procedure if the number of iterations exceeds
10, but it is possible to configure the limit.

11.2 Logistic regression on tabular data 197

The fitting procedure is iterative, in that there is no explicit formula that
can be used to compute the estimates, only a set of equations that they
should satisfy. However, there is an approximate solution of the equations
if you supply an initial guess at the solution. This solution is then used as
a starting point for an improved solution, and the procedure is repeated
until the guesses are sufficiently stable.

A table of correlations between parameter estimates can be obtained via
the optional argument corr=T to summary (this also works for linear
models). It looks like this:

Correlation of Coefficients:
(Intercept) smokingYes obesityYes

smokingYes -0.1520
obesityYes -0.1361 -9.499e-05
snoringYes -0.8965 -6.707e-02 -0.07186

It is seen that the correlation between the estimates is fairly small, so that it
may be expected that removing a variable from the model does not change
the coefficients and p-values for other variables much. (The correlations
between the regression coefficients and intercept are not very informative;
they mostly relate to whether the variable in question has many or few
observations in the “Yes” category.)

The z test in the table of regression coefficients immediately shows that
the model can be simplified by removing smoking. The result then looks
as follows (abbreviated):

> glm.hyp <- glm(hyp.tbl~obesity+snoring,binomial)
> summary (glm.hyp)

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -2.3921 0.3757 -6.367 1.93e-10 ***
obesityYes 0.6954 0.2851 2.440 0.0147 *
snoringYes 0.8655 0.3966 2.182 0.0291 *

11.2.1 The analysis of deviance table

Deviance tables corresponds to ANOVA tables for multiple regression
analyses and are generated like these with the anova function:

> glm.hyp <- glm(hyp.tbl~smoking+obesity+snoring,binomial)
> anova (glm.hyp, test="Chisg")

Analysis of Deviance Table

Model: binomial, link: logit

198 11. Logistic regression

Response: hyp.tbl

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi])

NULL 7 14.1259

smoking 1 0.0022 6 14.1237 0.9627
obesity 1 6.8274 5 7.2963 0.0090
snoring 1 5.6779 4 1.6184 0.0172

Notice that the Deviance column gives differences between models as
variables are added to the model in turn. The deviances are are approxi-
mately x?-distributed with the stated degrees of freedom. It is necessary
to add the test="chisqg" argument to get the approximate x* tests.

Since the snoring variable on the last line is significant, it may not be
removed from the model and we cannot use the table to justify model
reductions. If, however, the terms are rearranged, so that smoking comes
last, we get a deviance-based test for removal of that variable:

> glm.hyp <- glm(hyp.tbl~snoring+obesity+smoking,binomial)
> anova (glm.hyp, test="Chisg")

Df Deviance Resid. Df Resid. Dev P(>|Chi])

NULL 7 14.1259

snoring 1 6.7887 6 7.3372 0.0092
obesity 1 5.6591 5 1.6781 0.0174
smoking 1 0.0597 4 1.6184 0.8069

From this, you can read that smoking is removable, whereas obesity is
not, after removal of smoking.

For good measure, you should also set up the analysis with the two re-
maining explanatory variables interchanged, so that you get a test of
whether snoring may be removed from a model that also contains
obesity:

> glm.hyp <- glm(hyp.tbl~obesity+snoring,binomial)
> anova (glm.hyp, test="Chisg")

Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 7 14.1259
obesity 1 6.8260 6 7.2999 0.0090
snoring 1 5.6218 5 1.6781 0.0177

An alternative method is to use dropl to try removing one term at a time:

> dropl (glm.hyp, test="Chisg")
Single term deletions

11.2 Logistic regression on tabular data 199

Model:
hyp.tbl ~ obesity + snoring
Df Deviance AIC LRT Pr(Chi)
<none> 1.678 32.597
obesity 1 7.337 36.256 5.659 0.01737 *
snoring 1 7.300 36.219 5.622 0.01774 *
Signif. codes: 0 ‘***’ (0.001 ***’ 0.01 *’ 0.05 *.” 0.1 » 1

Here, LRT is the likelihood ratio test, another name for the deviance
change.

Actually, there is no more information in the deviance tables than in the
z tests in the table of regression coefficients. From theoretical considera-
tions, you might prefer the deviance test, but in practice the difference is
small since x> ~ z2 as long as you are looking at tests with a single degree
of freedom. However, to test factors with more than two categories, it be-
comes unavoidable to use deviance tables, because the z tests relate only
to some of the possible group comparisons.

11.2.2 Connection to test for trend

In Chapter 7 we consider tests for comparison of relative frequencies using
prop.test and prop.trend. test, in particular the example of cae-
sarean section versus shoe size. This example can also be analyzed as a
logistic regression analysis on a “shoe score”, which — for want of a bet-
ter idea — may be chosen as the group number. This gives essentially the
same analysis, in the sense that the same models are involved.

> data(caesarean)
> caesar.shoe

<4 4 4.5 5 5.5 6+
Yes 5 7 6 7 8 10
No 17 28 36 41 46 140
> shoe.score <- 1:6
> shoe.score
[11 1 2 3 456

> summary (glm(t (caesar.shoe)~shoe.score,binomial))

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8706 0.4051 -2.149 0.03161 *
shoe.score -0.2597 0.0936 -2.775 0.00553 **
Signif. codes: 0 ‘***’ (0.001 ‘**’/ 0.01 **’ 0.05 ‘.’ 0.1 + " 1

(Dispersion parameter for binomial family taken to be 1)

200 11. Logistic regression

Null deviance: 9.3442 on 5 degrees of freedom
Residual deviance: 1.7845 on 4 degrees of freedom
AIC: 27.616

Notice that caesar. shoe had to be transposed with t (. . .), so that the
matrix was “stood on its end” in order to be used as the response variable
by glm.

You can also write the results in a deviance table:

> anova (glm(t (caesar.shoe)~shoe.score,binomial))

Df Deviance Resid. Df Resid. Dev
NULL 5 9.3442
shoe.score 1 7.5597 4 1.7845

— from the last line of which you see that there is no significant deviation
from linearity (1.78 on 4 degrees of freedom), whereas shoe.score hasa
significant contribution.

For comparison, the previous analyses using standard tests are repeated:

caesar.shoe.yes <- caesar.shoe["Yes",]
caesar.shoe.no <- caesar.shoe["No",]
caesar.shoe.total <- caesar.shoe.yes+caesar.shoe.no

vV V. V VvV

prop.trend. test (caesar.shoe.yes, caesar.shoe.total)
Chi-squared Test for Trend in Proportions

X-squared = 8.0237, df = 1, p-value = 0.004617
> prop.test(caesar.shoe.yes, caesar.shoe.total)

6-sample test for equality of proportions without
continuity correction

X-squared = 9.2874, df = 5, p-value = 0.09814

Warning message:
Chi-squared approximation may be incorrect in: prop.test(...

The 9.24 from prop.test corresponds to the 9.34 in residual deviance
from a NULL model, whereas the 8.02 in the trend test corresponds to
the 7.56 in the test of significance of shoe.score. Thus, the tests do not
give exactly the same result, but generally almost the same. Theoretical
considerations indicate that the specialized trend test is probably slightly
better than the regression-based test. However, testing the linearity by
subtracting the two x? tests is definitely not as good as the real test for
linearity.

11.3 Logistic regression using raw data 201

11.3 Logistic regression using raw data

In this section we again use Anders Juul’s data (see p. 73). For easy ref-
erence, here is how to read data and convert the variables that describe
groupings into factors (this time slightly simplified):

> data(juul)
> juul$menarche <- factor (juul$menarche, labels=c("No", "Yes"))
> juulStanner <- factor (juulStanner)

In the following we look at menarche as the response variable. This vari-
able indicates for each girl whether or not she has had her first period. It
is coded 1 for “no” and 2 for “yes”. It is convenient to look at a subset of
data consisting of 8-20-year-old girls. This can be extracted as follows:

> juul.girl <- subset (juul,age>8 & age<20 &
+ complete.cases (menarche))
> attach(juul.girl)

For obvious reasons, no boys have a nonmissing menarche, so it is not
necessary to select on gender explicitly.

Then you can analyze menarche as a function of age, like this:

> summary (glm (menarche~age,binomial))
Call:
glm(formula = menarche ~ age, family = binomial)

Deviance Residuals:
Min 10 Median 30 Max
-2.32758 -0.18998 0.01253 0.12132 2.45922

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -20.0131 2.0216 -9.900 <2e-16 ***
age 1.5173 0.1539 9.862 <2e-16 ***
Signif. codes: 0 ‘***’ 0.001 ***’ 0.01 **’ 0.05 *.” 0.1 * * 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 719.39 on 518 degrees of freedom
Residual deviance: 200.66 on 517 degrees of freedom
AIC: 204.66

Number of Fisher Scoring iterations: 6

The response variable menarche is a factor with two levels, where the last
level is considered the event. It also works to use a variable which has the
values 0 and 1 (but not, for instance, 1 and 2!).

202 11. Logistic regression

Notice that from this model you can estimate the median menarcheal age
as the age where logit p = 0. A little thought (solve —20.0131 + 1.5173 X
age = 0) reveals that it is 20.0131/1.5173 = 13.19 years.

You should not pay too much attention to the deviance residuals in this
case, since they automatically become large in every case where the fitted
probability “goes against” the observations (which is bound to happen in
some cases). The residual deviance is also difficult to interpret when there
is only one observation per cell.

A hint of a more complicated analysis is obtained by including Tanner
stage of puberty in the model. You should be warned that the exact inter-
pretation of such an analysis is quite tricky and qualitatively different from
the analysis of menarche as a function of age. It can be used for pre-
diction purposes (although asking the girl whether she has had her first
period would likely be much easier than determining her Tanner stage!),
but the interpretation of the terms is not clearcut.

> summary (glm(menarche~age+tanner,binomial))

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -13.7727 2.7241 -5.056 4.28e-07 **x*
age 0.8601 0.2283 3.768 0.000165 ***
tanner2 -0.5213 1.4717 -0.354 0.723179
tanner3 0.8263 1.2229 0.676 0.499222
tanner4 2.5644 1.2031 2.131 0.033052 *
tanner5 5.1889 1.3982 3.711 0.000206 ***

Notice that there is no joint test for the effect of tanner. There are a cou-
ple of significant z-values, so you would expect that the tanner variable
has some effect (which, of course, you would probably expect even in the
absence of data!). The formal test, however, must be obtained from the
deviances:

> dropl (glm(menarche~age+tanner,binomial) , test="Chisqg")

Df Deviance AIC LRT Pr (Chi)
<none> 106.599 118.599
age 1 124.500 134.500 17.901 2.327e-05 ***

tanner 4 161.881 165.881 55.282 2.835e-11 ***

Clearly, both terms are highly significant.

11.4 Prediction 203

11.4 Prediction

The predict function works for generalized linear models, too. Let’s
first consider the hypertension example, where data were given in tabular
form:

> predict (glm.hyp)
[1] -2.3920762 -2.3920762 -1.6966574 -1.6966574 -1.5266180
[6] -1.5266180 -0.8311991 -0.8311991

Recall that smoking was eliminated from the model, which is why the
expected values come in identical pairs.

These numbers are on the logit scale, which reveals the additive structure:
Note that 2.392 — 1.697 = 1.527 — 0.831 = 0.695 (except for roundoff er-
ror), which is exactly the regression coefficient to obesity. Likewise, the
regression coefficient to snoring is obtained by looking at the differences
2.392 —1.527 = 1.697 — 0.831 = 0.866.

To get predicted values on the response scale (i.e., probabilities), use the
type="response" argument to predict:

> predict (glm.hyp, type="response")
[1] 0.08377892 0.08377892 0.15490233 0.15490233 0.17848906
[6] 0.17848906 0.30339158 0.30339158

These may also be obtained using fitted, although you then cannot use
the techniques for predicting on new data, etc.

In the analysis of menarche, the primary interest is probably in seeing a
plot of the expected probabilities versus age (Figure 11.1). A crude plot
could be obtained using something like

plot(age, fitted(glm(menarche~age,binomial)))

(it will look better if a different plotting symbol in a smaller size is used,
using the pch and cex arguments) but here is a more ambitious plan:

glm.menarche <- glm(menarche~age, binomial)

Age <- seq(8,20,.1)

newages <- data.frame (age=Age)

predicted.probability <- predict(glm.menarche,
newages, type="resp")

plot (predicted.probability ~ Age, type="1")

vV + V. V VvV V

Recall that seqg generates equispaced vectors, here ages from 8 to 20 in
steps of 0.1, so that connecting the points with lines will give a nearly
smooth curve.

204 11. Logistic regression

o |
[o0]
@
=
S o |
Q o
[}
o
5
g - |
'-50
o
o
(aV)
g
o
2 -
T T T T T T T
8 10 12 14 16 18 20
Age

Figure 11.1. Fitted probability of menarche having occurred.

11.5 Model checking

For tabular data it is obvious to try to compare observed and fitted
proportions. In the hypertension example you get

> fitted(glm.hyp)

[1] 0.08377892 0.08377892 0.15490233 0.15490233 0.17848906
[6] 0.17848906 0.30339158 0.30339158

> prop.hyp

[1] 0.08333333 0.11764706 0.12500000 0.00000000 0.18716578
[6] 0.15294118 0.29411765 0.34782609

The problem with this is that you get no feeling for how well the rela-
tive frequencies are determined. It can be better to look at observed and
expected counts instead. The former can be computed as

> fitted(glm.hyp) *n.tot

[1] 5.0267353 1.4242417 1.2392186 0.3098047 33.3774535
[6] 15.1715698 15.4729705 6.9780063

— and to get a nice print for the comparison, you can use

11.5 Model checking 205

> data.frame(fit=fitted(glm.hyp)*n.tot,n.hyp,n.tot)
fit n.hyp n.tot

1 5.0267353 5 60
2 1.4242417 2 17
3 1.2392186 1 8
4 0.3098047 0 2
5 33.3774535 35 187
6 15.1715698 13 85
7 15.4729705 15 51
8 6.9780063 8 23

Notice that the discrepancy in cell 4 between 15% expected and 0% ob-
served really is that there are 0 hypertensive out of 2 in a cell where the
model yields an expectation of 0.3 hypertensives!

For complex models with continuous background variables, it becomes
more difficult to perform an adequate model check. It is especially a
hindrance that nothing really corresponds to a residual plot when the
observations have only two different values.

Let’s consider the example of the probability of menarche as a function of
age. The problem here is whether the relation can really be assumed linear
on the logit scale. For this case, you might try subdividing the x-axis in a
number of intervals and see how the counts in each interval fit with the
expected probabilities. This is presented graphically in Figure 11.2. Notice
that the code adds points to Figure 11.1, which you are assumed not to
have deleted at this point.

> age.group <- cut(age,c(8,10,12,13,14,15,16,18,20))
> tb <- table(age.group,menarche)
> tb
menarche

age.group No Yes

(8,10] 100 0

(10,121 97 4

(12,131 32 21

(13,141 22 20
(14,15] 5 36
(
(
(

15,16] 0 31
16,18] 0 105
18,20] 0 46

> rel.freq <- prop.table(tb,1)[,2]
> rel.freq

(8,10] (10,12] (12,13] (13,14] (14,15]
0.00000000 0.03960396 0.39622642 0.47619048 0.87804878
(15,16] (16,18] (18,20]

1.00000000 1.00000000 1.00000000
> points(rel.freq ~ ¢(9,11,12.5,13.5,14.5,15.5,17,19) ,pch=5)

The technique used above probably requires some explanation. First, cut
is used to define the factor age.group, which describes a grouping

206 11. Logistic regression

e o
[ee]
©
=
g o
Q o
o
[o%
'8 <&
! <
g 31 o
o
[oN
N
g
o
S 4
T T T T T T T
8 10 12 14 16 18 20
Age

Figure 11.2. Fitted probability for menarche having occurred and observed
proportion in age groups.

into age intervals. Then a crosstable tb is formed from menarche and
age.group. Using prop. table, the numbers are expressed relative to
the row total, and column 2 of the resulting table is extracted. This contains
the relative proportion in each age group of girls with menarche having
occurred. Finally, a plot of expected probabilities is made, overlaid by the
observed proportions.

The plot looks reasonable on the whole, although the observed proportion
among 12-13-year-olds appears a bit high and the proportion among 13—
14-year-olds is a bit too low.

But how do you evaluate whether the deviation is larger than what can
be expected from the statistical variation? One thing to try is to extend
the model with a factor that describes a division into intervals. It is not
practical to use the full division of age.group, because there are cells
where either none or all of the girls have had their menarche.

We therefore try a division into four groups, with cutpoints at 12, 13, and
14 years, and add this factor to the model containing a linear age effect.

> age.gr <- cut(age,c(8,12,13,14,20))

11.5 Model checking

> summary (glm (menarche~age+age.gr,binomial))

Coefficients:

Estimate Std. Error z value
(Intercept) -21.5680 5.0462 -4.274
age 1.6250 0.4400 3.693
age.gr(12,13] 0.7296 0.7847 0.930
age.gr(13,14] -0.5218 1.1163 -0.467
age.gr(14,20] 0.2751 1.6036 0.172

> anova (glm(menarche~age+age.gr,binomial))

Df Deviance Resid. Df Resid. Dev

NULL 518
age 1 518.73 517
age.gr 3 8.06 514

> 1-pchisg(8.058,3)
[1] 0.04482811

719.39
200.66
192.61

Pr(>|z]|)

352450
.640155
.863783

1.92e-05 ***
0.000222 ***
0.
0
0

207

That is, the addition of the grouping actually does give a significantly
better deviance. The effect is not highly significant, but since the devia-
tion concerns the ages where “much happens”, you should probably be
cautious about postulating a logit-linear age effect.

Another possibility is to try a polynomial regression model. Here you
need at least a third-degree polynomial to describe the apparent stagna-
tion of the curve around 13 years of age. We do not look at this in great
detail, just see part of output and the graphical presentation of the model

in Figure 11.3.

> anova (glm(menarche~age+I (age”2)+I(age”3)+age.gr,binomial))

Df Deviance Resid. Df Resid. Dev

NULL 5
age 1 518.73 5
I(age™2) 1 0.05 5
I(age”3) 1 8.82 5
age.gr 3 3.34 5

Warning messages:

18
17
16
15
12

Algorithm did not converge in:

fitted probabilities numerically 0 or 1 occurred in: (if (...

719
200.
200.
191.
188.

.39

66
61
80
46

(if (is.empty.model (mt))...

fitted probabilities numerically 0 or 1 occurred in: method(...

1
2
3: Algorithm did not converge in: method(...
4
>

glm.menarche <- glm(menarche~age+I (age”2)+I(age”"3),

Warning messages:

predicted.probability <-

V V. + V N R

Algorithm did not converge in:
fitted probabilities numerically 0 or 1 occurred in: (if (...

predict (glm.menarche, newages,
plot (predicted.probability ~ Age,
points(rel.freg~c(9,11,12.5,13.5,14.5,15.5,17,19),

binomial)

(if (is.empty.model (...

type="resp")
type=" 1)

pch=5)

208 11. Logistic regression

e
«©
g
2
z o
8 oS 7]
o
(o}
'8 >
5 <
s 37 9
o
[oR
N
o
o <
S A
T T T T T T T
8 10 12 14 16 18 20
Age

Figure 11.3. Logit-cubical fit of menarche data.

The warnings about fitted probabilities of 0 or 1 occur because the
cubic term makes the logit tend much faster to oo than the lin-
ear model did. The warning of nonconvergence is in this case simply
due to the poor starting value (p = 0.5 for all observations), causing
the algorithm to reach the maximum iteration count of 10. Increas-
ing the maximum yields convergence in 11 steps, with values that do
not differ materially from those above. This can be obtained using
glm(....,control=glm.control (maxit=20)).

The thing to note in the deviance table is that the cubic term gives a sub-
stantial improvement of the deviance, but once that is included, the age
grouping gives no additional improvement. The plot should speak for
itself.

11.6 Exercises

11.1 In the malaria data set analyze the risk of malaria with age and
log-transformed antibody level as explanatory variables.

11.6 Exercises 209

11.2 Fit a logistic regression model to the graft.vs.host data set, pre-
dicting the gvhd response. Use different transformations of the index
variable. Reduce the model using backward elimination.

11.3 In the analyses of the malaria and graft.vs.host data, try
using the confint function from the MASS package to find improved
confidence intervals for the regression coefficients.

11.4 Following up on Exercise 7.2 about “Rocky Mountain spotted
fever”, splitting the data by age groups gives the table below. Does this
confirm the earlier analysis?

Western type | Eastern type

Agegroup Total Fatal | Total Fatal
Under 15 108 13 310 40
15-39 264 40 189 21
40 or above 375 157 162 61
747 210 661 122

11.5 A probit regression is just like a logistic regression, but using a dif-
ferent link function. Try the analysis of the menarche variable in the juul
data set with this link. Does the fit improve?

This page intentionally left blank

12

Survival analysis

The analysis of lifetimes is an important topic within biology and
medicine in particular, but also in reliability analysis with engineering ap-
plications. Such data are often highly nonnormally distributed, so that the
use of standard linear models is problematic.

Lifetime data are often censored: You do not know the exact lifetime, only
that it is longer than a given value. For instance, in a cancer trial some
people are lost to follow-up or simply live beyond the study period. It
is an error to ignore the censoring in the statistical analysis, sometimes
with extreme consequences. Consider, for instance, the case where a new
treatment is introduced toward the end of the study period, so that nearly
all the observed lifetimes will be cut short.

12.1 Essential concepts

Let X be the true lifetime and T a censoring time. What you observe is
the minimum of X and T together with an indication of whether it is one
or the other. T can be a random variable or a fixed time depending on
context, but if it is random then it should generally be noninformative for
the methods we describe here to be applicable. Sometimes “dead from
other causes” is considered a censoring event for the mortality of a given

212 12. Survival analysis

disease, and in those cases it is particularly important to ensure that these
other causes are unassociated with the disease state.

The survival function S(t) measures the probability of being alive at a given
time. It is really just 1 minus the cumulative distribution function for X,
1—F(t).

The hazard function or force of mortality h(t) measures the (infinitesimal) risk
of dying within a short interval of time ¢, given that the subject is alive at
time t. If the lifetime distribution has density f, then h(t) = f(t)/5(t).
This is often considered a more fundamental quantity than (say) the mean
or median of the survival distribution and used as a basis for modelling.

12.2 Survival objects

We use the package called survival written by Terry Therneau and
ported to R by Thomas Lumley. The package implements a large number
of advanced techniques. For the present purposes, we use only a small
subset of it.

To load survival, use

> library (survival)

The routines in survival work with objects of class Surv, which is a
data structure that combines times and censoring information. Such ob-
jects are constructed using the Surv function, which takes two arguments:
an observation time and an event indicator. The latter can be coded as a
logical variable, a 0/1 variable, or a 1/2 variable. The latter coding is not
recommended since Surv will assume 0/1 coding if all values are 1.

Actually, Surv can also be used with three arguments for dealing with
data that have a start time as well as an end time (“staggered entry”) and
also interval censored data (where you know that an event happened be-

tween two dates, as happens, for instance, in repeated testing for a disease)
can be handled.

We use the data set melanom collected by K.T. Drzewiecki and reproduced
in Andersen et al. (1991). The data become accessible as follows

> data (melanom)

> attach (melanom)

> names (melanom)

[1] "no" "status" "days" "ulc" "thick" "sex"

12.3 Kaplan—-Meier estimates 213

The variable status is an indicator of the patient’s status by the end
of the study: 1 means “dead from malignant melanoma”, 2 means
“alive on January 1, 1978”, and 3 means “dead from other causes”. The
variable days is the observation time in days, ulc indicates (1/2 for
present/absent) whether the tumor was ulcerated, thick is the thickness
in 1/100 mm, and sex contains the gender of the patient (1 for women
and 2 for men).

We want to create a Surv object in which we consider the values 2 and 3
of the status variable as censorings. This is done as follows:

> Surv(days, status==1)
[1] 10+ 30+ 35+ 99+ 185 204 210 232 232+ 279
[11] 295 355+ 386 426 469 493+ 529 621 629 659
[21] 667 718 752 779 793 817 826+ 833 858 869

[181] 3476+ 3523+ 3667+ 3695+ 3695+ 3776+ 3776+ 3830+ 3856+ 3872+
[191] 3909+ 3968+ 4001+ 4103+ 4119+ 4124+ 4207+ 4310+ 4390+ 4479+
[201] 4492+ 4668+ 4688+ 4926+ 5565+

Associated with the Surv objects is a print method that displays the ob-
jects in the above format, with a ‘+" marking censored observations. For
example, 10+ means that the patient did not die from melanoma within
10 days and was then unavailable for further study (in fact, he died from
other causes), whereas 185 means that the patient died from the disease a
little over half a year after his operation.

Notice that the second argument to Surv is a logical vector; status==1
is TRUE for those who died of malignant melanoma and FALSE otherwise.

12.3 Kaplan—-Meier estimates

The Kaplan-Meier estimator allows the computation of an estimated sur-
vival function in the presence of right-censoring. It is also called the
product-limit estimator because one way of describing the procedure is
that it multiplies together conditional survival curves for intervals in
which there are either no censored observations or no deaths. This be-
comes a step function where the estimated survival is reduced by a factor
(1 — 1/Ry) if there is a death at time t and a population of R; is still alive
and uncensored at that time.

Computing the Kaplan-Meier estimator for the survival function is done
with a function called survfit. In its simplest form it takes just a single
argument, namely a Surv object. It returns a survfit object. As de-
scribed above, we consider “dead from other causes” a kind of censoring
and do as follows:

214 12. Survival analysis

> survfit (Surv(days, status==1))
Call: survfit(formula = Surv(days, status == 1))

n events rmean se (rmean) median 0.95LCL 0.95UCL
205 57 4125 161 Inf Inf Inf

As can be seen, using survfit by itself is not very informative (just like
the printed output of a “bare” 1m is not). You get a couple of summary
statistics and an estimate of the median survival, and in this case the lat-
ter is not even interesting because the estimate is infinite. The survival
curve does not cross the 50% mark before all patients were censored. The
finite estimate for the mean arises from setting the survival function to
zero beyond the last observation time (thus the label rmean).

To see the actual Kaplan-Meier estimate, use summary on the survfit
object. We first save the survEfit object into a variable, here named
surv.all because it contains the raw survival function for all patients
without regard to patient characteristics.

> surv.all <- survfit(Surv(days, status==1))
> summary (surv.all)

Call: survfit(formula = Surv(days, status == 1))

time n.risk n.event survival std.err lower 95% CI upper 95% CI

185 201 1 0.995 0.00496 0.985 1.000
204 200 1 0.990 0.00700 0.976 1.000
210 199 1 0.985 0.00855 0.968 1.000
232 198 1 0.980 0.00985 0.961 1.000
279 196 1 0.975 0.01100 0.954 0.997
295 195 1 0.970 0.01202 0.947 0.994
2565 63 1 0.689 0.03729 0.620 0.766
2782 57 1 0.677 0.03854 0.605 0.757
3042 52 1 0.664 0.03994 0.590 0.747
3338 35 1 0.645 0.04307 0.566 0.735

This contains the value of the survival function at the event times. The
censoring times are not displayed but are contained in the survfit object
and can be obtained by passing censored=T to summary (see the help
page for summary . survfit for such details).

The Kaplan-Meier estimate is the step function whose jump points are
givenin time and whose values right after a jump are given in survival.
Additionally, both an estimate of the standard error of the curve and a
(pointwise) confidence interval for the true curve are given.

Normally, you would be more interested in showing the Kaplan-Meier
estimate graphically than numerically. To do this (Figure 12.1), you simply
write

12.3 Kaplan—-Meier estimates 215

0.4

0.2

I I I I I
0 1000 2000 3000 4000 5000

Figure 12.1. Kaplan-Meier plot for melanoma data (all observations).

> plot(surv.all)

The markings on the curve indicate censoring times, and the bands give
approximate confidence intervals. If you look closely, you will see that the
bands are not symmetrical around the estimate. They are constructed as a
symmetric interval on the log scale and transformed back to the original
scale.

It is often useful to plot two or more survival functions on the same plot
so that they can be directly compared (Figure 12.2). To obtain survival
functions split by gender, do the following:

> surv.bysex <- survfit (Surv(days, status==1)~sex)
> plot (surv.bysex)

That is, you use a model formula as in 1m and glm, specifying that the
survival object generated from day and status should be described by
sex. Notice that there are no confidence intervals on the curves. These are
turned off when there are two or more curves, because the display easily
becomes confusing. They can be turned on again by passing conf . int=T
to plot, in which case it can be recommended to use separate colors for
the curves, as in

216 12. Survival analysis

1.0

0.8

0.6

0.4

0.2

0.0
|

I I I I I
0 1000 2000 3000 4000 5000

Figure 12.2. Kaplan-Meier plots for melanoma data, grouped by gender.

> plot (surv.bysex, conf.int=T, col=c("black", "gray"))

Similarly, you can avoid plotting the confidence bands in the single sam-
ple case by setting conf.int=F. If you want the bands but at a 99%
confidence level, you should pass conf.int=0.99 to survfit. Notice
that the level of confidence is an argument to the fitting function (which
needs it to compute the confidence limits), whereas the decision to plot
the bands is controlled by a similarly named argument to plot.

12.4 The log-rank test

The log-rank test is used to test whether two or more survival curves are
identical. It is based on looking at the population at each death time and
computing the expected number of deaths in proportion to the number of
individuals at risk in each group. This is then summed over all death times
and compared to the observed number of deaths by a procedure similar
(but not identical) to the x? test. Notice that the interpretation of “ex-
pected” and “observed” is slightly peculiar: If the difference in mortality

12.4 The log-rank test 217

is sufficiently large, then you can easily “expect” the same individuals to
die several times over the course of the trial. If the population is observed
to extinction with no censoring, then the observed number of deaths will
equal the group size by definition and the expected values will contain all
the random variation.

The log-rank test is formally nonparametric, since the distribution of the
test statistic depends only on the assumption that the groups have the
same survival function. However, it can also be viewed as a model-based
test under the assumption of proportional hazards (see Section 12.1). You can
set up a semiparametric model in which the hazard itself is unspecified
but it is assumed that the hazards are proportional between groups. Test-
ing that the proportionality factors are all unity then leads to a log-rank
test. The log-rank test will work best against this class of alternatives.

Computing the log-rank test is done by the function survdiff. This
actually implements a whole family of tests specified by a parameter
rho, allowing various nonproportional hazards alternatives to the null
hypothesis, but the default value of rho = 0 gives the log-rank test.

> survdiff (Surv(days, status==1)~sex)

Call:

survdiff (formula = Surv(days, status == 1) ~ sex)
N Observed Expected (0O-E)”"2/E (O-E)"2/V

sex=1 126 28 37.1 2.25 6.47

sex=2 79 29 19.9 4.21 6.47

Chisg= 6.5 on 1 degrees of freedom, p= 0.011

The specification is using a model formula as for linear and generalized
linear models. However, the test can deal only with grouped data, so if
you specify multiple variables on the right-hand side it will work on the
grouping of data generated by all combinations of predictor variables. It
also makes no distinction between factors and numerical codes. The same
is true of survfit.

It is also possible to specify stratified analyses, in which the observed and
expected value calculations are carried out separately within a stratifica-
tion of the data set. For instance, you can compute the log-rank test for a
gender effect stratified by ulceration as follows:

> survdiff (Surv(days, status==1)~sex+strata(ulc))
Call:
survdiff (formula = Surv(days, status == 1) ~ sex + strata(ulc))

N Observed Expected (O-E)”"2/E (O-E)"2/V
sex=1 126 28 34.7 1.28 3.31
sex=2 79 29 22.3 1.99 3.31

218 12. Survival analysis

Chisg= 3.3 on 1 degrees of freedom, p= 0.0687

Notice that this makes the effect of sex appear less significant. A possible
explanation might be that males seek treatment when the disease is in
a more advanced state than women do, so that the gender difference is
reduced when adjusted for a measure of disease progression.

12.5 The Cox proportional hazards model

The proportional hazards model allows the analysis of survival data by
regression models similar to those of 1m and glm. The scale on which
linearity is assumed is the log-hazard scale. Models can be fitted via the
maximization of Cox’s likelihood, which is not a true likelihood, but it can
be shown that it may be used as one. It is calculated in a matter similar to
the log-rank test, as the product of conditional likelihoods of the observed
death at each death time.

As a first example, consider a model with the single regressor sex:

> summary (coxph (Surv (days, status==1) ~sex))
Call:
coxph (formula = Surv(days, status == 1) ~ sex)
n= 205
coef exp(coef) se(coef) z s}
sex 0.662 1.94 0.265 2.50 0.013

exp (coef) exp(-coef) lower .95 upper .95

sex 1.94 0.516 1.15 3.26
Rsquare= 0.03 (max possible= 0.937)
Likelihood ratio test= 6.15 on 1 df, p=0.0131

Wald test = 6.24 on 1 d4df, p=0.0125
Score (logrank) test = 6.47 on 1 df, p=0.0110

The coef is the estimated logarithm of the hazard ratio between the two
groups, which for convenience is also given as the actual hazard ratio
exp (coef). The line following that also gives the inverted ratio (swap-
ping the groups) and confidence intervals for the hazard ratio. Finally,
three overall tests for significant effects in the model are given. These are
all equivalent in large samples but may differ somewhat in small-sample
cases. Notice that the Wald test is identical to the z test based on the es-
timated coefficient divided by its standard error, whereas the score test is

12.5 The Cox proportional hazards model 219

equivalent to the log-rank test (as long as the model involves only a simple
grouping).

A more elaborate example, involving a continuous covariate and a
stratification variable, is

> summary (coxph (Surv (days, status==1) ~sex+log(thick)+strata(ulc)))
Call:
coxph (formula = Surv(days, status == 1) ~ sex + log(thick) +

strata(ulc))

n= 205

coef exp(coef) se(coef) 4 D
sex 0.36 1.43 0.270 1.33 0.1800
log(thick) 0.56 1.75 0.178 3.14 0.0017

exp (coef) exp(-coef) lower .95 upper .95
sex 1.43 0.698 0.844 2.43
log(thick) 1.75 0.571 1.234 2.48
Rsquare= 0.063 (max possible= 0.9)
Likelihood ratio test= 13.3 on 2 d4df, p=0.00130
Wald test = 12.9 on 2 df, p=0.0016
Score (logrank) test = 13.0 on 2 df, p=0.00152

It is seen that the significance of the sex variable has been further reduced.

The Cox model assumes an underlying baseline hazard function, with a
corresponding survival curve. In a stratified analysis there will be one
such curve for each stratum. They can be extracted by using survfit
on the output of coxph and of course be plotted using the plot method
for survfit objects (Figure 12.3):

> plot (survfit (coxph (Surv(days, status==1)~
+ log(thick) +sex+strata(ulc))))

Beware that the default for survfit is to generate curves for a pseudo-
individual for which the covariates are at their mean value. In the present
case that would correspond to a tumor thickness of 1.86 mm and a gen-
der of 1.39 (!). Notice that we have been sloppy in not defining sex as a
factor variable, but that would not actually give a different result (coxph
subtracts the mean of the regressors before fitting, so a 1/2 coding is the
same as 0/1, which is what a factor with treatment contrasts gives you).
However, you can use the newdata argument of survfit to specify a
data frame for which you want to calculate survival curves.

220 12. Survival analysis

1.0

0.8

0.6

0.4

0.2

0.0
|

I I I I I I
0 500 1000 1500 2000 2500 3000

Figure 12.3. Baseline survival curves (ulcerated and nonulcerated tumors) in
stratified Cox regression.

12.6 Exercises

12.1 In the graft.vs.host data set estimate the survival function for
patients with or without GVHD. Test the hypothesis that the survival
is the same in both groups. Extend the analysis by including the other
explanatory variables.

12.2 With the Cox model in the last section of the text, generate a plot
with estimated survival curves for men with nonulcerated tumors of
thicknesses 0.1, 0.2, and 0.5 mm (three curves in one plot). Hint: survfit
objects can be indexed with [] to extract individual strata.

A
Obtaining and installing R

The way to obtain R is to download it from one of the CRAN (Compre-
hensive R Archive Network) sites. The main site is

http://cran.r-project.org/

It has a number of mirror sites worldwide, which may be closer to you
and give faster download times.

Installation details tend to vary over time, so you should read the
accompanying documents and any other information offered on CRAN.

Binary distributions

As of this writing, the version for recent variants of Microsoft Windows
comes as a single SetupR.exe file, on which you simply double-click
with the mouse and then follow the on-screen instructions. When the pro-
cess is completed, you will have an entry under Programs on the Start
menu for invoking R, as well as a desktop icon.

For Linux distributions that use the RPM package format (RedHat, Man-
drake, LinuxPPC, and SuSE) and also for Alpha Unix (OSF/Tru64), . rpm
files of R and the recommended add-on packages can be installed using
the rpm command. Packages for the Debian APT package manager are
also available.

222 Appendix A. Obtaining and installing R

For the Macintosh platforms there are two different binary distributions:
the "Carbon" R and the "Darwin" R. The Carbon version is intended to run
natively on MasOS System from 8.6 to OS X, and the Darwin one as a usual
Unix command under OS X. The Darwin R also requires an X windows
manager like XDarwin to use the X11 graphic device.

Carbon R comes in single . sit archive file that you simply decompress
by dragging the file onto Stuffit Expander and move the resulting folder
rmxyz into your favourite applications folder. The Darwin version is a
.tgz archive, which can be installed, after decompression, with some
(fairly trivial) manual adjustments.

Darwin R can also be installed using the “fink”. Fink installs all dynamic
libraries that might be needed, and it can update R to newer versions
when available.

Installation from source

Installation from source code is possible on all supported platforms, al-
though nontrivial on Macintosh and Windows, mainly because the build
environment is not part of the system. On Unix-like systems (Macintosh
OS Xincluded), the process can be as simple as unpacking the sources and
writing

./configure
make
make install

and then you would unpack the recommended package bundle, change
to its directory and enter

R CMD INSTALL *.tar.gz

The above works on widely used platforms, provided that the relevant
compilers and support libraries are installed. If your system is more eso-
teric or you want to use special compilers or libraries, then you may need
to dig deeper.

For Windows and Carbon Macintosh, the directories src/gnuwin32 and
src/macintosh have an INSTALL file with detailed information about
the procedure to follow.

Appendix A. Obtaining and installing R 223
Package installation

To install the ISwR package with data sets used in this book under
Unix/Linux or Windows, you can connect to the Internet, start R, and
enter

install.packages ("ISwR", .libPaths()[11])

The Windows version provides a convenient menu interface for the
operation.

If your R machine is not connected to the Internet, you can also down-
load the package as a file and install that. For Windows and the Carbon
version for Macintosh, you need to get the binary package (.zipor .sit
extension). For Windows, installation from a local . zip file is possible via
a menu entry. For Macintosh users, the procedure is described in the Mac-
intosh FAQ. For Unix and Linux, you can issue the following at the shell
prompt (the -1 option allows you to give a private library):

R CMD INSTALL ISwR

On Unix and Linux systems you will need superuser permissions to in-
stall. Otherwise you can set up a private library directory and install into
that. Use the R_LIBS environment variable to use your private library
subsequently. A similar issue arises if R is installed on a read-only file sys-
tem in a Windows environment. Further details can be found in the help
page for library.

More information

Information and further Internet resources for R can be obtained from
CRAN and the R homepage at

WWW.r-project.org

Notice in particular the mailing lists, the user-contributed documents, and
the FAQs.

This page intentionally left blank

B

Data sets in the ISwR package!

ashina Ashina’s crossover trial

Description

The ashina data frame has 16 rows and 3 columns. It contains data
from a crossover trial for the effect of an NO synthase inhibitor on
headaches. Visual analog scale recordings of pain level were made at
baseline and at five time points after infusion of the drug or placebo.
A score was calculated as the sum of the differences from baseline. All
patients received both treatment and placebo in randomized order.

Format

This data frame contains the following columns:

vas.active a numeric vector. Summary score when given active
substance.

vas.plac a numeric vector. Summary score when given placebo
treatment.

grp anumeric vector code. 1: placebo first, 2: active first.

IReproduced with permission from the documentation files in the ISwR package

226 Appendix B. Data sets in the ISwR package

Source

Original data

References
M.Ashina et al. (1999), Lancet 353, pp. 287-289

Examples

data (ashina)
plot(vas.active~vas.plac,pch=grp,data=ashina)
abline(0,1)

bp.obese Obesity and blood pressure

Description

The bp.obese data frame has 102 rows and 3 columns. It contains
data from a random sample of Mexican-American adults in a small

California town.

Format

This data frame contains the following columns:

sex a numeric vector code. 0: male, 1: female.

obese a numeric vector. Ratio of actual weight to ideal weight from

New York Metropolitan Life Tables.

bp anumeric vector. Systolic blood pressure (mm Hg).

Source

B.W. Brown & M. Hollander (1977), Statistics. A Biomedical Introduc-

tion, Wiley.

Examples

data (bp.obese)
plot (bp~obese,pch = ifelse(sex==1, "F", "M"),

Appendix B. Data sets in the ISwR package 227

caesarean Caesarean section and maternal shoe size

Description

The table caesar.shoe contains the relation between caesarean
section and maternal shoe sizes (UK sizes!)

Format

A matrix with two rows and six columns

Source

D.G. Altman (1991), Practical Statistics for Medical Research, Table 10.1,
Chapman & Hall.

Examples

data (caesarean)
require (ctest)

prop.trend.test (caesar.shoe["Yes",],margin.table (caesar.shoe,2))
coking Coking data
Description

The coking data frame has 18 rows and 3 columns. It contains
the time to coking in an experiment where the oven width and
temperature were varied.

Format

This data frame contains the following columns:

width a factor with levels 4, 8, and 12, giving the oven width in
inches.

temp a factor with levels 1600 and 1900, giving the temperature in
Fahrenheit.

time a numeric vector, time to coking.

228 Appendix B. Data sets in the ISwR package

Source

R.A. Johnson (1994), Miller and Freund's Probability and Statistics for
Engineers, 5th ed., Prentice-Hall.

Examples

data (coking)

attach (coking)

matplot (tapply(time, list (width, temp) ,mean))
detach (coking)

cystfibr Cystic fibrosis lung function data

Description

The cystfibr data frame has 25 rows and 10 columns. It contains
lung function data for cystic fibrosis patients (7—23 years old)

Format

This data frame contains the following columns:

age a numeric vector. Age in years.

sex a numeric vector code. 0: male, 1:female.

height a numeric vector. Height (cm).

weight a numeric vector. Weight (kg).

bmp a numeric vector. Body mass (% of normal).

fevl a numeric vector. Forced expiratory volume.

rv a numeric vector. Residual volume.

frc a numeric vector. Functional residual capacity.

tlc a numeric vector. Total lung capacity.

pemax a numeric vector. Maximum expiratory pressure.

Source

D.G. Altman (1991), Practical Statistics for Medical Research, Table 12.11,
Chapman & Hall.

References
O’Neill et al. (1983) (full reference in Altman).

Appendix B. Data sets in the ISwR package 229

energy Energy expenditure

Description

The energy data frame has 22 rows and 2 columns. It contains data
on the energy expenditure in groups of lean and obese women.

Format

This data frame contains the following columns:

expend a numeric vector. 24 hour energy expenditure (M]).
stature a factor with levels 1ean and obese.

Source

D.G. Altman (1991), Practical Statistics for Medical Research, Table 9.4,
Chapman & Hall.

Examples

data (energy)
plot (expend~stature, data=energy)

fake.trypsin Trypsin by age groups

Description

The trypsin data frame has 271 rows and 3 columns. Serum levels
of immunoreactive trypsin in healthy volunteers (faked!).

Format

This data frame contains the following columns:

trypsin a numeric vector. Serum-trypsin in ng/ml.

grp anumeric vector. Age coding. See below.

grpf a factor with levels 1: age 10-19, 2: age 20-29, 3: age 30-39, 4:
age 4049, 5: age 50-59, and 6: age 60-69.

230 Appendix B. Data sets in the ISwR package

Details

Data have been simulated to match given group means and SD.

Source

D.G. Altman (1991), Practical Statistics for Medical Research, Table 9.12,
Chapman & Hall.

Examples

data (fake.trypsin)
plot (trypsin~grp, data=fake.trypsin)

graft.vs.host Graft versus host disease

Description

The gvhd data frame has 37 rows and 7 columns. It contains data
from patients receiving a nondepleted allogenic bone marrow trans-
plant, with the purpose of finding variables associated with the
development of acute graft-versus-host disease.

Format

This data frame contains the following columns:

pnr a numeric vector. Patient number.

rcpage a numeric vector. Age of recipient (years).

donage a numeric vector. Age of donor (years).

type a numeric vector, type of leukaemia coded 1: AML, 2: ALL, 3:
CML for acute myeloid, acute lymphatic, and chronic myeloid
leukaemia.

preg a numeric vector code, indicating whether donor has been
pregnant. 0: no, 1: yes.

index a numeric vector giving an index of mixed epidermal cell-
lymphocyte reactions.

gvhd a numeric vector code, graft versus host disease. 0: no, 1: yes.

time a numeric vector. Follow-up time

dead a numeric vector code 0: no (censored), 1: yes

Source

D.G. Altman (1991), Practical Statistics for Medical Research, Exercise
12.3, Chapman & Hall.

Appendix B. Data sets in the ISwR package 231

Examples

data (graft.vs.host)
plot(jitter(gvhd, 0.2)~index,data=graft.vs.host)

heart.rate Heart rates after enalaprilat

Description

The heart.rate data frame has 36 rows and 3 columns. It contains
data for nine patients with congestive heart failure before and shortly
after administration of enalaprilat, in a balanced two-way layout.

Format

This data frame contains the following columns:

hr a numeric vector. Heart rate in beats per minute.

subj a factor with levels 1 to 9.

time a factor with levels 0 (before), 30, 60, and 120 (minutes after
administration).

Source

D.G. Altman (1991), Practical Statistics for Medical Research, Table 12.2,
Chapman & Hall.

Examples

data (heart.rate)
evalg(interaction.plot (time, subj,hr), heart.rate)

hellung Growth of Tetrahymena cells

Description

The hellung data frame has 51 rows and 3 columns. diameter and
concentration of Tetrahymena cells, with and without glucose added to
growth medium.

232 Appendix B. Data sets in the ISwR package

Format

This data frame contains the following columns:

glucose a numeric vector code 1: yes, 2: no.
conc a numeric vector. Cell condentration (counts/ml)
diameter a numeric vector. Cell diameter (um)

Source

D. Kronborg and L.T. Skovgaard (1990), Regressionsanalyse, Table 1.1,
FADL:s Forlag (in Danish).

Examples

data (hellung)
plot (diameter~conc, pch=glucose, log="xy",data=hellung)

IgM Immunoglobulin G

Description

Serum IgM in 298 children aged 6 months to 6 years.

Format

A single numeric vector (g/1).

Source

D.G. Altman (1991), Practical Statistics for Medical Research, Table 3.2,
Chapman & Hall.

Examples

data (IgM)
stripchart (IgM,method="stack")

Appendix B. Data sets in the ISwR package 233

intake Energy intake

Description

The intake data frame has 11 rows and 2 columns. It contains paired
values of energy intake for 11 women.

Format

This data frame contains the following columns:

pre a numeric vector. Premenstrual intake (kJ).
post a numeric vector. Postmenstrual intake (kJ).

Source

D.G. Altman (1991), Practical Statistics for Medical Research, Table 9.3,
Chapman & Hall.

Examples

data(intake)
plot (intakeSpre, intakeSpost)

juul Juul’s IGF data, extended version

Description

The juul data frame has 1339 rows and 6 columns. It contains a ref-
erence sample of the distribution of insulin-like growth factor (IGF-I),
one observation per subject in various ages with the bulk of the data
collected in connection with school physical examinations.

Format

This data frame contains the following columns:

age a numeric vector (years).

menarche a numeric vector. Has menarche occurred (code 1: no, 2:
yes)?

sex a numeric vector (1: boy, 2: girl).

igfl a numeric vector. Insulin-like growth factor (ug/1).

234 Appendix B. Data sets in the ISwR package

tanner a numeric vector. Codes 1-5: Stages of puberty a.m. Tanner.
testvol a numeric vector. Testicular volume (ml).

Source

Original data.

Examples

data (juul)
plot(igfl~age, data=juul)

juul2 Juul’s IGF data, extended version

Description

The juul2 data frame has 1339 rows and 8 columns. Extended
version of juul.

Format

This data frame contains the following columns:

age a numeric vector (years).

height a numeric vector (cm).

menarche a numeric vector. Has menarche occurred (code 1: no, 2:
yes)?

sex a numeric vector (1: boy, 2: girl).

igfl a numeric vector. Insulin-like growth factor (ug/1).

tanner a numeric vector. Codes 1-5: Stages of puberty a.m. Tanner.

testvol a numeric vector. Testicular volume (ml).

weight a numeric vector. Weight (kg).

Source

Original data.

Examples

data (juul2)
plot(igfl~age, data=juul2)

Appendix B. Data sets in the ISwR package 235

kfm Breast-feeding data

Description

The kfm data frame has 50 rows and 7 columns. It was collected by
Kim Fleischer Michaelsen and contains data for 50 infants of age ap-
proximately 2 months. They were weighed immediately before and
after each breast feeding and the measured intake of breast milk was
registered along with various other data.

Format

This data frame contains the following columns:

no anumeric vector. Identification number.

dl.milk a numeric vector. Breast-milk intake (d1/24h).

sex a factor with levels boy and girl

weight a numeric vector. Weight of child (kg).

mlsuppl anumeric vector. Supplementary milk substitute (ml/24h).
mat.weight a numeric vector. Weight of mother (kg).

mat.height a numeric vector. Height of mother (cm).

Note

The amount of supplementary milk substitute refers to a period before
the data collection.

Source

Original data.

Examples

data (kfm)
plot(dl.milk~mat.height,pch=c(1,2) [sex],data=kfm)

236 Appendix B. Data sets in the ISwR package

lung Methods for determining lung volume

Description

The 1ung data frame has 18 rows and 3 columns. It contains data on
three different methods of determining human lung volume.

Usage

data (lung)

Format

This data frame contains the following columns:

volume a numeric vector. Measured lung volume.
method a factor with levels A, B, and C.
subject a factor with levels 1-6.

Source

Exercises in Applied statistics (1977), Exercise 4.15, Dept. of Theoretical
Statistics, Aarhus University.

Examples

data (lung)

malaria Malaria antibody data

Description

The malaria data frame has 100 rows and 4 columns.

Usage

data (malaria)

Appendix B. Data sets in the ISwR package 237

Format

This data frame contains the following columns:

subject subject code.

age age in years.

ab antibody level.

mal a numeric vector code: Malaria, 0/1 is no/yes, respectively.

Details

A random sample of 100 children from a village in Ghana, aged 3-15
years. The children were followed for a period of 8 months. At the
beginning of the study, values of a particular antibody were assessed.
Based on observations during the study period, the children were cat-
egorized into two groups: individuals with and without symptoms of
malaria.

Source
Unpublished data.

Examples

data(malaria)
summary (malaria)

melanom Survival after malignant melanoma

Description

The melanom data frame has 205 rows and 7 columns. It con-
tains data relating to survival of patients after operation for ma-
lignant melanoma collected at Odense University Hospital by K.T.
Drzewiecki.

Format

This data frame contains the following columns:

no a numeric vector. Patient code.

status anumeric vector code. Survival status. 1: dead from melanoma,
2: alive, 3: dead from other cause.

days a numeric vector. Observation time.

ulc a numeric vector code. Ulceration, 1: present, 2: absent.

238 Appendix B. Data sets in the ISwR package

thick a numeric vector. Tumor thickness (1/100 mm).
sex a numeric vector code. 1: female, 2: male.

Source

PK. Andersen, . Borgan, R.D. Gill, N. Keiding (1991), Statistical
Models Based on Counting Processes, Appendix 1, Springer-Verlag.

Examples

data (melanom)
require (survival)
plot (survfit (Surv(days, status==1) ,data=melanom))

react Tuberculin reactions

Description

The numeric vector react contains differences between two nurses’
determination of 334 tuberculin reaction sizes.

Format

A single vector. Reaction sizes in mm.

Examples

data (react)
hist(react) # not good because of discretization effects...
plot (density (react))

red.cell.folate Red cell folate data

Description

The folate data frame has 22 rows and 2 columns. It contains data
on red cell folate levels in patients receiving three different methods
of ventilation during anesthesia.

Appendix B. Data sets in the ISwR package 239

Format

This data frame contains the following columns:

folate a numeric vector. Folate concentration (ug/1).

ventilation a factor with levels N20+02, 24h: 50% nitrous oxide and
50% oxygen, continuously for 24 hours; N20+02, op: 50% ni-
trous oxide and 50% oxygen, only during operation; 02, 24h: no
nitrous oxide, but 35-50% oxygen for 24 hours.

Source

D.G. Altman (1991), Practical Statistics for Medical Research, Table 9.10,
Chapman & Hall.

Examples

data(red.cell.folate)
plot(folate~ventilation,data=red.cell.folate)

rmr Resting metabolic rate

Description

The rmr data frame has 44 rows and 2 columns. It contains resting
metabolic rate and body weight for 44 women.

Format

This data frame contains the following columns:

body.weight a numeric vector. Body weight (kg).
metabolic.rate a numeric vector. Metabolic rate (kcal/24 hr).

Source

D.G. Altman (1991), Practical Statistics for Medical Research, Exer-
cise 11.2, Chapman & Hall.

Examples

data (rmr)
plot (metabolic.rate~body.weight,data=rmr)

240 Appendix B. Data sets in the ISwR package

secher Birth weight and ultrasonography

Description

The secher data frame has 107 rows and 4 columns. It contains ultra-
sonographic measurements of fetuses immediately before birth and
subsequent birth weight.

Format

This data frame contains the following columns:

bwt a numeric vector. Birth weight (g).

bpd a numeric vector. Biparietal diameter (mm).
ad a numeric vector. Abdominal diameter (mm).
no anumeric vector. Observation number.

Source

D. Kronborg and L.T. Skovgaard (1990), Regressionsanalyse, Table 3.1,
FADLs Forlag (in Danish).
Secher et al. (1987), Eur,j.obs.gyn.repr.biol., 24, 1-11.

Examples

data (secher)
plot (bwt~ad, data=secher, log="xy")

secretin Secretin-induced blood glucose changes

Description

The secretin data frame has 50 rows and 6 columns. It contains data
from a glucose response experiment.

Usage

data (secretin)

Appendix B. Data sets in the ISwR package 241

Format

This data frame contains the following columns:

gluc a numeric vector. Blood glucose level.

person a factor with levels A-E.

time a factor with levels 20, 30, 60, 90 (minutes since injection), and
pre (before injection).

repl a factor with levels a: 1st sample and b: 2nd sample.

time20plus a factor with levels 20+: 20 minutes or longer since
injection and pre: before injection.

time.comb a factor with levels 20: 20 minutes since injection, 30+: 30
minutes or longer since injection, and pre: before injection.

Details

Secretin is a hormone of the duodenal mucous membrane. An extract
was administered to five patients with arterial hypertension. Primary
registrations (double determination) of blood glucose were on graph
paper, later quantified with the smallest of the two measurements
recorded first.

Source

Exercises in Applied statistics (1977), Exercise 5.8, Dept. of Theoretical
Statistics, Aarhus University.

Examples

data (secretin)

tb.dilute Tuberculin dilution assay

Description

The tb.dilute data frame has 18 rows and 3 columns. It contains
data from a drug test involving dilutions of tuberculin.

Usage

data (tb.dilute)

242 Appendix B. Data sets in the ISwR package

Format

This data frame contains the following columns:

reaction a numeric vector. Reaction sizes (average of diameters) for
tuberculin skin pricks.

animal a factor with levels 1-6.

logdose a factor with levels 0.5, 0, and -0.5.

Details

The actual dilutions were 1:100, 1:100+/10, 1:1000. Setting the middle
one to 1 and using base-10 logarithms gives the 1ogdose values.

Source

Exercises in Applied statistics (1977), part of Exercise 4.15, Dept. of
Theoretical Statistics, Aarhus University.

Examples

data(tb.dilute)

thuesen Ventricular shortening velocity

Description

The thuesen data frame has 24 rows and 2 columns. It contains
ventricular shortening velocity and blood glucose for type 1 diabetic
patients.

Format

This data frame contains the following columns:

blood.glucose a numeric vector. Fasting blood glucose (mmol/1).
short.velocity a numeric vector. Mean circumferential shortening
velocity (%/s).

Source

D.G. Altman (1991), Practical Statistics for Medical Research, Table 11.6,
Chapman & Hall.

Appendix B. Data sets in the ISwR package 243

Examples

data (thuesen)
plot (short.velocity~blood.glucose, data=thuesen)

tlc Total lung capacity

Description

The tlc data frame has 32 rows and 4 columns. It contains data on
pretransplant total lung capacity (TLC) for recipients of heart-lung
transplants, by whole-body plethysmography.

Format

This data frame contains the following columns:

age a numeric vector. Age of recipient (years).
sex a numeric vector code. Female: 1, male: 2.
height a numeric vector. Height of recipient (cm).
tlc a numeric vector. Total lung capacity (1).

Source

D.G. Altman (1991), Practical Statistics for Medical Research, Exercise
12.5,10.1, Chapman & Hall.

Examples

data(tlc)
plot (tlc~height,data=tlc)

vitcap Vital capacity

Description

The vitcap data frame has 24 rows and 3 columns. It contains data
on vital capacity for workers in the cadmium industry. It is a subset of
the vitcap?2 data set.

244 Appendix B. Data sets in the ISwR package

Format

This data frame contains the following columns:

group a numeric vector. Group codes are 1: Exposed > 10 years, 3:
Not exposed.

age a numeric vector. Age in years.

vital.capacity a numeric vector. Vital capacity (a measure of lung
volume) in liters.

Source

P. Armitage and G. Berry (1987), Statistical Methods in Medical Research,
2nd ed., Blackwell, p. 286.

Examples

data(vitcap)
plot(vital.capacity~age, pch=group, data=vitcap)

vitcap2 Vital capacity, full data set

Description

The vitcap2 data frame has 84 rows and 3 columns, age and vital
capacity for workers in the cadmium industry.

Format

This data frame contains the following columns:

group a numeric vector. Group codes are 1: Exposed > 10 years, 2:
Exposed < 10 years, 3: Not exposed.

age a numeric vector. Age in years.

vital.capacity a numeric vector. Vital capacity (a measure of lung
volume) (1).

Source

P. Armitage and G. Berry (1987), Statistical Methods in Medical Research,
2nd ed., Blackwell, p. 286.

Appendix B. Data sets in the ISwR package 245

Examples

data (vitcap2)
plot(vital.capacity~age, pch=group, data=vitcap2)

wright Comparison of Wright peak-flow meters

Description

The wright data frame has 17 rows and 2 columns. It contains data
on peak expiratory flow rate with two different flow meters on each
of 17 subjects.

Format

This data frame contains the following columns:

std.wright a numeric vector. Data from large flow meter (I/min).
mini.wright a numeric vector. Data from mini flow meter (1/min).

Source
J.M. Bland and D.G. Altman (1986), Lancet, pp. 307-310.

Examples

data (wright)
plot (wright)
abline(0,1)

zelazo Age at walking

Description

The zelazo object is a list with four components.

Usage

data(zelazo)

246 Appendix B. Data sets in the ISwR package

Format

This is a list containing data on age at walking (in months) for four
groups of infants:

active test group receiving active training. These children had their
walking and placing reflexes trained during four three-minute
sessions that took place every day from their second to their
eighth week of life.

passive passive training group. Received the same types of social and
gross motor stimulation, but did not have their specific walking
and placing reflexes trained.

none no training. Had no special training, but were tested along with
the children who underwent active or passive training.

ctr.8w eigth-week controls. Had no training and were only tested at
the age of 8 weeks.

Note

When asked to enter these data from a text source, many students will
use one vector per group and will need to reformat data into a data
frame for some uses. The rather unusual format of this data set mimics
that situation.

Source

PR. Zelazo, N.A. Zelazo, and S. Kolb (1972), “Walking” in the
newborn, Science, 176, 314-315.

Examples

data(zelazo)

C

Compendium
Elementary
Commands
1s () orobjects() List objects in workspace
rm(object) Delete object
search () Search path

Variable names

Combinations of letters, digits and period. Must not start with a digit.
Avoid starting with period.

Assignments

<- Assign value to variable
-> Assignment “to the right”
<<- Global assignment (in functions)

248 Appendix C. Compendium

Operators
Arithmetic
+ Addition
- Subtraction, sign
* Multiplication
/ Division

Raise to power
Integer division
Remainder from integer division

oe
~
oe

oo
o°

Logical and relational

== Equal to
1= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
is.na(x) Missing?
& Logical AND
| Logical OR
! Logical NOT

& and | are elementwise. See “Programming” (p. 258) for && and | |.

Appendix C. Compendium 249

Vectors and data types

Generating
numeric (25) 25 zeros
character (25) 25 x mo
logical (25) 25 X FALSE
seq(-4,4,0.1) Sequence: —4.0 —3.93.8...3.94.0
1:10 Same as seq(1,10,1)
c(5,7,9,13,1:5) Concatenation:5791312345
rep(1,10) 1111111111
gl(3,2,12) Factor with 3 levels, repeat each level in blocks

of 2, up to length 12 (i.e,,112233112233)

Coercion
as.numeric (x) Convert to numeric
as.character (x) Convert to text string
as.logical (x) Convert to logical
factor (x) Create factor from vector x

Re. factors, see also “Tabulation, grouping, recoding” (p. 253).

Data frames

data.frame (height = Data frame with two named vectors
c(165,185), weight =
c(90,65))
data. frame (height, Collect vectors into data frame
weight)
dfr$var Select vector var in data frame dfr
attach (dfr) Put data frame in search path
detach() — and remove it from path

Attached data frames always come after . GlobalEnv in the search path.
Attached data frames are copies; subsequent changes to dfr have no effect.

250 Appendix C. Compendium

Numerical functions

Mathematical

max (x)
range (x)
pmin(x1,x2,...)

pmax (x1,x2,...)
length (x)
sum (complete.cases (x))

Logarithm of x, natural (base-e)
logarithm

Base-10 logarithm

Exponential function e*

Sine

Cosine

Tangent

Arcsin (inverse sine)

Smallest value in vector

minimum over several vectors (one
number)

Largest value in vector

Like ¢ (min (x) ,max (x))

Parallel (elementwise) minimum
over multiple equally long vectors
Parallel maximum

Number of elements in vector
Number of non-missing elements in
vector

Statistical
mean (x) Average
sd (x) Standard deviation
var (x) Variance
median (x) Median
quantile (x,p) Quantiles
cor(x,vy) Correlation

Appendix C. Compendium 251

Indexing/selection
x[1] First element
x[1:5] Subvector containing first five
elements
x[c(2,3,5,7,11)] Element nos. 2, 3,5,7, and 11
x[y<=30] Selection by logical expression
x[sex=="male"] Selection by factor variable
i <- ¢(2,3,5,7,11); x[i] Selection by numerical variable
1 <- (y<=30); xI[1] Selection by logical variable

Matrices and data frames

m(4,] Fourth row
m[,3] Third column
dfr[dfr$Svar<=30,] Partial data frame
subset (dfr,var<=30) Same, often simpler
Input of data
data (name) Built-in data set
read.table("filename") Read from external file

Common arguments to read.table

header=TRUE First line has variable names
sep="," Data are separated by commas
dec="," Decimal point is comma
na.strings="." Missing value is dot

Variants of read.table

read.csv("filename") Comma separated
read.delim("filename") Tab delimited
read.csv2 ("filename") Semicolon separated, comma
decimal point
read.delim2 ("filename") Tab delimited, comma decimal
point

These all set header=TRUE

252 Appendix C. Compendium

Missing values

Functions

is.na(x)

complete.cases (x1,x2,...)

Logical vector. TRUE where x
has NA

Neither missing in x1, nor x2,
nor...

Arguments to other functions

na.rm=

na.last=

na.action=

na.print=

na.strings=

In statistical functions. Remove
missing if TRUE, return NA if
FALSE.

In sort TRUE, FALSE and NA
means, respectively, “last”,
“first”, and “throw away”.

In 1m, etc., valuesna. fail,
na.omit, na.exclude. Also in
options("na.action").

In summary and
print.default: How to
represent NA in output.

In read. table(): Code(s) for
NA in input.

Appendix C. Compendium

Tabulation, grouping, recoding

table(fl,...)
tapply (x, £, mean)
factor (x)
cut (x, breaks)

(Cross)tabulation

Table of means

Convert vector to factor
Groups from cutpoints for
continuous variable

Arguments to factor

levels

labels

exclude

Values of x to code. Use if some
values are not present in data, or
if the order would be wrong.
Values associated with factor
levels.

Values to exclude. Default NA.
Set to NULL to have missing
values included as a level.

Arguments to cut

breaks

labels

right

Cutpoints. Note values of x
outside breaks gives NA. Can
also be a single number, the
number of cutpoints (not very
useful).

Names for groups. Default is
(0,301, etc.

Right endpoint included?
(FALSE: left)

Recoding factors

levels (f) <- names
factor (newcodes[f])

New level names

Combining levels: newcodes,
eg,c(1,1,1,2,3) to
amalgamate the first 3 of 5
groups.

253

254 Appendix C. Compendium

Statistical distributions

Normal distribution

dnorm (x) Density

pnorm (x) Cumulative distribution
function, P(X < x)

gnorm (p) p-quantile, x : P(X < x) =p

rnorm(n) n (pseudo-)random normally

distributed numbers

Distributions
pnorm (x,mean, sd) Normal
plnorm(x,mean, sd) Lognormal
pt (x,df) Student’s ¢
pf(x,nl,n2) F distribution
pchisqg(x,df) X2
pbinom(x,n,p) Binomial
ppois (x, lambda) Poisson
punif (x,min, max) Uniform
pexp (x, rate) Exponential
pgamma (x, shape, scale) Gamma
pbeta(x,a,b) Beta

Same convention (d-q-r) for density, quantiles, and random numbers as for normal
distribution.

Statistical standard methods

Appendix C. Compendium 255

Continuous response

t.test
pairwise.t.test
cor.test
var.test

Im(y ~ x)
Im(y ~ £f)

Im(y ~ £f1 + £2)
Im(y ~ £ + x)
Im(y ~ x1 + x2 + x3)
bartlett.test

One- and two-sample ¢ test
Pairwise comparisons
Correlation

Comparison of two variances
(F test)

Regression analysis

One-way analysis of variance
Two-way analysis of variance
Analysis of covariance
Multiple regression analysis
Bartlett’s test (k variances)

Nonparametric:
wilcox.test

kruskal.test
friedman. test

cor.test variants:
method="kendall"
method="spearman"

One- and two-sample
Wilcoxon test

Kruskal-Wallis test
Friedman’s two-way analysis
of variance

Kendall’s T
Spearman’s p

Discrete response

binom. test
prop.test
prop.trend. test

fisher.test
chisqg.test

glm(y ~ x1+x2+x3, binomial)

Binomial test (incl. sign test)
Comparison of proportions
Test for trend in relative
proportions

Exact test in small tables

X2 test

Logistic regression

256 Appendix C. Compendium

Models

Model formulas

-1

Described by

Additive effects
Interaction

Main effects + interaction
(a*b = a + b + a:b)
Remove intercept

Classifications are represented by descriptive variable being a factor.

Linear and generalized linear models

lm.out <- lm(y ~ x)

summary (1lm.out)
anova (1lm.out)
fitted(lm.out)
resid(1lm.out)

predict (lm.out, newdata)
glm(y ~ x, binomial)

Fit model and save result
Coefficients, etc.

Analysis of variance table
Fitted values

Residuals

Predictions for new data frame

Logistic regression

Diagnostics

rstudent (1m.out)

dfbetas (1m.out)
dffits(lm.out)

Studentized residuals
Change in f3 if obs. removed
Change in fit if obs. removed

Survival analysis

S <- Surv(time, ev)

survfit (S)

plot (survfit (S))

survdiff (S ~ g)

coxph(S ~ x1 + x2)

Create survival object
Kaplan-Meier estimate
Survival curve

(Log-rank) test for equal
survival curves

Cox’s proportional hazards
model

Appendix C. Compendium
Graphics
Standard plots
plot () Scatterplot (and more)
hist () Histogram
boxplot () Box-and-whiskers plot
stripplot() Stripplot
barplot () Bar diagram
dotplot () Dot diagram
piechart () Cakes...
interaction.plot () Interaction plot
Plotting elements
lines() Lines
abline () Line given by intercept and slope
(and more)
points () Points
segments () Line segments
arrows () Arrows (NB: angle=90 for error
bars)
axis () Axis
box () Frame around plot
title() Title (above plot)
text () Text in plot
mtext () Text in margin
legend() List of symbols

These are all added to existing plots.

Graphical parameters

pch Symbol (plotting character)
mfrow, mfcol Several plots on one (multiframe)
x1lim, ylim Plot limits
lty, lwd Line type/width
col Colour
cex, mex Character size and line spacing in
margins

See the help page for par for more details.

257

258 Appendix C. Compendium

Programming

Conditional execution

if (p<0.05)
print ("Hooray!")

— with alternative

1f (p<0.05)

print ("Hooray!")
else

print ("Bah.")

Loop over list

for(i in 1:10)
print (i)

Loop

i<-1

while (i<10) {
print (i)
i<-1+1

f <- function(a,b,doit=FALSE) {

computed if necessary; that is, 1 £
if a then TRUE else b

if (doit)
a + b
User-defined function else
0
}
In flow control one uses a && b and a || b where b is only

a then b else FALSE and

Bibliography

Agresti, A. (1990), Categorical Data Analysis, John Wiley & Sons, New York.

Altman, D. G. (1991), Practical Statistics for Medical Research, Chapman &
Hall, London.

Andersen, P. K., Borgan, @., Gill, R. D., and Keiding, N. (1991), Statistical
Models Based on Counting Processes, Springer-Verlag, New York.

Armitage, P. and Berry, G. (1994), Statistical Methods in Medical Research,
3rd ed., Blackwell, Oxford.

Becker, R. A., Chambers, J. M., and Wilks, A. R. (1988), The NEW S
Language, Chapman & Hall, London.

Campbell, M. J. and Machin, D. (1993), Medical Statistics. A Commonsense
Approach, 2nd ed., John Wiley & Sons, Chichester.

Chambers, J. M. and Hastie, T. J. (1992), Statistical Models in S, Chapman &
Hall, London.

Clayton, D. and Hills, M. (1993), Statistical Models in Epidemiology, Oxford
University Press, Oxford.

Cleveland, W. S. (1994), The Elements of Graphing Data, Hobart Press, New
Jersey.

Cochran, W. G. and Cox, G. M. (1957), Experimental Designs, 2nd ed., John
Wiley & Sons, New York.

Cox, D. R. (1970), Analysis of Binary Data, Chapman & Hall, London.

260 Bibliography
Cox, D. R. and Oakes, D. (1984), Analysis of Survival Data, Chapman &
Hall, London.

Everitt, B. S. (1994), A Handbook of Statistical Analyses Using S-PLUS,
Chapman & Hall, London.

Hijek, J., Sidak, Z., and Sen, P. K. (1999), Theory of Rank Tests, 2nd ed.,
Academic Press, San Diego.

Hald, A. (1952), Statistical Theory with Engineering Applications, John Wiley
& Sons, New York.

Hosmer, D. W. and Lemeshow, S. (2000), Applied Logistic Regression, 2nd
ed., John Wiley & Sons, New York.

Johnson, R. A. (1994), Miller & Freund'’s Probability & Statistics for Engineers,
5th ed., Prentice-Hall, Englewood Cliffs, NJ.

Kalbfleisch, J. D. and Prentice, R. L. (1980), The Statistical Analysis of Failure
Time Data, John Wiley & Sons, New York.

Krause, A. and Olson, M. (1997), The Basics of S and S-PLUS, Springer-
Verlag, New York.

Lehmann, E. L. (1975), Nonparametrics, Statistical Methods Based on Ranks,
McGraw-Hill, New York.

Matthews, D. E. and Farewell, V. T. (1988), Using and Understanding Medical
Statistics, 2nd ed., Karger, Basel.

McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models, 2nd ed.,
Chapman & Hall, London.

Siegel, S. (1956), Nomparametric Statistics for the Behavioral Sciences,
McGraw-Hill International, Auckland.

Spector, P. (1994), An Introduction to S and S-Plus, Duxbury, Belmont, CA.

Venables, W. N. and Ripley, B. D. (2000), S Programming, Springer-Verlag,
New York.

Venables, W. N. and Ripley, B. D. (2002), Modern Applied Statistics with S,
4th ed., Springer-Verlag, New York.

Weisberg, S. (1985), Applied Linear Regression, 2nd ed., John Wiley & Sons,
New York.

Zar,]. H. (1999), Biostatistical Analysis, Prentice Hall, Englewood Cliffs, NJ.

Index

abline, 99
and logarithmic scales, 175
acceptance region, 82
alternative, 82, 84
one-sided, 82
two-sided, 84
analysis of covariance, 172
analysis of deviance, 197
analysis of variance, 111
one-way, 111
unequal variances, 117
two-way, 121
with replications, 171
ANOVA, see analysis of variance
anova, 114, 124, 126, 180
ANOVA table
for covariance analysis, 180
for multiple regression, 152
in regression analysis, 126
apply, 26
arrays, 14
arrows, 118
as.numeric, 17
ASCII files, 39
assignment, 3
assignment operator, 4
attach, 38

average, 57

bar plot, 75
grouped, 76
stacked, 76
barplot
legend. text, 75,77
bartlett.test, 120
binom. test, 130
binomial coefficients, 48
binomial distribution
comparison of k proportions, 133
test for trend, 134, 199
comparison of two proportions, 131
power of, 143
normal approximation, 129
test for trend, 133
test of simple hypothesis, 129
Bland—-Altman plot, 90
Bonferroni correction, 116
boxplot, 65
parallel, 69

c, 13

caesar.shoe (caesarean), 227
calculator, overgrown, 3
categorical variables, 16

262 Index

cbind, 15
censoring, 211
chisqg.test, 133,135
expected, 136
observed, 136
choose, 47
classes, 34
combinatorics, 46
comment, 92
comparing groups, see t test, analysis
of variance, Wilcoxon test,
Kruskal-Wallis test
comparison operators, 20
complete.cases, 101
concatenation, 13
confidence bands, 103
confidence interval, 53, 84
Conradsen, Knut, 138
console window, 1
contingency tables, see tables
contrasts, 116
Cook’s distance, 183, 186
cor, 108
correlation, 106
between parameter estimates, 197
Kendall’s T, 109
multiple, 99
adjusted, 99
Pearson-, 106
Spearman’s p, 109
Cox model, 218
curve, 30, 50
cut, 205

data, 37

data editor, 42

data entry, 39

data frames, 18
components of, 19
encoding grouped data, 23

data from other programs, 43

data sets, 37

data.frame, 18

decile, 58

degrees of freedom, 88
fractional, 88

density, 30, 48, 49

design, see sample size

design matrix, 164

design variables, 164
detach, 38
deviance, 192
null, 196
residual, 196, 202
dfbetas, 184
dffits, 184
dim, 14
dimension, 14
distribution, 45
random numbers, 54
binomial, 48, 51
continuous, 48
cumulative distribution function,
47,52
empirical, 63
density, 49
discrete, 47
empirical description of, 61
Gaussian, see normal
geometric, 48
hypergeometric, 132
noncentral ¢, 140
normal, 48, 50
point probabilities, 47, 49
quantiles, 53
empirical, 57
uniform, 48
distribution-free methods, 85
dnorm, 30
documentation, 36
dotchart, 78
dummy variables, 116, 159, 164, 165

edit, 42

eggs, 138

error bars, 118

Excel, 43
expressions, 10
extractor function, 97

F test
for comparison of variances, 89
in ANOVA table, 126
in regression analysis, 99
factor, 17
levels, 17
factors, 16
describing regular pattern, 123

levels of, 16
ordered, 17
regular pattern, 193
FALSE, 12
figure region, 27
Fisher’s exact test, 132
fisher.test, 132
fitted, 99
fitted line, 99
fitted values, 99
fix, 42
flow control, 32
break, 33
compound expression, 33
for, 33
if,33
repeat, 33
while, 33
force of mortality, 212
frequency, 129
Friedman’s test, 124
functions, 10
arguments to, 10
actual, 11
default, 32
formal, 11
keyword matching, 11
named, 11
positional matching, 11
generic, 34

generalized linear models, 192
gl,123,193
glm, 193
family, 193
weights, 194
graphics, 7, 67
colour coding, 186
for grouped data, 118

for repeated measurements, 124

pairwise plots, 150
graphics window, 2

hazard function, 212
header, 40

help, 36

help functions, 36
help.start, 36
hist, 30, 61, 67

Index

breaks, 68

freq, 62
histogram, 30, 61, 67
Holm correction, 117

1,160,177
indexing, 19

negative, 20

of data frames, 21

with a vector, 19

with logical vector, 21

with relational expression, 20
input

from file, 39
interaction, 124, 170, 180
interaction.plot, 124
intercept, 95, 98, 162
interquartile range, 58
IQR, 58
is.na, 21,101
ISwR package, 2

Kaplan-Meier estimator, 213
Kruskal-Wallis test, 120
kruskal.test, 120

lapply, 26
least squares, 95
legend, 77
legend, 77,174
length, 63
levels, 17
library, 37
lifetime data, 211
likelihood function, 192
linear regression, 95
linearity

grouped data, 166
lines, 9,101
link function, 192
list, 17
lists, 17

components of, 18
1m, 97,113,124
load, 35
locator, 77,174
log odds, 191
log-rank test, 216
logarithmic scale, 174

263

264 Index

logical expressions, 20
combination of, 20
logical operators, 20
logistic regression, 191
logit, 191
loops
implicit, 26
1s,34

Mann-Whitney test, see Wilcoxon test,
two-sample
margin coordinates, 27
margin.table, 74
matlines, 105
matrices, 14, 72
binding together, 15
row and column names, 15, 73
transposition, 15
matrix, 15,72
byrow, 72
ncol, 72
nrow, 72
maximum likelihood, 192
mean, 5
mean, 57
mean squares, 112
median, 57
missing, 21, 58, 101
na.rm argument, 108
use argument, 108
model formulas, 69,97, 151, 180
arithmetic expressions in, 177
interaction terms, 180
model object, 97
model search, 154
model .matrix, 164
multi-frame graphics layout, 65, 68
multiple comparisons, 115
multiple regression, 149

NA, see missing

na.exclude, 101

na.rm, 59

nonparametric tests, see distribution-
free methods

normal distribution, 53, 64

null hypothesis, 81

number of observations, 63

objects, 10

listing of, 34

removing, 35
odds ratio, 132, 191
on-line help, 36

search engine, 36
one-sided test, 82
oneway.test, 117
order, 25
ordered, 17

p value, 82
packages, 37
pairs, 150
pairwise comparisons, 115
pairwise.t.test, 116
par, 30, 68
percentile, 58
pie, 78
pin diagram, 51
plot, 8
plot layout, 27
plot region, 27
plot symbol, 8
plots
adding to
abline, 27
axis, 29
box, 29
lines,9,27,101
mtext, 28
points, 27
text, 27
title, 29
combining, 30
plotting parameters
axis labels (x1ab and ylab), 27
axis limits (x1im and y1im), 31, 63,
68
colour (col), 68
empty plot (type="n"), 29
heading (main), 27, 79
line plot (type="1"), 50
logarithmic axes (1og), 174
margin expansion (mex), 30
margin sizes (mar), 30
multiframe layout (mfrow and
mfcol), 65, 68
no axes (axes=F), 29

pin diagram (type="h"), 51
setting with par, 30
step function (type="s"), 63
subtitle (sub), 27
symbol (pch), 8,173
text font (font), 28
polynomial regression, 160
power, 139, 140
power .prop.test, 139
power.t.test, 139
predict, 104, 161
prediction, 161, 203
prediction bands, 103
prediction in new data frame, 105
print methods, 34
probability, 46
probability distribution, see
distribution
probability plot, 65
product-limit estimator, see
Kaplan-Meier estimator
programming, 32
prompt, 2
continuation, 18
prop.table, 74
prop.test, 130
prop.trend. test, 134
proportion, 129
proportional hazards model, 218

Q-Q plot, 64,183
ggnorm, 64, 103
quantile, 57
quartile, 58

quote symbols, 12

R?,99

in model without intercept, 163
random numbers, 2, 54
random sample, 45

with and without replacement, 46

range, 31
rbind, 15
read.csv, 41,43
read.csv2, 41,43
read.delim, 41,43
read.delim2, 41,43
read. table, 39,43
header, 40

Index

reading data, 39
regression analysis, 159
diagnostics, 182
line through origin, 162
linear, 95
logistic, 191
for raw data, 201
for tabular data, 193
multiple, 149
polynomial, 160
regression coefficients, 95, 98, 165
interpretation for factors, 116
interpretation in covariance
analysis, 178
regression lines
comparison of, 177
relational expressions, 13
rep, 14
replication, 14
resid, 99
residual variation, 99
residuals, 95, 98, 99
deviance, 195, 202
leave-out-one, 184
standardized, 183
rm, 35
rnorm, 2
rstandard, 184
rstudent, 184

sample, 45

sample size, 139
comparison of proportions, 146
one-sample problems, 145
paired tests, 145
two-sample problems, 143

sampling, sece random sample

sapply, 26

SAS, 43

save, 35

save.image, 35

saving
command history, 36
workspace, 35

sd, 57

search, 38

search path, 38

SEDM, 87

segments, 102

265

266 Index

selection, 20
SEM, 82
seq, 13, 50
sequences of numbers, 13, 50
sign test, 52
signed-rank test, 85
significance level, 82, 140
significance stars, 98
slope, 95
sort, 24
sorting, 24
by other variable, 25
spaghettigram, 124
split,24
SPSS, 43
staggered entry, 212
standard deviation, 5, 57
standard error
of differences of means, 87
of regression coefficients, 96
of the mean, 82
stripchart, 70,118
jitter, 70
method, 70
stripcharts, 70
jitter, 70
subset, 22
subsetting, 19, 22
summary
of data frame, 59
of 1m object, 97
of numeric variable, 59
summary, 59, 97, 115, 214
corr, 197
for glm, 194
summary statistics, 57, 83
tables of, 65
summary.survfit, 214
Surv objects, 212
survdiff, 217
survfit, 213
plot of, 214
survival, 212
survival function, 212, 213

t test, 6, 81
approximate power, 142
one-sample, 6, 81
power of, 140

paired, 90
power of, 140
two-sample, 86
power of, 142
same variance, 88
t.test, 83
alternative, 85
mu, 83
output of, 83
paired, 91
var.equal, 88
tables, 72
graphical display, 75
marginals, 74
r x ¢, 135
relative frequencies, 74
statistical analysis, 129
tapply, 26, 65
ties, 86
transform, 22
treatment contrasts, 116, 165
TRUE, 12
two-sided test, 84
Type I and type II error, 140

var, 57
var.test, 89
variable names, 4
variance, 57

comparison of, 89, 120

between linear models, 179

variation

between rows and columns, 121

due to model, 126

residual, 126

within and between groups, 112
vectors, 4, 12

calculations with, 5

logical, 12

numeric, 4

numerical, 12

recycling of, 5

text- (character), 12

Welch’s test, 87
more than two categories, 117
wilcox.test, 85
Wilcoxon test, 81
matched-pairs, 92

one-sample, 85

two-sample, 89
Windows, 2
workspace, 34

x? test, 133, 135
components of, 136

Yates correction, 129, 132

Index

267

