

Avaliação de Áreas

Fundamental para planejamentos de engenharia, agricultura, loteamentos, limites de preservação ambiental, levantamentos cadastrais para compra e venda, partilha, escrituras, etc.

As **áreas topográficas** são **projeções horizontais** das obras projetadas e executadas

<u>Avaliação de Áreas</u>

Processos de Cálculo

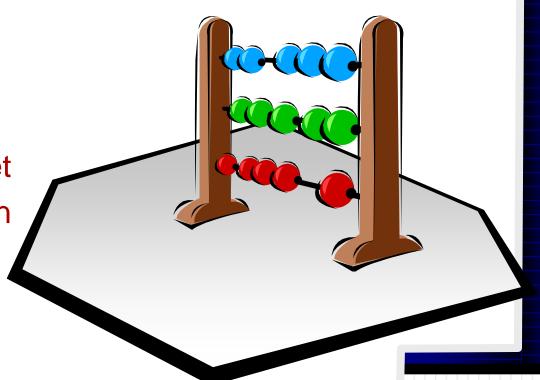
- Analíticos;
- Computacionais;
- Gráficos;
- Mecânicos;
- Mistos

<u>Avaliação de Áreas</u>

Processos Analíticos

Foram os primeiros métodos desenvolvidos para o cálculo de área de poligonais. São baseados em fórmulas matemáticas, limitantes da figura.

- Fórmula de Gauss
- Método de Bezout
- Método de Poncelet
- Método de Simpson



FÓRMULA DE GAUSS

(Áreas delimitadas por poligonais regulares: triângulos, trapézios, etc)

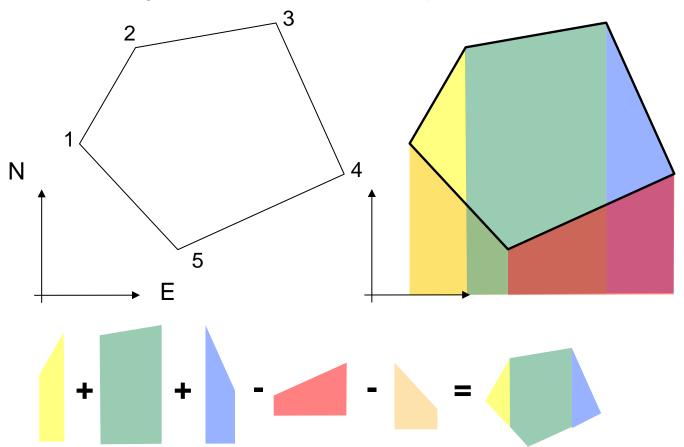
Basea-se na soma e subtração da área de trapézios formados pelos vértices e projeções sobre os eixos N, E.

Essa operação pode ser expressa por diferentes equações, como a equação a seguir, que utiliza a propriedade distributiva.

$$S = 0.5 \times \left(\sum_{i=1}^{n} N_i \times E_{i+1} - \sum_{i=1}^{n} E_i \times N_{i+1} \right)$$

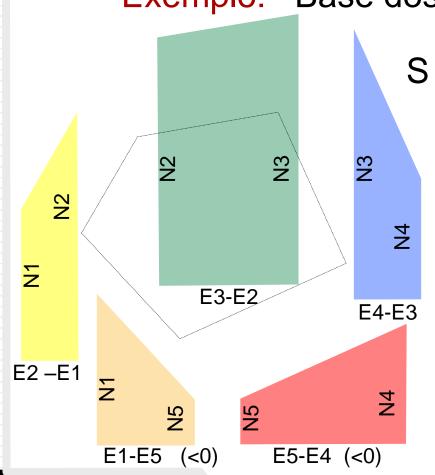
FÓRMULA DE GAUSS

Exemplo: Base dos trapézios no eixo "E"



FÓRMULA DE GAUSS

Exemplo: Base dos trapézios no eixo "E"



$$S = 0.5 x [(E2-E1) x (N1+N2)]$$

$$+ (E4-E3) \times (N4+N3)$$

$$+ (E5-E4) \times (N5+N4)$$

$$+ (E1-E5) \times (N1+N5)$$

(uma das formas da fórmula de Gauss)

MÉTODO DE BEZOUT

(Áreas que se delimitam por poligonais irregulares)

Para n qualquer (par ou ímpar) esse método interpreta a curva com uma série de trapézios de altura d.

$$y_{0} \quad y_{1} \quad y_{2} \quad y_{3} \quad y_{4} \quad y_{5} \quad y_{6} \quad y_{7} \quad y_{n}$$

$$d \quad d \quad d \quad d \quad d \quad d \quad d$$

$$S = d \times \left(\frac{y_{0} + y_{n}}{2} + \sum_{i=1}^{n-1} y_{i} \right)$$

onde: $\sum yi = y1 + y2 + y3 + ... + yn - 1$ (Internos)

MÉTODO DE PONCELET

(Áreas que se delimitam por poligonais irregulares)

Para n par, interpreta a curva como uma série de trapézios de altura 2d.

$$S = d \times \left(2 \times \sum_{i=1}^{n-1} y_i + \frac{(y_o + y_n) - (y_1 + y_{n-1})}{4}\right)$$

onde:
$$\sum yi = y1 + y3 + y5 + ... + yn - 1$$
 (Ímpares)

MÉTODO DE SIMPSON

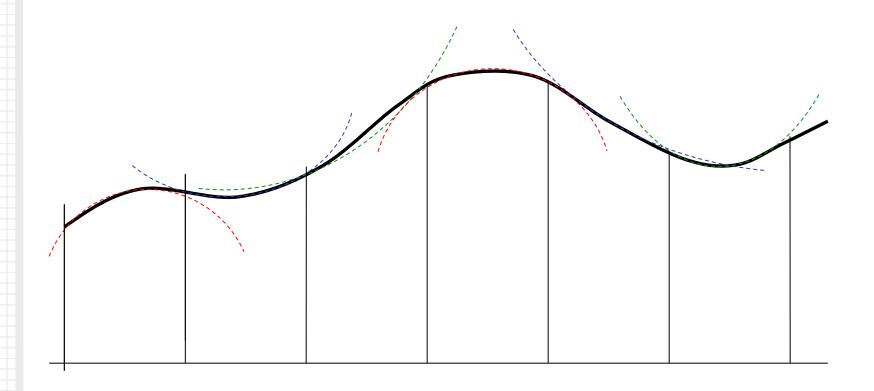
(Áreas que se delimitam por poligonais irregulares)

Para n par, interpreta a curva como uma série de trechos de parábola de base **2d**, e calcula-se a área por integração.

$$S = \frac{d}{3} \cdot \left(y_0 + y_n + 2 \cdot \sum y_p + 4 \cdot \sum y_i \right)$$

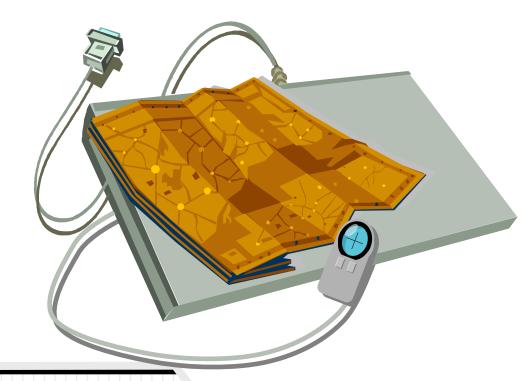
onde:
$$\sum y_p = y_2 + y_4 + y_6 + ... + y_{n-2}$$
 (pares)
 $\sum y_i = y_1 + y_3 + y_5 + ... + y_{n-1}$ (Impares)

MÉTODO DE SIMPSON



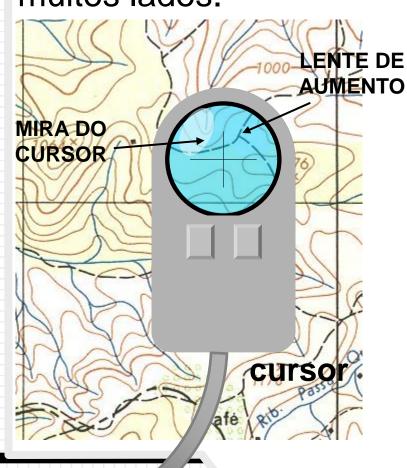
Processos Computacionais

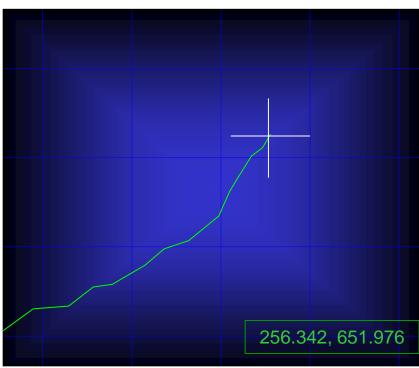
A partir de uma mesa digitalizadora acoplada a um computador que disponha de um editor de desenho (AutoCAD ou similar), fornece-se as coordenadas (x,y) de pelo menos dois pontos. O cursor passa a fornecer coordenadas reais.



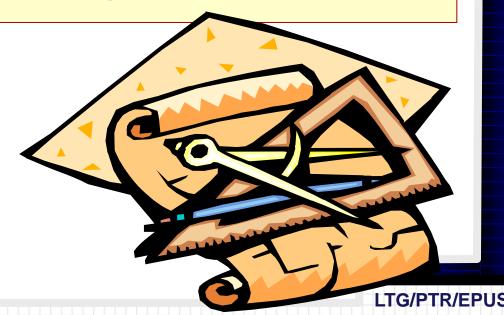
Processos Computacionais

O programa utiliza a **fórmula de Gauss**, já que o contorno da figura é na realidade uma poligonal de muitos lados.



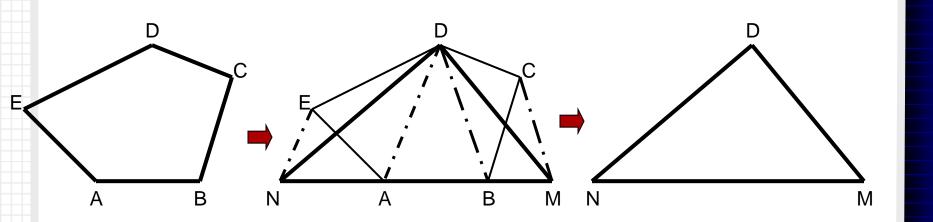


- Transformação Geométrica
- Faixas de Igual Espessura
- Divisão de Quadrículas
- Figuras Geométricas Equivalentes



TRANSFORMAÇÃO GEOMÉTRICA

Consiste em transformar as poligonais regulares em um triângulo de área equivalente.

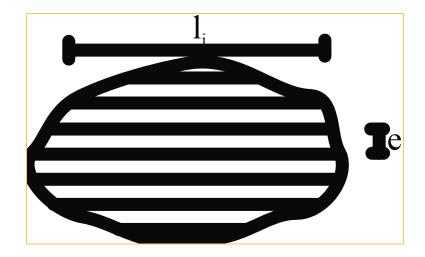


FAIXAS DE IGUAL ESPESSURA

(Áreas que se delimitam por poligonais irregulares)

Consiste em efetuar a divisão da figura em faixas de espessura constante (e), medindo-se as larguras (l_i) dessas faixas.

$$S = e \cdot \sum_{i} l_{i}$$

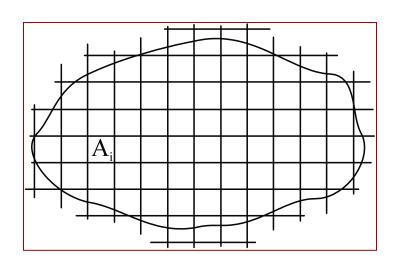


DIVISÃO EM QUADRÍCULAS

(Áreas que se delimitam por poligonais irregulares)

Consiste na contagem direta dos quadrados mutiplicados pela área deles. Pode-se utilizar milimetrado para facilitar a tarefa.

$$S = \sum_{i} A_{i}$$

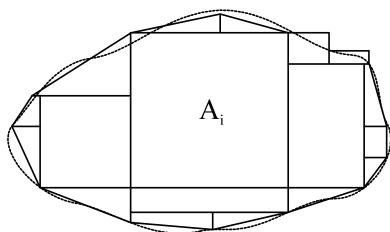


FIGURAS GEOMÉTRICAS EQUIVALENTES

(Áreas que se delimitam por poligonais irregulares)

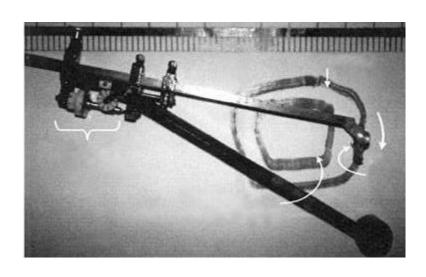
Consiste em dividir a área em figuras geométricas equivalentes: retângulos, triângulos e trapézios, de modo a compensar as áreas que ficaram dentro e fora da figura geométrica.

$$S = \sum_{i} A_{i}$$



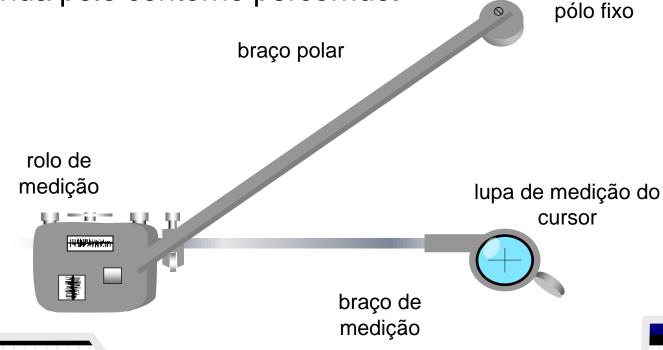
PLANÍMETRO

O planímetro é um equipamento que possui dois braços articulados com um pólo numa extremidade, que deve permanecer fixo, e um cursor na outra, devendo percorrer todo o contorno da área, retornando ao ponto inicial.

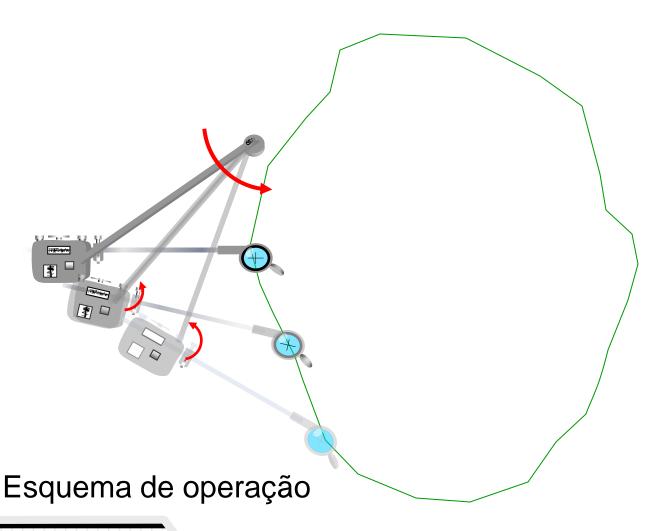


PLANÍMETRO

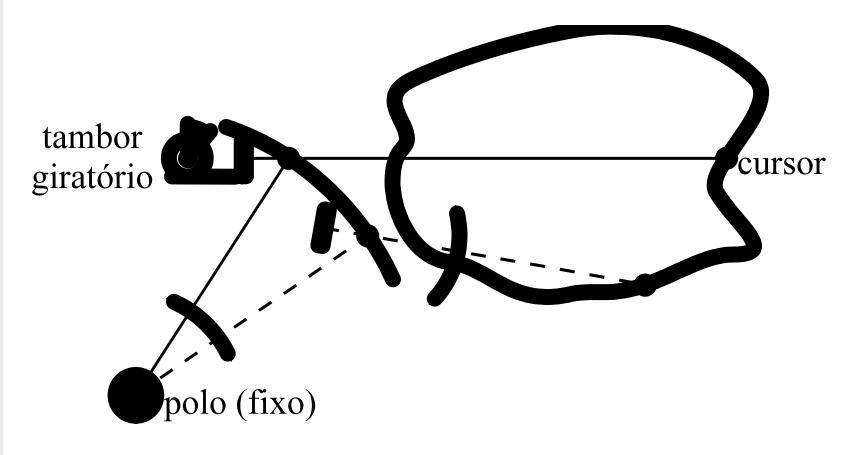
Um tambor giratório no mesmo braço do cursor, situado na extremidade oposta, faz girar um ponteiro sobre o círculo de leitura. Pode-se demonstrar que o giro do tambor, e portanto a diferença de leituras, é proporcional à área envolvida pelo contorno percorrido.



PLANÍMETRO



PLANÍMETRO



Esquema de operação

PLANÍMETRO

S – área

Lf – leitura final

Li – leitura inicial

k – constante do aparelho

$$S = k \cdot (L_f - L_i)$$

Para determinar o valor de k, sugere-se planimetrar n vezes uma área S conhecida.

$$S = d \times \left(\frac{y_o + y_n}{2} + \sum_{i=1}^{n-1} y_i \right)$$