UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO DEPARTAMENTO DE ADMINISTRAÇÃO

RAD1507 – Estatística Aplicada à Administração I Prof. Dr. Evandro Marcos Saidel Ribeiro

Como resolver um problema de forma "Algorítmica"

1. Entender o problema

O que se pretende entender com o estudo? Neste caso: Obter risco e retorno esperado num portfólio.

2. Formular o problema

Quais são as informações ou dados (*inputs*) disponíveis. A partir destes *inputs* o que será obtido (*outputs*). Serão obtidos valores, gráficos, ...?

Neste caso: a partir de variações de preços serão obtidos o retorno e o risco de uma carteira de investimentos por expressões matemáticas que seguem a teoria de seleção de portfólio, de Markowitz (1952).

3. Elaborar um algoritmo

De forma geral, indicar os passos para obtenção dos valores de *outputs* a partir dos *inputs*.

Neste caso, elaborar algoritmo para simulação e outro para otimização.

4. Implementar o algoritmo

Utilizar um software, Excel, R, Python, ... e implementar o algoritmo utilizando expressões características da linguagem de programação específica.

5. Executar o código e resolver o problema

Obter valores que resolvam o problema inicial.

Seleção de portfólio - Passos para resolução do Trabalho 2

Passo 1. Entendendo o problema. O problema é obter medidas de risco e retorno para uma carteira com seis títulos. Estas medidas de risco e retorno são exemplos práticos de aplicação de estatística na área de administração.

Passo 2. Formulação do problema. Este assunto foi estudado por Markowitz (1952) e para resolvê-lo neste trabalho utilizaremos a formulação de Markowitz resumida a seguir, que considera como entrada séries de preços de ações.

2.1 Medidas de Risco e Retorno

Seja \overline{R}_i a variação média do título *i*, obtida a partir de uma série de variações de preço num certo período. Seja P_i o investimento percentual neste título.

Então, para um portfólio formado por N títulos temos:

O retorno de cada título: $\widetilde{R} = \begin{bmatrix} \overline{R}_1 \\ \overline{R}_2 \\ \overline{R}_3 \\ \vdots \\ \overline{R}_N \end{bmatrix}.$ (1) A participação em cada título: $\widetilde{P} = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ \vdots \\ P_N \end{bmatrix}.$ (2)

sendo

$$\sum_{i=1}^{N} P_i = 1$$
 (3)

e

$$0 \le P_i \le 1. \tag{4}$$

п

A matriz de covariância:

$$\widetilde{S} = \begin{bmatrix}
S_{1,1} & S_{1,2} & \cdots & S_{1,N} \\
S_{2,1} & S_{2,2} & \cdots & S_{2,N} \\
\vdots & \vdots & \ddots & \vdots \\
S_{N,1} & S_{N,2} & \cdots & S_{N,N}
\end{bmatrix}.$$
(5)

O retorno esperado para o portfólio é obtido por:

$$R = \tilde{P}'\tilde{R}.$$
 (6)

O risco pode ser definido pela variância do portfólio, dada por: $Variância = \tilde{P}'\tilde{S}\tilde{P},$ (7)

ou então pelo desvio padrão do portfólio, dado por

$$DesvPad = \sqrt{Variância} . \tag{8}$$

Passo 3, 4 e 5. Elaboração de algoritmo para o estudo de Risco e Retorno por Simulação e por otimização

A seleção de um portfólio é feita quando são determinados todos os percentuais P_i . Esta determinação pode ser arbitrária, aleatória ou otimizada. A seguir são descritos os algoritmos para resolver o problema pelo método aleatório e pelo método otimizado.

3.1 Simulação aleatória

Considere um estudo com seis títulos. Para obter a matriz de investimento percentual, ou seja, os valores de cada P_i , considere os três passos a seguir:

- 1. Numa planilha de análise (AnaliseSimula) reserve uma região com seis células para a matriz de participações.
- 2. Obtenha as participações: Sorteie seis números aleatórios entre 1 e 100. Utilize a função do Excel para obter os números aleatórios: =ALEATÓRIOENTRE(1;10000) Grave estes valores como X_i .
- 3. Obtenha a soma:

$$Tot = \sum_{i=1}^{6} X_i .$$
$$P_i = \frac{X_i}{Tot}$$

4. Cada valor de P_i é obtido por:

A planilha resultante é apresentada a seguir. Note que a coluna A apresenta sorteios aleatórios, na coluna C estes sorteios são transformados em percentuais. Os valores de Retorno e Variância são calculados pelas expressões (6) e (7).

	А	В	С	D	Е	F	G	Н	
1	Simulação		Participação				Risco	Risco	
2	13		0,0442	v_ibov		Retorno	Variância	Desvio Padrão	
3	88		0,2993	v_petro		-0,000662	0,000119	0,010909	
4	54		0,1837	v_dolar					
5	18		0,0612	v_bisa3					
6	91		0,3095	v_elpl4					
7	30		0,1020	v_oibr3					
8	294	Total	1	Soma					
9									

Uma vez definido o portfólio pelos valores de \tilde{P} , obtenha os valores de Risco na célula G3 pela expressão (7) e de Retorno na célula F3 pela expressão (6). Grave os valores obtidos de *Variância* e de *Retorno*. Obtenha outra simulação repetindo os passos 1 a 3 e obtendo novos valores de *Variância* e de *R*.

Para gravar os valores da Simulação considere desenvolver uma "Macro" que copia os valores de Retorno e Risco obtidos para a coluna A e B, a partir da linha 11. Note que o valor de Retorno está na célula F3 (na programação de macro VBA, esta célula é reconhecida como Cells(3,6), ou seja, linha 3 coluna 6) e o valor de Risco está na célula G3, que no VBA é reconhecida como Cells(3,7).

Na figura a seguir á apresentado um código de programação VBA que copia 1000 valores de Retorno e Risco simulados para as colunas A e B da planilha "AnaliseSimula".

```
Sub simula()
'
' simula Macro
' Atalho do teclado: Ctrl+t
'
For i = 1 To 1000
Retorno = Cells(3, 6)
Risco = Cells(3, 7)
Cells(10 + i, 1) = Retorno
Cells(10 + i, 2) = Risco
Calculate
Next i
End Sub
```

Após executar a Macro faça um gráfico de dispersão com os valores obtidos de Risco e Retorno. Veja um exemplo na figura a seguir, na qual foram consideradas 10000 simulações.

3.2 Otimização

Considere um estudo com seis títulos. Considere valores iniciais para cada P_i de forma que sejam satisfeitas as expressões (3) e (4). Para tanto digite os valores que achar adequado para cada P_i numa nova planilha, planilha "Otimização". Obtenha os valores de Retorno e Risco da mesma forma do item 2. A planilha deve estar com a seguinte característica:

	Α	В	С	D	E	F	G	Н	I.	-
1							Risco	Risco		
2		Participação	0,2486	v_ibov		Retorno	Variância	Desvio Padrão		
3			0,0000	v_petro		0,001100	0,000013	0,003572		
4			0,5307	v_dolar						
5			0,2070	v_bisa3		Retorno Esperado				
6			0,0000	v_elpl4		0,0013				
7			0,0137	v_oibr3						
8		Total	1,0000							
9										•

Utilize um procedimento de otimização, por exemplo utilize a ferramenta SOLVER no Excel. Para habilitar o SOVER, nas versões mais recentes do Excel selecione: Arquivo → Opções → Suplementos → Suplementos do Excel → [Ir...]

Entre as opções apresentadas, selecione o Solver:

	Suplemento	S	× ×
<u>Suplementos dispon</u>	íveis:		
Action	ماد	^	ОК
Ferramentas de A	nálise		Cancelar
	nalise - VDA		Procurar
Solver			Automação
			Automação
		\mathbf{v}	
Action			
		_	

Para realizar a otimização estude as três características necessárias, a Função Objetivo, as Variáveis de decisão, as Restrições:

Função Objetivo:	Minimizar a Expressão (7)
Variáveis de Decisão:	Expressão (2)
Restrições:	Expressão (6) = Valor específico Expressão (3) Expressão (4)

Nesta nova planilha, "Otimização" a Função Objetivo é a Variância, resultado obtido na célula G3 (célula em vermelho na figura da página anterior).

Clique na célula G3 e execute o Solver: Dados \rightarrow Análise \rightarrow Solver

Aparece uma janela com opções para a otimização, a janela dos Parâmetros do Solver. Veja na figura abaixo os parâmetros necessários para esta otimização

Definir Objetivo:	SGS3		
Para: <u>M</u> áx. •	Mí <u>n</u> . <u>V</u> alor de:	0	
Alterando Células Vari <u>á</u> veis:			
matrizP2			E
Sujei <u>t</u> o às Restrições:			
\$C\$8 = 1 \$F\$3 = \$F\$6		^	<u>A</u> dicionar
			Alter <u>a</u> r
			E <u>x</u> cluir
			Redef <u>i</u> nir Tudo
		~	<u>C</u> arregar/Salvar
Tornar Variáveis Irrestritas	N <u>ã</u> o Negativas		
S <u>e</u> lecionar um Método de	GRG Não Linear	~	<u>O</u> pções
Método de Solução			
Selecione o mecanismo GRG Selecione o mecanismo LP S Evolutionary para problema	i Não Linear para Problemas implex para Problemas do S s do Solver não suaves.	do Solver suaves e olver lineares. Selec	não lineares. ione o mecanismo
Evolutionary para problema	s do Solver não suaves.]

Note que a célula a ser otimizada deve ser Minimizada. As Células variáveis contém o nome "matrizP2" que é o nome que eu atribuí para a região C2:C7 da planilha.

As restrições foram inseridas através do botão [Adicionar]. Clicando em Adicionar aparece o menu para adicionar a restrição.

•	Adicionar Restrição	×	Adicionar Restrição			
R <u>e</u> ferência de Célula:	Restrição:		R <u>e</u> ferência de Célula: \$C\$8	E = V	Restrição: 1	E
<u>O</u> K	<u>A</u> dicionar C <u>a</u> n	celar →	<u>O</u> K	Adicionar		C <u>a</u> ncelar

Adicionar Restrição	Adicionar Restrição
Referência de Célula: Restrição:	Referência de Célula: Restrição: SF\$3 Image: a logo de
<u>O</u> K <u>A</u> dicionar C <u>a</u> ncelar	<u>O</u> K <u>A</u> dicionar C <u>a</u> ncelar

É importante considerar valor de retorno esperado que esteja dentro dos limites possíveis de obtenção de retorno, ou seja entre o menor retorno médio e o maior retorno médio. No caso dos títulos estudados os valores médios estão entre os valores -0,013177 e 0,002902. De forma prática, serão considerados valores no intervalo -0,013 e 0,003. Para o primeiro cálculo escolha um valor intermediário, por exemplo, 0,001.

Execute o Solver, como resultado verifique se o Solver encontrou uma solução:

Resultados do Solver		×	
O Solver encontrou uma solução. Todas as Restrições e condições de adequação foram satisfeitas.	Relatóri <u>o</u> s		
 Manter Solução do Solver Restaurar Valores Originais 	Resposta Sensibilidade Limites		
Retornar à Caixa de Diálogo Parâmetros do Solver	Rela <u>t</u> órios de Estrutura de Tópicos		
<u>O</u> K C <u>a</u> ncelar	Salva <u>r</u> Cenário		
O Solver encontrou uma solução. Todas as Restrições e condições de adequação foram satisfeitas.			
Quando o mecanismo GRG foi usado, o Solver encontrou pel local. Quando LP Simplex é usado, significa que o Solver enc global.	o menos uma solução ideal ontrou uma solução ideal		

Se a solução foi obtida clique em [OK] para Manter a solução do Solver.

OS valores de P_i são então atualizados para fornecer a carteira otimizada, ou seja aquela que possui um retorno esperado igual ao definido na restrição, que o risco seja o menor possível, e ainda que satisfaça a restrição de que todas as participações somadas resultem em 1.

Para o cálculo o valor de retorno esperado foi digitado na Célula F6.

Com o Solver ajustado, obtenha a otimização para vários valores possíveis de retorno. Faça uma lista de retornos esperados na coluna F, a partir da linha 9. Para cada valor de retorno esperado execute o Solver (copie antes o valor de retorno esperado para a célula F6) e copie o valor obtido para a variância otimizada na coluna G.

Faça um gráfico de Risco x Retorno com os valores obtidos.

Para este exemplo o gráfico resultante é apresentado na figura da página seguinte.

Pode ser considerada também outra função objetivo, dada pelo índice calculado pelo retorno sobre o risco, $I_s = \frac{R}{DesvPad} = \frac{(6)}{(8)}$. Neste caso deve-se maximizar o índice obtido e as restrições consideradas são apenas as Expressões (3) e (4).

Considerações adicionais

Considerando os resultados, Simulação e Otimização (incluindo o I_S), numa mesma figura:

Na figura acima, a linha azul é a de menor risco, a linha vermelha é a de maior risco o losango amarelo é a carteira com maior I_s . Resultado obtido: $I_s = 0,3592$.

Referência

Harry Markowitz, Portfolio Selection, The Journal of Finance, 7, No. 1, pp. 77-91, 1952.