

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 1

Chapter 1
System Models and
Enabling Technologies

Summary: Parallel, distributed, and cloud computing systems advance all works of life. This
chapter assesses the evolutional changes in computing and IT trends in the past 30 years. These
changes are driven by killer applications with variable amounts of workload and datasets at
different periods of time. We study high-performance computing (HPC) and high-throughput
computing (HTC) systems in clusters/MPP, service-oriented architecture (SOA), grids, P2P
networks, and Internet clouds. These systems are distinguished by their architectures, OS
platforms, processing algorithms, communication protocols, security demands, and service
models. This chapter introduces the essential issues in scalability, performance, availability,
security, energy-efficiency, workload outsourcing, datacenter protection, etc. The intent is to pave
the way for our readers to study the details in subsequent chapters.

1.1 Scalable Computing Towards Massive Parallelism 2
1.1.1 High-Performance vs. High-Throughput Computing
1.1.2 Analysis of Top 500 Supercomputers
1.1.3 Killer Applications and Grand Challenges

1.2 Enabling Technologies for Distributed Computing 7
 1.2.1 System Components and Wide-Area Networking

1.2.2 Virtual Machines and Virtualization Middleware
 1.2.3 Trends in Distributed Operating Systems
 1.2.4 Parallel Programming Environments

1.3 Distributed Computing System Models 14
 1.3.1 Clusters of Cooperative Computers
 1.3.2 Grid Computing Infrastructures
 1.3.3 Service-Oriented Architecture (SOA)
 1.3.4 Peer-to-Peer Network Families
 1.3.5 Cloud Computing over The Internet

 1.4 Performance, Security, and Energy- Efficiency 24
 1.4.1 Performance Metrics and System Scalability

 1.4.2 Fault-Tolerance and System Availability
 1.4.3 Network Threats and Data Integrity

 1.4.4 Energy-Efficiency in Distributed Computing

 1.5 References and Homework Problems 34

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 2

1.1 Scalable Computing Towards Massive Parallelism
 Over the past 60 years, the state of computing has gone through a series of platform and
environmental changes. We review below the evolutional changes in machine architecture, operating
system platform, network connectivity, and application workloads. Instead of using a centralized computer
to solve computational problems, a parallel and distributed computing system uses multiple computers to
solve large-scale problems over the Internet. Distributed computing becomes data-intensive and
network-centric. We will identify the killer applications of modern systems that practice parallel and
distributed computing. These large-scale applications have significantly upgraded the quality of life in all
aspects of our civilization.

1.1.1 High-Performance versus High-Throughput Comp uting

 For a long time, high-performance computing (HPC) systems emphasizes the raw speed performance.
The speed of HPC systems increased from Gflops in the early 1990’s to now Pflops in 2010. This
improvement was driven mainly by demands from scientific, engineering, and manufacturing communities
in the past. The speed performance in term of floating-point computing capability on a single system is
facing some challenges by the business computing users. This flops speed measures the time to complete
the execution of a single large computing task, like the Linpack benchmark used in Top-500 ranking. In
reality, the number of users of the Top-500 HPC computers is rather limited to only 10% of all computer
users. Today, majority of computer users are still using desktop computers and servers either locally or in
huge datacenters, when they conduct Internet search and market-driven computing tasks.

 The development of market-oriented high-end computing systems is facing a strategic change from
the HPC paradigm to a high-throughput computing (HTC) paradigm. This HTC paradigm pays more
attention to high-flux multi-computing. The main application of high-flux computing system lies in Internet
searches and web services by millions or more users simultaneously. The performance goal is thus shifted
to measure the high throughput or the number of tasks completed per unit of time. HTC technology needs
to improve not only high speed in batch processing, but also address the acute problem of cost, energy
saving, security, and reliability at many datacenters and enterprise computing centers. This book is
designed to address both HPC and HTC systems, that meet the demands of all computer users.

In the past, electronic computers have gone through five generations of development. Each generation
lasted 10 to 20 years. Adjacent generations overlapped in about 10 years. During 1950-1970, a handful of
mainframe, such as IBM 360 and CDC 6400, were built to satisfy the demand from large business or
government organizations. During 1960–1980, lower-cost minicomputers, like DEC’s PDP 11 and VAX
series, became popular in small business and college campuses. During 1970-1990, personal computers
built with VLSI microprocessors became widespread in use by mass population. During 1980-2000,
massive number of portable computers and pervasive devices appeared in both wired and wireless
applications. Since 1990, we are overwhelmed with using both HPC and HTC systems that are hidden in
Internet clouds. They offer web-scale services to general masses in a digital society.

Levels of Parallelism: Let us first review types of parallelism before we proceed further with the
computing trends. When hardware was bulky and expensive 50 years ago, most computers were designed
in a bit-serial fashion. Bit-level parallelism (BLP) converts bit-serial processing to word-level processing
gradually. We started with 4-bit microprocessors to 8, 16, 32 and 64-bit CPUs over the years. The next
wave of improvement is the instruction-level parallelism (ILP). When we shifted from using processor to
execute single instruction at a time to execute multiple instructions simultaneously, we have practiced ILP
through pipelining, superscalar, VLIW (very-long instruction word), and multithreading in the past 30
years. ILP demands branch prediction, dynamic scheduling, speculation, and higher degree of compiler

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 3

support to make it work efficiently.

 Data-level parallelism (DLP) was made popular through SIMD (single-instruction and multiple-data)
and vector machines using vector or array types of instructions. DLP demands both even more hardware
support and compiler assistance to work properly. Ever since the introduction of multicore processors and
chip multiprocessors (CMP), we explore the task-level parallelism (TLP). A modern processor explores all
of the above parallelism types. The BLP, ILP, and DLP are well supported by advances in hardware and
compilers. However, the TLP is far from being very successful due to the difficulty in programming and
compilation of codes for efficient execution on multicores and CMPs. As we move from parallel processing
to distributed processing, we will see the increase of computing granularity to job-level parallelism (JLP). It
is fair to say the coarse-grain parallelism is built on top of the fine-grain parallelism.

The Age of Internet Computing : The rapid development of the Internet has resulted in billions of people
login online everyday. As a result, supercomputer sites and datacenters have changed from providing high
performance floating-point computing capabilities to concurrently servicing huge number of requests from
billions of users. The development of computing clouds computing and the widely adoption of provided
computing services demand HTC systems which are often built parallel and distributed computing
technologies. We cannot meet the future computing demand by pursuing only the Linpack performance on
a handful of computers. We must build efficient datacenters using low-cost servers, storage systems, and
high-bandwidth networks.

 In the future, both HPC and HTC demand multi-core processors that can handle hundreds or
thousand of computing threads, tens-of-kilo-thread node prototype, and mobile cloud services platform
prototype. Both types of systems emphasize parallelism and distributed computing. Future HPC and HTC
systems must satisfy the huge demand of computing power in terms of throughput, efficiency, scalability,
reliability etc. The term of high efficiency used here means not only speed performance of computing
systems, but also the work efficiency (including the programming efficiency) and the energy efficiency in
term of throughput per watt of energy consumed. To achieve these goals, three key scientific issues must
be addressed:

(1) Efficiency measured in building blocks and execution model to exploit massive
parallelism as in HPC. This may include data access and storage model for HTC and
energy efficiency.

(2) Dependability in terms of reliability and self-management from the chip to system and
application levels. The purpose is to provide high-throughput service with QoS
assurance even under failure conditions.

 (3) Adaptation in programming model which can support billions of job requests over
massive datasets, virtualized cloud resources, and flexible application service model.

The Platform Evolution: The general computing trend is to leverage more and more on shared web
resources over the Internet. As illustrated in Fig.1.1, we see the evolution from two tracks of system
development: distributed computing systems (DCS) and high-performance computing (HPC) systems. On
the HPC side, homogeneous supercomputers (massively parallel processors, MPP) are gradually replaced
by clusters of cooperative computers out of the desire to share computing resources. The cluster is often a
collection of computer nodes that are physically connected in close range to each other. Clusters, MPP, and
Grid systems are studied in Chapters 3 and 4. On the DCS side, Peer-to-Peer (P2P) networks appeared for
distributed file sharing and content delivery applications. A P2P system is built over many client machines
to be studied in Chapter 5. Peer machines are globally distributed in nature. Both P2P and cloud computing

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 4

and web service platforms emphasize more on HTC rather than HPC.

 Figure 1.1 Evolutional trend towards web-scale di stributed high-throughput computing and
 integrated web services to s atisfy heterogeneous applications.

Distributed Computing Families: Ever since mid 90’s, technologies for building peer-to-peer (P2P)
networks and network of clusters were consolidated into many national projects to establish wide-area
computing infrastructures, known as computational grids or data grids. We will study Grid computing
technology in Chapter 4. More recently, there is a surge of interest to explore Internet cloud resources for
web-scale supercomputing. Internet clouds are resulted from moving desktop computing to a
service-oriented computing using server clusters and huge databases at datacenters. This chapter introduces
the basics of various parallel and distributed families. Grids and clouds are disparity systems with great
emphases on resource sharing in hardware, software, and datasets.

 Design theory, enabling technologies, and case studies of these massively distributed systems are
treated in this book. Massively distributed systems are intended to exploit a high degree of parallelism or
concurrency among many machines. In 2009, the largest cluster ever built has 224,162 processor cores in
Cray XT-5 system. The largest computational grid connects any where from ten to hundreds of server
clusters. A typical P2P network may involve millions of client machines, simultaneously. Experimental
cloud computing clusters have been built with thousands of processing nodes. We devote the material min
Chapters 7 and 8 to cover cloud computing Case studies of HPC system as cluster and grids and HTC
systems as P2P networks and datacenter-based cloud platforms will be examined in Chapter 9.

1.1.2 Analysis of Top-500 Supercomputers

 Figure 1.2 plots the measured performance of the Top-500 fastest computers from 1993 to 2009. The
Y-axis is scaled by the sustained speed performance in terms of GFlops, Tfops, and PFlops. The middle
curve plots the performance of the No.1 fastest computers recorded over the years. The peak performance
increases from 58.7 GFlops to 1.76 PFlops in 16 years. The bottom curve corresponds to the number 500

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 5

computer speed at each year. It increases from 0.42 GFlops to 20 Tflops in 16 years. The top curve plots the
total sum of all 500 fastest computer speed ovet the same period. These plots give a fairly good
performance projection for years to come. For example, 1 PFlops was achieved by IBM Roadrunner in June
of 2007. It is interesting to observe that the total sum increases almost linearly over the years.

Figure 1.2 The Top-500 supercomputer performance from 1993 to 2009

(Courtesy of Top 500 Organization, 2009)

 It is interesting to observe in Fig.1.3 the architectural evolution of the Top-500 supercomputers
over the years. In 1993, 250 systems assumed the SMP (symmetric multiprossor) architecture shown in
yellow area. Most SMPs are built with shared memory and shared I/O devices. The word “symmetric”
refers to the fact all processors are equally capable to execute the supervisory and/or the application codes.
There were 120 MPP systems (in dark orange area) built then. The SIMD (single instruction stream over
multiple data streams) machines (some called array processors) and uniprocessor systems disappeared in
1997, while the cluster (light orange) architecture appeared in 1999, The clustered systems grow rapidly
from a few to 375 systems out of 500 by 2005. On the other hand, the SMP architecture disappeared
gradually to zero by 2002. Today, the dominating architecture classes in the Top-500 list are the clusters,
MPP, and constellations (pink). More than 85% of the Top-500 computers used in 2010 adopted the
cluster configurations and the remaining 15% chosen the MPP (massively parallel processor) architecture.

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 6

Figure 1.3 Architectural evolution of the Top-500 supercomputers from 1993 to 2009.
(Courtesy of Top 500 Organization, 2009)

 In Table 1.1, we summarize the key architecture features, sustained Linpack benchmark performance ,
and power assumption of five top 5 supercomputers reported in November 2009. We will present the
details of the top two systems: Cray Jaguar and IBM Roadrunner as case studies in Chapter 8. These two
machines have exceeded the Pflops performance. The power consumptions of these systems are enormous
including the cooling electricity. This has triggered the increasing demand of green information technology
in recent years. These state of the art systems will be used far beyond 2010 when this book was written.

Table 1.1 Top Five Supercomputers Evaluated in Nov . 2009

System Rank
and Name

Architecture Description (Core size,
Processor, GHz, OS, and Topology)

Sustained
Speed

Power/
system

1. Jaguar at Oak
Ridge Nat’l Lab,
US

Cray XT-5HE: An MPP built with 224,162 cores in 2.6 GHz
Opteron 6-core processors, interconnected by a 3-D torus
network

1.759
PFlops

6.95 MW

2. Roadrunner
at DOE/NNSA/
LANL, US

IBM BladeCenter QS22/LS21 cluster of 122,400 cores in
12,960 3.2 GHz POWER XCell 8i processors and 6,480 AMD
1.8 GHz Operon dual-core processors, running Linux and
interconnected by an InfiniBand network

1.042
PFops

2.35 MW

3. Kraken at NICS,
University of
Tennessee, US

Crat XT-5-HE : An MPP built with 98,928 cores of 2.6 GHz
Opteron 6-core processors interconnected by a 3-D torus
network

831
TFops

3.09 MW

4. JUGENE at the
FZJ in Germany

IBM BlueGene/P solution built with 294,912 processors:
PowerPC core, 4-way SMP nodes, and 144 TB of memory in
72 racks, interconnected by a 3-D torus network

825.5
TFlops

2.27 MW

5. Tianhe-1 at NSC/
NUDT in China

NUST TH-1 cluster of 71,680 cores in Xeon processors and
ATI Radeon GPUs, interconnected by an InfiniBand network

563
TFlops

1.48 MW

1.1.3 Killer Applications and Grand Challenges

High-performance computing systems offer transparency in many application aspects. For example,

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 7

data access, resource allocation, process location, concurrency in execution, job replication, and failure
recovery should be made transparent to both users and system management. In Table 1.2, we identify below
a few key applications that have driven the development of parallel and distributed systems in recent years.
These applications spread across many important domains in our society: science, engineering, business,
education, health care, traffic control, Internet and web services, military, and government applications.
Almost all applications demand computing economics, web-scale data collection, system reliability, and
scalable performance.

For example, distributed transaction processing is often practiced in banking and finance industry.
Distributed banking systems must be designed to scale and tolerate faults with the growing demands.
Transactions represent 90% of the existing market for reliable banking systems. We have to deal with
multiple database servers in distributed transactions. How to maintain the consistency of replicated
transaction records is crucial in real-time banking services. Other complications include short of software
support, network saturation, and security threats in these applications. We will study some of the killer
applications and the software standards needed in Chapters 8 and 9.

Table 1.2 Killer Applications of HPC and HTC Syst ems

Domain Specific Applications

Scientific simulations, genomic analysis, etc. Science and
Engineering

Earthquake prediction, global warming, weather forecasting, etc.

Telecommunication, content delivery, e-commerce, etc.

Banking, stock exchanges, transaction processing, etc.

Air traffic control , electric power Grids, distance education, etc.

Business, Education,
service industry,
and Health Care

Health care, hospital automation, telemedicine, etc.

Internet search, datacenters, decision-make systems, etc.

Traffic monitory , worm containment, cyber security, etc.

Internet and
Web Services

and Government
Digital government, on-line tax return, social networking, etc.

Mission-Critical
Applications

Military commend, control, intelligent systems,
crisis management, etc.

1.2 Enabling Technologies for Distributed Parallelism
This section reviews hardware, software and network technologies for distributed computing system

design and applications. Viable approaches to build distributed operating systems are assessed for handling
massive parallelism in distributed environment.

1.2.1 System Components and Wide-Area Networking

In this section, we assess the growth of component and network technologies in building HPC or HTC
systems in recent years. In Fig.1,4, processor speed is measured by MIPS (million instructions per second).

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 8

The network bandwidth is counted by Mbps or Gbps (Mega or Giga bits per second). The unit GE refers to
1 Gbps Ethernet bandwidth.

Advances in Processors: The upper curve in Fig.1.4 plots the processor speed growth in modern micro
processors or in chip multiprocessors (CMP). We see a growth from 1 MIPS of VAX 780 in 1978 to 1,800
MIPS of Intel Pentium 4 in 2002, and to 22,000 MIPS peak for Sun Niagara 2 in 2008. By Moore’s law,
the processor speed is doubled in every 18 months. This doubling effect was pretty accurate in the past 30
years. The clock rate for these processors increases from 12 MHz in Intel 286 to 4 GHz in Pentium 4 in 30
years. However, the clock rate has stopped increasingly due to the need to reduce power consumption. The
ILP (instruction-level parallelism) is highly exploited in modern processors. ILP mechanisms include
multiple-issue superscalar architecture, dynamic branch prediction, and speculative execution, etc.
These ILP techniques are all hardware and compiler-supported. In addition, DLP (data-level parallelism)
and TLP (thread-level parallelism) are also highly explored in today’s processors.

 Many processors are now upgraded to have multi-core and multithreaded micro-architectures. The
architecture of a typical multicore processor is shown in Fig.1.5. Each core is essentially a processor with
its own private cache (L1 cache). Multiple cores are housed in the same chip with a L2 cache that is shared
by all cores. In the future, multiple CMPs could be built on the same CPU chip with even the L3 cache on
chip. Multicore and multithreaded processors are now built in many high-end processors like Intel Xeon,
Montecito, Sun Niagara, IBM Power 6 and X cell processors. Each core could be also multithreaded. For
example, the Niagara II is built with 8 cores with 8 threads handled by each core. This implies that the
maximum ILP and TLP that can be exploited in Niagaris equal to 64 (= 8 x 8).

0.1

1

10

100

1000

10000

100000

1978 1983 1988 1993 1998 2003 2008

Year

C
P

U
 S

p
e

e
d

(M
IP

S
)

10

100

1000

10000

100000

1000000

N
e

tw
or

k
B

a
nd

w
id

th
 (

M
bp

s)

Processor Speed

Network Bandwidth

Fast Ethernet

Gigabit
Ethernet

Ethernet

10 GE

40 GE

Vax 11/780

Intel 286

Sun Niagara 2

Intel Pentium 4

Intel Pentium III

Intel Pentium Pro

Motorola 68030

Motorola 68060

Intel Core 2 QX9770

 Figure 1.4 Improvement of pro cessor and network technologies over 30 years.

Multicore Architecture: With multiple of the multicores in Fig.1.5 buily on even larger chip, the number
of working cores on the same CPU chip could reach hundreds in the next few years. Both IA-32 and IA-64
instruction set architectures are built in commercial processors today. Now, x-86 processors has been
extended to serve HPC and HTC in some high-end server processors. Many RISC processors are now
replaced by multicore x-86 processors in the Top-500 supercomputer systems. The trend is that x-86

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 9

upgrades will dominate in datacenters and supercomputers. Graphic processing units (GPU) appeared in
HPC systems. In the future, Exa-scale (EFlops or 1018 Flops) systems could be built with a large number of
multi-core CPUs and GPUs. In 2009, the No.1 supercomputer in the Top-500 list (a Cray XT-5 named
Jaguar) has already with almost over 30 thousands AMD 6-core Opteron processors resulting a total of
224,162 cores in the entire HPC system.

 Figure 1.5 The schematic of a modern multicore processor using a hierarchy of caches

Wide-Area Networking : The lower curve in Fig.1.4 plots the rapid growth of Ethernet bandwidth from
10 Mbps in 1979 to 1 Gbps in 1999 and 40 GE in 2007. It was speculated that 1 Tbps network links will be
available by 2012. According to Berman, Fox, and Hey [3], we expect a 1,000, 1,000, 100, 10, and 1 Gbps
network links, respectively, at international, national, organization, optical desktop, and copper desktop
connections in 2006. An increase factor of 2 per year on network performance was reported, which is faster
than Moore’s law on CPU speed doubling in every 18 months. The implication is that more computers will
be used concurrently in the future. High-bandwidth networking increases the capability of building
massively distributed systems. The IDC 2010 report has predicted that both InfiniBand and Ethernet will
be the two major interconnect choices in the HPC arena.

Memory, SSD, and Disk Arrays: Figure 1.12 plots the growth of DRAM chip capacity from 16 Kb in 1976
to 16 Gb in 2008. This shows that the memory chips get 4 times increase in capacity every 3 years. The
memory access time did not improve much in the past. In fact, the memory wall problem is getting worse as
the processor gets faster. For hard drives, the capacity increases from 260 MB in 250 GB in 2004. The
Seagate Barracuda 7200.11 hard drive reached 1.5 TB in 2008. The increase is about 10 times in capacity
every 8 years. The capacity increase of disk arrays is even greater in the years to come. On the other hand,
faster processor speed and larger memory capacity result in wider gap between processors and memory.
The memory wall becomes even a more serious problem than before. Memory wall still limits the
scalability of multi-core processors in terms of performance.

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 10

0.01

0.1

1

10

100

1000

10000

100000

1978 1983 1988 1993 1998 2003 2008

Year

M
e
m

o
ry

 C
h
ip

 (
M

b
it)

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

D
is

k
C

a
p
a
ci

ty
 (
G

B
)

Memory Chip
Disk Capacity

64Kb
256Kb

1Mb

4Mb

16Mb

64Mb

256Mb

1Gb

16Gb

Morrow Designs
DISCUS M26

Maxtor
DiamondMax 2160

WDC WD1200JB

Seagate
Barracuda 7200

Seagate
ST43400N

Iomega

 Figure 1.6 Improvement of memory and disk technologies over 30 years

 The rapid growth of flash memory and solid-state drive (SSD) also impacts the future of HPC and
HTC systems. The mortality rate of SSD is not bad at all. A typical SSD can handle 300,000 -1,000,000
write cycles per block. So SSD can last for several years, even they have heavy write usage. Flash and SSD
will demonstrate impressive speedups in many applications. For example, the Apple Macbook pro uses 128
GB solid-state hard drive, which is only $150 more than a 500 GB 7200 RPM SATA drive. However to get
256 GB or 512 GB SSD drive, the cost may go up significantly. At present, SSD drives are still too
expensive to replace stable disk arrays in the storage market. Eventually, power consumption, cooling and
packaging will limit the large system development. The power increases linearly with respect to the clock
frequency and quadratically with respect to the voltage applied on chips. We cannot increase the clock rate
indefinitely. Lower the voltage supply is very much in demand.

1.2.2 Virtual Machines and Virtualization Middleware

 A conventional computer has a single OS image. This offers a rigid architecture that tightly couples
application software to a specific hardware platform. Some software running well on one machine may not
be executable on anther platform with a different instruction set under a fixed OS management. Virtual
machines (VM) offer novel solutions to underutilized resources, application inflexibility, software
manageability, and security concerns in existing physical machines.

Virtual Machines: The concept of virtual machines is illustrated in Fig.1.7. The host machine is equipped
with the physical hardware shown at the bottom. For example, a desktop with x-86 architecture running its
installed Windows OS as shown in Fig.1.7(a). The VM can be provisioned to any hardware system. The
VM is built with virtual resources managed by a guest OS to run a specific application. Between the VMs
and the host platform, we need to deploy a middleware layer called a virtual machine monitor (VMM) .
Figure 1.7(b) shows a native VM installed with the use a VMM called a hypervisor at the privileged mode.
For example, the hardware has a x-86 architecture running the Windows system. The guest OS could be a
Linux system and the hypervisor is the XEN system developed at Cambridge University. This hypervisor
approach is also called bare-metal VM, because the hypervisor handles the bare hardware (CPU, memory,
and I/O) directly.

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 11

 Another architecture is the host VM shown in Fig.1.7(c). Here the VMM runs with a non-privileged
mode. The host OS need not be modified. The VM can be also implemented with a dual mode as shown in
Fig.1.7(d). Part of VMM runs at the user level and another portion runs at the supervisor level. In this case,
the host OS may have to be modified to some extent. Multiple VMs can be ported to one given hardware
system, to support the virtualization process. The VM approach offers hardware-independence of the OS
and applications. The user application and its dedicated OS could be bundled together as a virtual appliance,
that can be easily ported on various hardware platforms.

 (a) Physical Machine (b) Native VM (c) Hosted VM (d) Dual-mode V M

Figure 1.7 Three ways of constructing a virtual machine (VM) embedded in a physical
machine.The VM could run on an OS different from th at of the host computer.

Virtualization Operations: The VMM provides the VM abstraction to the guest OS. With full
virtualization, the VMM exports a VM abstraction identical to the physical machine; so that a standard OS
such as Windows 2000 or Linux can run just as they would on the physical hardware. Low-level VMM
operations are indicated by Mendel Rosenblum [29] and illustrated in Fig.1..8. First, the VMs can be
multiplexed between hardware machines as shown in Fig.1..8(a). Second, a VM can be suspended and
stored in a stable storage as shown in Fig.1..8 (b). Third, a suspended VM can be resumed or provisioned to
a new hardware platform in Fig.1.8(c). Finally, a VM can be migrated from one hardware platform to
another platform as shown in Fig.1.8 (d).

These VM operations enable a virtual machine to be provisioned to any available hardware platform.
They make it flexible to port distributed application executions. Furthermore the VM approach will
significantly enhance the utilization of server resources. Multiple server functions can be consolidated on
the same hardware platform to achieve higher system efficiency. This will eliminate server sprawl via
deployment of systems as VMs. These VMs move transparency to the shared hardware. According to a
claim by VMWare, the server utilization could be increased from current 5-15% to 60-80%.

 Hardware

 Operating System

(OS)

 Appls

 Hardware

Guest OS

 Guest Apps

Hardware

 Host OS

 Guest Apps

Hardware

 Guest OS

 Guest Apps

 VMM
(Hypervisor)

VMM)

Host

OS

VMM

VMM Privileged
mode

Nonprivileged
mode

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 12

 (a) Multiplexing (b) Suspension (Storage)

 (c) Provision (Resume) (d) Life migratio n

Figure 1.8 Virtual machine multiplexing, suspensi on, provision, and migration in a distributed
computing environment, (Courtesy of M. Rosenblum, Keynote address, ACM ASPLOS 2006 [29])

Virtual Infrastructures: This is very much needed in distributed computing. Physical resources for
compute, storage, and networking at the bottom are mapped to the needy applications embedded in various
VMs at the top. Hardware and software are then separated. Virtual Infrastructure is what connects resources
to distributed applications. It is a dynamic mapping of the system resources to specific applications. The
result is decreased costs and increased efficiencies and responsiveness. Virtualization for server
consolidation and containment is a good example. We will study virtual machines and virtualization
support in Chapter 2. Virtualization support for clusters, grids and clouds are studied in Chapters 3, 4, and
6, respectively.

1.2.3 Trends in Distributed Operating Systems

 The computers in most distributed systems are loosely coupled. Thus the distributed system has
inherently multiple system images. This is mainly due to the fact that all node machines run with an
independent operating system. To promote resource sharing and fast communications among node
machines, we desire to have a distributed OS that manages all resources coherently and efficiently. Such a
system is most likely to be a closed system. They rely on message passing and remote procedure call (RPC)
for internode communications. It should be pointed out that a distributed OS is crucial to upgrade the
performance, efficiency, and application flexibility of distributed applications. A distributed system could
not face the shortcomings in restricted applications and lack of software and security support, until a
well-built distributed OSs are in widespread use.

Distributed Operating Systems : Tanenbaum [26] classifies three approaches to distributing the resource
management functions in a distributed computer system. The first approach is to build a network OS over a

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 13

large number of heterogeneous OS platforms. Such a network OS offers the lowest transparency to users.
Network OS is essentially a distributed file system. Independent computers rely on file sharing as a means
of communication. The second approach is to develop middleware to offer limited degree of resource
sharing like what was build for clustered systems (Section 1.2.1). The third approach is to develop a
distributed OS to achieve higher use or system transparency.

Amoeba vs. DCE: Table 1.3 summarizes the functionalities of a distributed OS Amoeba and a
middleware-based DCE developed in the last two decades. To balance the resource management workload,
the functionalities of such a DOS should be distributed to any available server. In this sense, the
conventional OS runs only on a centralized platform. With the distribution of OS services, the DOS design
should take either a light-weight microkernel approach like the Amoeba [27] or extend an existing OS like
the DCE [5] by extending UNIX. The trend is to free up users from most resource management duties. We
need new web-based operating systems to support virtualization of resources in distributed environments.
We shall study distributed OS installed in distributed systems in subsequent chapters.

Table 1.3 Feature Comparison of Two Distributed O perating Systems

Operating System
Functionality

 AMOEBA developed at Vrije
University, Amsterdam [32]

DCE as OSF/1 by Open
Software Foundation [5]

History and Current
System Status

Developed at VU and tested in European
Community, version 5.2 released in 1995,
written in C.

Release as OSF/1 product, DEC was built
as user extension on top of an existing OS
like UNIX, VMS, Windows, OS/2, etc.

Distributed OS
Architecture

Microkernel-based, location transparent,
using many servers to handle files,
directory, replication, run, boot, and
TCP/IP services

This is a middleware-OS providing a
platform for running distributed applications
The system supports RPC, security, and
other DCE Threads.

Amoeba Microkernel
or DEC Packages

A special microkernel handles low-level
process , memory, I/O, and
communication functions

DCE packages handle file, time, directory,
and security services, RPC, authentication
at user space.

Communication
Mechanisms

Use a network-layer FLIP protocol and
RPC to implement point-to-point and
group communications

DCE RPC supports authenticated
communication and other security services
in user programs

1.2.4 Parallel and Distributed Programming Environments

 Four programming models are specifically introduced below for distributed computing with
expected scalable performance and application flexibility. We summarize four distributed programming
models in Table 1.4. Some software toolsets developed in recent years are also identified here. MPI is the
most popular programming model for message-passing systems. Google’s MapReduce and BigTable are
for effective use of resources from Internet clouds and data centers. The service clouds demand extending
Hadoop, EC2, and S3 to facilitate distributed computing applications over distributed storage systems.

Message-Passing Interface (MPI) is the primary programming standard used to develop parallel programs
to run on a distributed system. MPI is essentially a library of subprograms that can be called from C or
Fortran to write parallel programs running on a distributed system. We need to embody clusters, Grid and
P2P systems with upgraded web services and utility computing applications. Besides MPI, distributed
programming can be also supported with low-level primitives like PVM (parallel virtual machine). Both
MPI and PVM are described in Hwang and Xu [20].

MapReduce: This is a web-programming model for scalable data processing on large clusters over large

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 14

datasets [11]. The model is applied mainly in web-scale search and cloud computing applications. The user
specifies a map function to generate a set of intermediate key/value pairs. Then the user applies a reduce
function to merge all intermediate values with the same intermediate key. MapReduce is highly scalable to
explore high degree of parallelism at job levels. A typical MapReduce computation process many handle
Terabybe of data on tens of thousand or more client machines. Hundreds of MapReduce programs are likely
to be executed, simultaneously. Thousands of MapReduce jobs are executed on Google’s clusters everyday.

Table 1.4 Parallel and Distributed Programming Mo dels and Toolsets

Model Objectives and Web Link Attractive Features Implemented

MPI

Message-Passing Interface is a library of
subprograms that can be called from C or
Fortran to write parallel programs running on
distributed computer systems [2, 21]

Specify synchronous or asynchronous point-to-
point and collective communication commands
and I/O operations in user programs for
message-passing execution

MapReduce

A web programming model for scalable data
processing on large cluster over large
datasets, applied in web search operations
[12]

A map function to generate a set of
intermediate key/value pairs. A Reduce
function to merge all intermediate values with
the same key

Hadoop

A software platform to write and run large
user applications on vas datasets in business
and advertising applications.
hhttttpp::////hhaaddoooopp..aappaacchhee..oorrgg//ccoorree//

Hadoop is scalable, economical, efficient and
reliable in providing users with easy access of
commercial clusters

Hadoop Library : Hadoop offers a software platform that was originally developed by a Yahoo group. The
package enable users write and run applications over vast distributed data. Attractive features include: (1)
Scalability: Hadoop can easily scale to store and process petabytes of data in the Web space. (2) Economy:
An open-source MapReduce minimizes the overheads in task spawning and massive data communication,
(3) Efficiency: Processing data with high-degree of parallelism across a large number of commodity nodes
and (4) Reliability: This refers to automatically keeping multiple data copies to facilitate redeployment of
computing tasks upon unexpected system failures.

Open Grid Service Architecture (OGSA): The development of grid infrastructure is driven by pushing
need in large-scale distributed computing applications, These applications must count on a high degree of
resource and data sharing. Table 1..5 introduces the OGSA (Open Grid Service Architecture) as a common
standard for general public use of grid services. Genesis II is a its realization. The key features covers
distributed execution environment, PKI (Public Key Infrastructure) services using local certificate
authority (CA), trust management and security policies in grid computing.

Globus Toolkits and Extensions: Globus is middleware library jointly developed by the US Argonne
National Laboratory and USC Information Science Institute during the past decade. This library
implemented some of the OGSA standards for resource discovery, allocation, and security enforcement in a
Grid environment. The Globus packages support multi-site mutual authentication with PKI certificates.
Globus has gone through several versions released subsequently. The current version GT 4 is in use in 2008.
Sun SGE and IBM Grid Toolbox: Both Sun Microsystems and IBM have extended Globus for business
applications. We will cover grid computing principles and technology in Chapter 5 and grid applications in
Chapter 9.

Table 1.5 Grid Standards and Toolkits for scientif ic and Engineering Applications

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 15

Grid
Standards

Major Grid Service
Functionalities

Key Features and Security
Infrastructure

OGSA
Standard

Open Grid Service Architecture
offers common grid service
standards for general public use

Support heterogeneous distributed environment,
bridging CA, multiple trusted intermediaries,
dynamic policies, multiple security mechanisms, etc.

Globus
Toolkits

Resource allocation, Globus
security infrastructure (GSI), and
generic security service API

Sign-in multi-site authentication with PKI, Kerberos,
SSL, Proxy, delegation, and GSS API for message
integrity and confidentiality

Sun Grid
Engine (SGE)

Supporting local grids and clusters
in enterprise or campus Intranet grid
applications

Using reserved ports, Kerberos, DCE, SSL, and
authentication in classified hosts at various trust
levels and resource access restrictions

IBM Grid
Toolbox

AIX and Linux grids built on top
of Globus Toolkit, autonomic
computing, Replica services

Using simple CA, granting access, grid service
(ReGS), supporting Grid application framework for
Java (GAF4J), GridMap in IBM IntraGrid for
security update, etc.

1.3 Distributed Computing System Models
 A massively parallel and distributed computing system or in short a massive system is built over a large
number of autonomous computer nodes. These node machines are interconnected by system-area networks
(SAN), local-are networks (LAN), or wide-area networks (WAN) in a hierarchical manner. By today’s
networking technology, a few LAN switches can easily connect hundreds of machines as a working cluster.
A WAN can connect many local clusters to form a very-large cluster of clusters. In this sense, one can build
a massive system to have millions of computers connected to edge networks in various Internet domains.

System Classification: Massive systems are considered highly scalable to reach a web-scale connectivity,
either physically or logically. In Table 1.6, we classify massive systems into four classes: namely the
clusters, P2P networks, computing grids, and Internet clouds over huge datacenters. In terms of node
number, these four system classes may involve hundreds, thousands, or even millions of computers as
participating nodes. These machines work collectively, cooperatively, or collaboratively at various levels.
The table entries characterize these four system classes in various technical and application aspects.

 From the application prospective, clusters are most popular in supercomputing applications. In 2009,
417 out of the top-500 supercomputers were built with a cluster architecture. It is fair to say that clusters
have laid the necessary foundation to build large-scale grids and clouds. P2P networks appeal most to
business applications. However, the content industry was reluctant to accept P2P technology for lack of
copyright protection in ad hoc networks. Many national grids built in the past decade were underutilized for
lack of reliable middleware or well-coded applications. Potential advantages of cloud computing lie in its
low cost and simplicity to both providers and users.

New Challenges:Utility computing focuses on a business model, by which customers receive computing
resources from a paid service provider. All grid/cloud platforms are regarded as utility service providers.
However, cloud computing offers a broader concept than utility computing. Distributed cloud applications
run on any available servers in some edge networks. Major technological challenges include all aspects of
computer science and engineering. For example, we need new network-efficient processors, scalable
memory and storage schemes, distributed OS, middleware for machine virtualization, new programming
model, effective resource management, and application program development in distributed systems that
explore massive parallelism at all processing levels.

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 16

Table 1.6 Classification of Distributed Parallel C omputing Systems

Functionality,
Applications

Multicomputer
Clusters [11, 21]

Peer-to-Peer
Networks [13, 33]

Data/Computational
Grids [4, 14, 33]

Cloud Platforms
[7, 8, 22, 31]

Architecture,
Network

Connectivity
and Size

Network of compute
nodes interconnected by
SAN, LAN, or WAN,
hierarchically

Flexible network of
client machines
logically connected by
an overlay network

Heterogeneous cluster of
clusters connected by
high-speed network links
over selected resource
sites.

Virtualized cluster of
servers over many
datacenters via
service-level
agreement

Control and
Resources

Management

Homogeneous nodes
with distributed control,
running Unix or Linux

Autonomous client
nodes, free in and out,
with distributed self-
organization

Centralized control,
server oriented with
authenticated security,
and static resources
management

Dynamic resource
provisioning of servers,
storage, and networks
over massive datasets

Applications
and network-

centric
services

High-performance
computing, search
engines, and web
services, etc.

Most appealing to
business file sharing,
content delivery, and
social networking

Distributed super-
computing, global
problem solving, and
datacenter services

Upgraded web search,
utility computing, and
outsourced computing
services

Representative
Operational

Systems

Google search engine,
SunBlade, IBM
BlueGene,
Road Runner,
Cray XT4, etc.

Gnutella, eMule,
BitTorrent, Napster,
Papestry, KaZaA,
Skype, JXTA,
and .NET

TeraGrid, GriPhyN,
UK EGEE, D-Grid,
ChinaGrid, IBM
IntraGrid, etc.

Google App Engine,
IBM Bluecloud,
Amazon Web
Service(AWS), and
Microsoft Azure,

1.3.1 Clusters of Cooperative Computers

 A computing cluster is built by a collection of interconnected stand-alone computers, which work
cooperatively together as a single integrated computing resource. To handle heavy workload with large
datasets, clustered computer systems have demonstrated impressive results in the past.

Cluster Architecture: Figure 1.9 shows the architecture of a typical sever cluster built around a
low-latency and high-bandwidth interconnection network. This network can be as simple as a SAN (e.g.
Myrinet) or a LAN (e.g. Ethernet). To build a larger cluster with more nodes, the IN can be built with
multiple levels of Gigabit Ethernet, Myrinet, or InfiniBand switches. Through hierarchical construction
using SAN, LAN, or WAN, one can build scalable clusters with increasing number of nodes. The whole
cluster is connected to the Internet via a VPN gateway. The gateway IP address could be used to locate the
cluster over the cyberspace.

Single-System Image: The system image of a computer is decided by the way the OS manages the shared
cluster resources. Most clusters have loosely-coupled node computers. All resources of a server node is
managed by its own OS. Thus, most clusters have multiple system images coexisting simultaneously. Greg
Pfister [27] has indicated that an ideal cluster should merge multiple system images into a single-system
image (SSI) at various operational levels. We need an idealized cluster operating system or some
middlware to support SSI at various levels, including the sharing of all CPUs, memories, and I/O across all
computer nodes attached to the cluster.

System-Area Network, or
Local-Area Networks, or
Storage-Area Network
 (Ethernet, Myrinet,
 InfiniBand, etc.)

. . . .

Servers

S1

S2
Sn

Gateway

The Internet

Sn-1 A Cluster

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 17

Figure 1.9 A cluster of servers (S 1, S2,…,Sn) interconnected by a high-bandwidth system-area or
local-area network with shared I/O devices and disk arrays. The cluster acts as a single computing
node attached to the Internet throught a gateway.

 A single system image is the illusion, created by software or hardware that presents a collection of
resources as an integrated powerful resource. SSI makes the cluster appear like a single machine to the
user, applications, and network. A cluster with multiple system images is nothing but a collection of
independent computers. Figure 1.10 shows the hardware and software architecture of a typical cluster
system. Each node computer has its own operating system. On top of all operating systems, we deploy
some two layers of middleware at the user space to support the high availability and some SSI features for
shared resources or fast MPI communications.

Figure 1.10 The architecture of a working clust er with full hardware, software, anAd
middleware support for availability and single syst em image.

 For example, since memory modules are distributed at different server nodes, they are managed
independently over disjoint address spaces. This implies that the cluster has multiple images at the
memory-reference level. On the other hand, we may want all distributed memories to be shared by all
servers by forming a distributed shared memory (DSM) with a single address space. A DSM cluster thus
has a single-system image (SSI) at the memory-sharing level. Cluster explores data parallelism at the job
level with high system availability.

Cluster Design Issues: Unfortunately, a cluster-wide OS for complete resource sharing is not available yet.
Middleware or OS extensions were developed at the user space to achieve SSI at selected functional

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 18

levels.Without the middleware, the cluster nodes cannot work together effectively to achieve cooperative
computing. The software environments and applications must rely on the middleware to achieve high
performance. The cluster benefits come from scalable performance, efficient message-passing, high system
availability, seamless fault tolerance, and cluster-wide job management as summarized in Table 1.7.
Clusters and MPP designs are treated in Chapter 3.

Table 1.7 Critical Cluster Design Issues and Feas ible Implementations

Features Functional Characterization Feasible Imple mentations

Availability
Support

Hardware and software support for
sustained high availability in cluster

Failover, failback, checkpointing, roll back
recovery, non-stop OS, etc

Hardware
Fault-Tolerance

Automated failure management to
eliminate all single points of failure

Component redundancy, hot swapping,
RAID, and multiple power supplies, etc.

Single-System
Image (SSI)

Achieving SSI at functional level with
hardware and software support,
middleware, or OS extensions.

Hardware mechanisms or middleware
support to achieve distributed shared
memory (DSM) at coherent cache level.

Efficient
Communications

To reduce message-passing system
overhead and hide latencies

Fast message passing , active messages,
enhanced MPI library, etc.

 Cluster-wide Job
Management

Use a global job management system with
better scheduling and monitory

Apply single-job management systems such
as LSF, Codine, etc

Dynamic Load
Balancing

Balance the workload of all processing
nodes along with failure recovery

Workload monitory, process migration, job
replication and gang scheduling, etc.

Scalability and
Programmability

Adding more servers to a cluster or adding
more clusters to a Grid as the workload or
data set increases

Use scalable interconnect, performance
monitory, distributed execution environment,
and better software tools

1.3.2 Grid Computing Infrastructures

 In 30 years, we have experienced a natural growth path from Internet to web and grid computing
services. Internet service such as the Telnet command enables connection from one computer to a remote
computer. The Web service like http protocol enables remote access of remote web pages. Grid computing
is envisioned to allow close interactions among applications running on distant computers, simultaneously.
Forbes Magazine has projected the global grow of IT-based economy from $1 Trillion in 2001 to 20
Trillion by 2015. The evolution from Internet to web and grid services is certainly playing a major role to
this end.

Computing Grids: Like an electric-utility power grid, a computing grid offers an infrastructure that
couples computers, software/middleware, special instruments, and people and sensors together. Grid is
often constructed across LAN,WAN, or Internet backbone networks at regional, national, or global scales.
Enterprises or organizations present grids as integrated computing resources. They can be viewed also as
virtual platforms to support virtual organizations. The computers used in a grid are primarily workstations,
servers, clusters, and supercomputers. Personal computers, laptops and PDAs can be used as access devices
to a grid system. The grid software and middleware are needed as applications and utility libraries and
databases, Special instruments are used to search for life in the galaxy, for example.

Figure 1.11 shows the concept of a computational grid built over three resource sites at the
University of Wisconsin at Madison, University of Illinois at Champaign-Urbana, and California Institute
of Technology. The three sites offer complementary computing resources, including workstations, large

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 19

servers, mesh of processors, and Linux clusters to satisfy a chain of computational needs. Three steps are
shown to the chain of weather data collection, distributed computations, and result analysis in atmospheric
simulations. Many other even larger computational grids like NSF TeraGrid and EGEE, and ChinaGrid
have built similar national infrastructures to perform distributed scientific grid applications.

Figure 1.11 An example computational Grid built o ver specialized computers at three

 resource sites at Wisconsin, Calte ch, and Illinois. (Courtesy of Michel Waldrop,
 “Grid Computing”, IEEE Computer Magazine, 2000. [34])

Grid Families: Grid technology demands new distributed computing models, software/middleware
support, network protocols, and hardware infrastructures. National grid projects are followed by industrial
grid platform development by IBM, Microsoft, Sun, HP, Dell, Cisco, EMC, Platform Computing, etc New
grid service providers (GSP) and new grid applications are opened rapidly, similar to the growth of Internet
and Web services in the past two decades. In Table 1.8, we classify grid systems developed in the past
decade into two families: namely computational or data grids and P2P grids. These computing grids are
mostly built at the national level. We identify their major applications, representative systems, and lesson
learned so far. Grid Computing will be studied in Chapters 4 and 8.

Table 1.8 Two Grid Computing Infrastructures and Representative Systems

Design Issues Computational and Data Grids P2P Grid s

Grid Applications
reported

Distributed Supercomputing, National
Grid Initiatives, etc

Open grid with P2P flexibility, all resources
from client machines

Representative
Systems

TeraGrid in US,
ChinaGrid, UK e-Science, etc.

JXTA, FightAid@home,
SETI@home

Development
Lessons learned

Restricted user groups, middleware bugs,
rigid protocols to acquire resources

Unreliable user-contributed resources,
limited to a few apps.

1.3.3 Service-Oriented Architectures (SOA)

 Technology has advanced at breakneck speed up over the last decade with many changes that

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 20

are still occurring. However in this chaos, the value of building systems in terms of services has
grown in acceptance and it has become a core idea of most distributed systems. Always one builds
systems in layered fashion as sketched below in Fig.1.12. Here we use the rather clumsy term
“entity” to denote the abstraction used as the basic building block. In Grids/Web Services, Java
and CORBA, an entity is respectively a service, Java object or a CORBA distributed object in a
variety of languages.

 The architectures build on the traditional 7 OSI layers providing the base networking abstractions. On
top of this we have a base software environment which would be .NET or Apache Axis for Web Services,
the Java Virtual Machine for Java or a Broker network for CORBA. Then on top of this base environment,
one builds a higher-level environment reflecting the special features of the distributing computing
environment and represented by the green box in Fig.1.12. This starts with Entity Interfaces and Inter-entity
communication which can be thought of as rebuilding the top 4 OSI layers but at the entity and not the bit
level.

 The entity interfaces correspond to the WSDL, Java method and CORBA IDL specifications in these
example distributed systems. These interfaces are linked with customized high level communication
systems – SOAP, RMI and IIOP in the three examples. These communication systems support features
including particular message patterns (such as RPC or remote procedure call), fault recovery and
specialized routing. Often these communications systems are built on message oriented middleware
(enterprise bus) infrastructure such as WebSphereMQ or JMS (Java Message Service) which provide rich
functionality and support virtualization of routing, sender and recipients.

In the case of fault tolerance, we find features in the Web Service Reliable Messaging framework
that mimic the OSI layer capability (as in TCP fault tolerance) modified to match the different abstractions
(such as messages versus packets, virtualized addressing) at the entity levels. Security is a critical capability
that either uses or re-implements the capabilities seen in concepts like IPSec and secure sockets in the OSI
layers. Entity communication is supported by higher level services for registries, metadata and management
of the entities discussed in Section 4.4.

Bit level
Internet

Distributed
Entities

Application Specific Entities and Systems
Generally Useful Entities and Systems

Entity Coordination
Entity Management

Entity Discovery and Information
Inter-Entity Communication

Entity Interfaces
Base Software Environment
Protocol HTTP FTP DNS …

Presentation XDR …
Session SSH …

Transport TCP UDP …
Network IP …

Data Link / Physical

Fig. 1.12. General layered architecture for distri buted entities

Here one might get several models with for example Jini and JNDI illustrating different approaches
within the Java distributed object model. The CORBA Trader Service, UDDI, LDAP and ebXML are other
examples of discovery and information services described in Section 4.4. Management services include
service state and lifetime support; examples include the CORBA Life Cycle and Persistent State, the
different Enterprise Javabean models, Jini's lifetime model and a suite of Web service specifications that

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 21

we will study further in Chapter 4.

We often term this collection of entity level capabilities that extend the OSI stack the “Internet on
the Internet”: or the “Entity Internet built on the Bit Internet”. The above describes a classic distributed
computing model and as well as intense debate on the best ways of implementing distributed systems there
is competition with "centralized but still modular" approaches where systems are built in terms of
components in an Enterprise Javabean or equivalent approach.

The latter can have performance advantages and offer a "shared memory" model allowing more
convenient exchange of information. However the distributed model has two critical advantages -- namely
higher performance (from multiple CPU's when communication is unimportant) and a cleaner separation of
software functions with clear software re-use and maintenance advantages. We expect the distributed
model to gain in popularity as the default approach to software systems. Here the early CORBA and Java
approaches to distributed systems are being replaced by the service model shown in Fig.1.13.

 Loose coupling and support of heterogeneous implementations makes services more
attractive than distributed objects. The architecture of this figure underlies modern systems with
typically two choice of service architecture -- Web Services or REST systems. These are further
discussed in chapter 4 and have very distinct approaches to building reliable interoperable systems.
in Web services, one aims to fully specify all aspects of the service and its environment. This
specification is carried with communicated messages using the SOAP protocol. The hosting
environment then becomes a universal distributed operating system with fully distributed
capability carried by SOAP messages.

Bit level
Internet

Service
Internet

Application Specific Services/Grids
Generally Useful Services and Grids

Workflow
Service Management

Service Discovery and Information
Service Internet Transport ���� Protocol

Service Interfaces
Base Hosting Environment
Protocol HTTP FTP DNS …

Presentation XDR …
Session SSH …

Transport TCP UDP …
Network IP …

Data Link / Physical

Service
Context

Higher
Level
Services

Figure 1.13 Layered architecture for web srvices and grids

 Experience has seen mixed success for this approach as it has been hard to agree on key parts of the
protocol and even harder to robustly and efficiently implement the universal processing of the protocol (by
software like Apache Axis). In the REST approach, one adopts simplicity as the universal principle and
delegated most of the hard problems to application (implementation specific) software. In a Web Service
language REST has minimal information in the header and the message body (that is opaque to generic
message processing) carries all needed information. REST architectures are clearly more appropriate to
rapidly technology environments that we see today.

 However, the ideas in Web Services are important and probably will be needed in mature systems at a
different level in stack (as part of application). Note that REST can use XML schemas but not used that are
part of SOAP; "XML over HTTP" is a popular design choice. Above the communication and management
layers, we have the capability to compose new entities or distributed programs by integrating several

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 22

entities together as sketched in Fig.1.14. In CORBA and Java, the distributed entities are linked with remote
procedure calls and the simplest way to build composite applications is to view the entities as objects and
use the traditional ways of linking them together. For Java, this could be as simple as writing a Java
program with method calls replaced by RMI (Remote Method Invocation) while CORBA supports a similar
model with a syntax reflecting the C++ style of its entity (object) interfaces.

Database

S
S

S
S

S
S

S
S

S
S

S
S

Sensor or Data
Interchange

Service

Another
Grid

Raw Data ���� Data ���� Information ���� Knowledge ���� Wisdom ���� Decisions

S
S

S
S

Another
Service

S
SAnother

Grid S
S

Another
Grid

SS

SS

SS

SS

SS

SS

SS

Storage
Cloud

Compute
Cloud

S
S

S
S

S
S

S
S

Filter
Cloud

Filter
Cloud

Filter
Cloud

Discovery
Cloud

Discovery
Cloud

Filter
Service fsfs

fs fs

fs fs

Filter
Service fsfs

fs fs

fs fs

Filter
Service fsfs

fs fs

fs fs

Filter
Cloud

Filter
Cloud

Filter
Cloud

Filter
Service fsfs

fs fs

fs fs

Traditional Grid
with exposed
services

Figure 1.14. Grids of Clouds and Grids where SS re fers to Sensor Service and fs to a filter or
transforming service.

 There are also very many distributed programming models built on top of these of these basic
constructs. For Web Services, workflow technologies are used to coordinate or orchestrate services with
special specifications used to define critical business process models such as two phase transactions. In
section 4.2, we describe the general approach used in workflow, the BPEL Web Service standard and
several important workflow approaches Pegasus, Taverna, Kepler, Trident and Swift. In all approaches one
is building collections of services which together tackle all or part of a problem. As always one ends with
systems of systems as the basic architecture.

 Allowing the term Grid to refer to a single service or represent a collection of services, we find the
architecture of Fig.1.14. Here sensors represent entities (such as instruments) that output data (as messages)
and Grids and Clouds represent collections of services that have multiple message-based inputs and outputs.
The figure emphasizes the system of systems or "Grids and Clouds of Grids and Clouds" architecture. Most
distributed systems requires a web interface or portal shown in Fig.1.14 and two examples (OGFCE and
HUBzero) are described in Section 4.3 using both Web Service (portlet) and Web 2.0 (gadget)
technologies.

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 23

1.3.4 Peer-to-Peer Network Families

 A well-established distributed system is the client-server architecture. Client machines (PC and
workstations) are connected to a central server for compute, or Email, file access, database applications.
The peer-to-peer (P2P) architecture offers a distributed model of networked systems. First, a P2P network
is client-oriented instead of server-oriented. In this section, we introduce P2P systems at the physical level
and overlay networks at the logical level.

P2P Networks: In a P2P system, every node acts as both a client and a server, providing part of the system
resources. Peer machines are simply client computers connected to the Internet. All client machines act
autonomously to join or leave the system freely. This implies that no master-slave relationship exists among
the peers. No central coordination or no central database is needed. In other words, no peer machine has a
global view of the entire P2P system. The system is self-organizing with distributed control.

 The architecture of a P2P network is shown in Fig.1.15 at two abstraction levels. Initially, the peers
are totally unrelated. Each peer machine joins or leaves the P2P network, voluntarily. Only the participating
peers form the physical network at any time. Unlike the cluster or grid, a P2P network does not use a
dedicated interconnection network. The physical network is simply an ad hoc network formed at various
Internet domains randomly using TCP/IP and NAI protocols. Thus, the physical network varies in size and
topology dynamically due to the free membership in the P2P network.

 Figure 1.15 The structure of a peer-to -peer system by mapping a physical network
 to a virtual overla y network (Courtesy of JXTA, http://www.jxta.com)

Overlay Networks: Data items or files are distributed in the participating peers. Based on communication
or file-sharing needs, the peer IDs form an overlay network at the logical level. This overlay is a virtual
network formed by mapping each physical machine with its ID, logically through a virtual mapping shown
in Fig.1.7. When a new peer joins the system, its peer ID is added as a node in the overlay network. When an
existing peer leaves the system, its peer ID is removed from the overlay network, automatically. Therefore,
it is the P2P overlay network that characterizes the logical connectivity among the peers.

 There are two types of overlay networks: unstructured versus structured. An unstructured overlay
network is characterized by a random graph. There is no fixed route to send messages or file among the
nodes. Often, flooding is applied to send a query to all nodes in an unstructured overlay, thus ending up with
heavy network traffic and nondeterministic search results. Structured overlay networks follow certain
connectivity topology and rules to insert or remove nodes (Peer IDs) from the overlay graph. Routing
mechanisms are developed to take advantage of the structured overlays.

Overlay
Network

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 24

P2P Application Families: Based on applications, we classify P2P networks into four classes in Table 1.9.
The first family is for distributed file sharing of digital contents (music, video, etc.) on the P2P network.
This includes many popular P2P networks like Gnutella, Napster, BitTorrent, etc. Collaboration P2P
networks include MSN or Skype chatting, instant messaging, collaborative design, etc. The third family is
for distributed P2P computing in specific applications. For example, SETI@home provides 25 Tflops
distributed computing power, collectively, over 3 million Internet host machines. Other P2P platforms
like JXTA, .NET, and FightingAID@home, support naming, discovery, communication, security, and
resource aggregation in some P2P applications. We will study these topics in Chapters 5 and 8.

Table 1.9 Major Categories of Peer-to-Peer Netwo rk Families

System
Features

Distributed File
Sharing

Collaborative
Platform

Distributed P2P
Computing

Peer-to-Peer
Platform

Attractive
Applications

Content distribution of
MP3 music, video, open
software, etc.

Instant Messaging,
Collaborative design
and gaming

Scientific
exploration and
social networking

Open networks
for public
resources

Operational
Problems

Loose security
and on-line
copyright violations

Lack of trust, disturbed
by spam, privacy, and
peer collusions

Security holes,
selfish partners,
and peer collusion

Lack of standards
or protection
protocols

Example
 Systems

Gnutella, Napster,
eMule, BitTorrent,
Aimster, KaZaA, etc.

ICQ, AIM, Groove,
Magi, Multiplayer
Games, Skype, etc.

SETI@home,
Geonome@
home, etc.

JXTA, .NET,
FightingAid@
home, etc.

P2P Computing Challenges: P2P computing faces three types of heterogeneity problems in hardware,
software and network requirements. There are too many hardware models and architectures to select from.
Incompatibility exists between software and OS. Different network connections and protocols make it too
complex to apply in real applications. We need system scalability as the workload increases. System
scaling is directly related to performance and bandwidth.

 Data location is also important to affect collective performance. Data locality, network proximity,
and interoperability are three design objectives in distributed applications. The P2P performance is affected
by routing efficiency and self-organization by the participating peers. Fault Tolerance, failure management,
and load balancing are other important issues in using overlay networks. Lack of trust among the peers
posts another problem. Peers are strangers to each other. Security, privacy, and copyright violations are
major worries by industry to apply P2P technology in business applications.

 1.3.5 Virtualized Cloud Computing Infrastructure

 Gordon Bell, Jim Gray, and Alex Szalay [3] have advocated: “Computational science is changing to
be data-intensive. Supercomputers must be balanced systems, not just CPU farms but also petascale I/O and
networking arrays.” In the future, working with large data sets will typically mean sending the
computations (programs) to the data, rather than copying the data to the workstations. This reflects the trend
in IT that moves computing and data from desktops to large datacenters, where on-demand provision of
software, hardware, and data as a service. Data explosion leads to the idea of cloud computing.

Cloud computing has been defined differently by many users and designers. Just to cite a few, IBM
being a major developer of cloud computing has defined cloud computing as: “A cloud is a pool of
virtualized computer resources. A cloud can host a variety of different workloads, including batch-style
backend jobs and interactive, user-facing applications, allow workloads to be deployed and scaled-out

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 25

quickly through the rapid provisioning of virtual machines or physical machines, support redundant,
self-recovering, highly scalable programming models that allow workloads to recover from many
unavoidable hardware/software failures; and monitor resource use in real time to enable rebalancing of
allocations when needed.”

Internet Clouds: Cloud computing applies a virtualized platform with elastic resources on-demand by
provisioning hardware, software, and datasets, dynamically. The idea is to move desktop computing to a
service-oriented platform using server clusters and huge databases at datacenters. Cloud computing
leverages its low cost and simplicity that benefit both users and the providers. Machine virtualization has
enabled such cost-effectiveness. Cloud computing intends to satisfy many heterogeneous user applications
simultaneously. The cloud ecosystem must be designed to be secure, trustworthy, and dependable.

 Ian Foster defined cloud computing as follows: “A large-scale distributed computing paradigm that is
driven by economics of scale, in which a pool of abstracted virtualized, dynamically-scalable, managed
computing power, storage, platforms, and services are delivered on demand to external customers over the
Internet”. Despite some minor differences in the above definitions, we identify six common characteristics
of Internet clouds as depicted in Fig.1.16.

Figure 1.16 Concept of virtualized resources provisioning through the Internet cloud, where the hardware,
software, storage, network and services are put together to form a cloud platform.

(1) Cloud platform offers a scalable computing paradigm built around the datacenters.
(2) Cloud resources are dynamically provisioned by datacenters upon user demand.
(3) Cloud system provides computing power, storage space, and flexible platforms
 for upgraded web-scale application services.
(4) Cloud computing relies heavily on the virtualization of all sorts of resources.

 (5) Cloud computing defines a new paradigm for collective computing, data consumption
 and delivery of information services over the Internet.
 (6) Clouds stress the cost of ownership reduction in mega datacenters.

Basic Cloud Models: Traditionally, a distributed computing system tends to be owned and operated by an
autonomous administrative domain (e.g., a research laboratory or company) for on-premises computing
needs. However, these traditional systems have encountered several performance bottlenecks: constant
system maintenance, poor utilization and increasing costs associated with hardware/software upgrades.
Cloud computing as an on-demand computing paradigm resolves or relieves from these problems. In

Submit Requests

Paid Services Hardware Software

Service

Storage
Network

Internet
Cloud

User

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 26

Figure 1.17, we introduce the basic concepts of three cloud computing service models. More cloud details
are given in Chapters 7, 8 and 9.

 Figure 1.17 Basic concept of cloud c omputing models and services provided
 (Courtesy of IBM Corp. 2009)

Infrastructure as a Service (IaaS): This model allows users to server, storage, networks, and datacenter
fabric resources. The user can deploy and run on multiple VMs running guest OSes on specific
applications. The user does not manage or control the underlying cloud infrastructure, but can specifv when
to request and release the needed resources.

Platform as a Service (PaaS): This model provides the user to deploy user-built applications onto a
virtualized cloud platform The platform include both hardware and software integrated with specific
programming interfaces. The provide supplies the API and software tools (e.g., Java, python, Web 2.0,
.Net). The user is freed from managing the underlying cloud infrastructure.

Software as a Service (SaaS): This refers to browser-initiated application software over thousands of paid
cloud customers. The SaaS model applies to business processes, industry applications, CRM (consumer
relationship mamagment), ERP (enterprise resources planning), HR (human resources) and collaborative
applications. On the customer side, there is no upfront investment in servers or software licensing. On the
provider side, costs are rather low, compared with conventional hosting of user applications.

 Internet clouds offer four deployment modes: private, public, managed, and hybrid [22]. These modes
demand different levels of security implications. The different service level agreements and service
deployment modalities imply the security to be a shared responsibility of all the cloud providers, the cloud
resource consumers and the third party cloud enabled software providers. Advantages of cloud computing
have been advocated by many IT experts, industry leaders, and computer science researchers.

Benefits of Outsourcing to The Cloud: Outsourcing local workload and/or resources to the cloud has

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 27

become an appealing alternative in terms of operational efficiency and cost effectiveness. This outsourcing
practice particularly gains its momentum with the flexibility of cloud services from no lock-in contracts
with the provider and the use of a pay-as-you-go pricing model. Clouds are primarily driven by
economics—the pay-per-use pricing model similar to basic utilities of electricity, water and gas. From the
consumer’s perspective, this pricing model for computing has relieved many issues in IT practices, such as
the burden of new equipment purchases and the ever-increasing costs in operation of computing facilities
(e.g., salary for technical supporting personnel and electricity bills).

 Specifically, a sudden surge of workload can be effectively dealt with; and this also has an economic
benefit in that it helps avoid over provisioning of resources for such a surge. From the provider’s
perspective, charges imposed for processing consumers’ service requests—often exploiting underutilized
resources—are an additional source of revenue. Since the cloud service provider has to deal with a diverse
set of consumers, including both regular and new/one-off consumers, and their requests most likely differ
from one another, the judicious scheduling of these requests plays a key role in the efficient use of resources
for the provider to maximize its profit and for the consumer to received satisfactory service quality (e.g.,
response time). Recently, Amazon introduced EC2 Spot instances for which the pricing dynamically
changes based on the demand-supply relationship (http://aws.amazon.com/ec2/spot-instances/).
Accountability and security are two other major concerns associated with the adoption of clouds. These will
be treated in Chapters 7.

 Chapter 6 offers details of datacenter design, cloud platform architecture and resource deployment,
Chapter 7 provides major cloud platforms built and various cloud services being offered. Listed below are
8 motivations of adapting the cloud for upgrading Internet applications and web services in general.

 (1). Desired location in areas with protected space and better energy efficiency.
(2). Sharing of peak-load capacity among a large pool of users, improving the overall utilization
(3). Separation of infrastructure maintenance duties from domain-specific application development.
(4). Significant reduction in cloud computing cost, compared with traditional computing paradigms.
(5). Cloud computing programming and application development
(6). Service and data discovery and content/service distribution
(7). Privacy, security, copyright, and reliability issues
(8). Service agreements, business models, and pricing policies.

Representative Cloud Providers : In Table 1.10, we summarize the features of three cloud platforms built
up to 2008. The Google platform is a closed system, dynamically built over a cluster of servers,. These
servers selected from over 460,000 Google servers worldwide. This platform is proprietary in nature, only
programmable by Google staff. Users must order the standard services through Google. The IBM
BlueCloud offers a total system solution by selling the entire server cluster plus software packages for
resources management and monitoring, WebSphere 2.0 applications, DB2 databases, and virtualization
middleware. The third cloud platform is offered by Amazon as a custom-service utility cluster. Users lease
special subcluster configuration and torage space to run custom-coded applications.

The IBM BlueCloud allows cloud users to fill out a form defining their hardware platform, CPU,
memory, storage, operating system, middleware, and team members and their associated roles. A SaaS
bureau may order travel or secretarial services from a common cloud platform. The MSP coordinates
service delivery and pricing by user specifications. Many IT companies are now offering cloud computing
services. We desire a software environment that provides many useful tools to build cloud applications
over large datasets. In addition to MapReduce, BigTable, EC2, and 3S and the established environment
packages like Hadoop, AWS, AppEngine, and WebSphere2. Details of these cloud systems are given in
Chapter 7 and 8.

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 28

Table 1.10 Three Cloud Computing Platforms and Un derlying Technologies [21]

Features Google Cloud [18] IBM BlueCloud [7] Amazon Elastic Cloud

Architecture
and Service
Models applied

Highly scalable server
clusters, GFS, and data-
centers operating with
PaaS or SaaS models

A sever cluster with limited
scalability for distributed
problem solving and web-
scale under a PaaS model

A 2000-node utility cluster
(iDataPlex) for distributed
computing/storage services
under the IaaS model

Technology,
Virtualization,
and Reliability

Commodity hardware.
Application-level API,
simple service, and high
reliability

Custom hardware, Open
software, Hadoop library,
virtualization with XEN and
PowerVM, high reliability

e-commerce platform,
virtualization based on XEN,
and simple reliability

System
Vulnerability,
and Security
Resilience

Datacenter security is
loose, no copyright
protection, Google
rewrites desktop
applications for web

WebSphere-2 security,
PowerVM could be tuned
for security protection, and
access control and VPN
support

Rely on PKI and VPN for
authentication and access
control, lack of security
defense mechanisms

1.3 Performance, Security, and Energy-Efficiency
In this section, we introduce the fundamental design principles and rules of thumb for building

massively distributed computing systems. We study scalability, availability, programming models, and
security issues that are encountered in clusters, grids, P2P networks, and Internet clouds.

1.4.1 System Performance and Scalability Analysis

Performance metrics are needed to measure various distributed systems. We present various
dimensions of scalability and performance laws. Then we examine system scalability against OS image
and the limiting factors encountered.

Performance Metrics: We have used CPU speed in MIPS and network bandwidth in Mbps in Section
1.3.1 to estimate processor and network performance. In a distributed system, the performance is attributed
to a large number of factors. The system throughput is often measured by the MIPS rate, Tflops (Tera
floating-point operations per second), TPS (transactions per second), etc. Other measures include the job
response time and network latency.

 We desire to use an interconnection network that has low latency and high bandwidth. System
overhead is often attributed to OS boot time, compile time, I/O data rate, and run-time support system used.
Other pereformanc-related metrics include the quality of service (QoS) for Internet and Web services;
system availability and dependability; and security resilience for system defense against network attacks.
We will study some of these in remaining subsections.

Dimensions of Scalability: We want to design a distributed system to achieve scalable performance. Any
resource upgrade in a system should be backward compatible with the existing hardware and software
resources. Overdesign may not be cost-effective. System scaling can increase or decrease resources
depending on many practical factors. We characterize the following dimensions of scalability in parallel

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 29

and distributed systems.

a) Size Scalability: This refers to achieve higher performance or performing more functionality by
increasing the machine size. The word “size” refers to adding the number of processors; more cache,
memory, storage or I/O channels. The most obvious way to simple counting the number of
processors installed. Not all parallel computer or distributed architectures are equally size-scalable.
For example, IBM S2 was scaled up to 512 processors in 1997. But in 2008, the IBM BlueGene/L
system can scale up to 65,000 processors.

b) Software Scalability: This refers to upgrades in OS or compilers, adding mathematical and
engineering libraries, porting new application software, and install more user-friendly programming
environment. Some software upgrade may not work with large system configurations. Testing and
fine-tuning of new software on larger system is a non-trivial job.

c) Application scalability: This refers to the match of problem size scalability with the machine size
scalability. Problem size affects the size of the data set or the workload increase. Instead of
increasing machine size, we enlarge the problem size to enhance the system efficiency or
cost-effectiveness.

d) Technology Scalability: This refers to a system that can adapt to changes in building technologies,
such as those component and networking technologies discussed in Section 3.1. Scaling a system
design with new technology must consider three aspects: time, space, and heterogeneity. Time refers
to generation scalability. Changing to new-generation processors, one must consider the impact to
motherboard, power supply, packaging and cooling, etc. Based on the past experience, most system
upgrade their commodity processors every 3 to 5 years. Space is more related to packaging and
energy concerns. Heterogeneity scalability demands harmony and portability among different
component suppliers.

Scalability vs. OS Image Count: In Fig.1.18, we estimate the scalable performance against the
multiplicity of OS images in distributed systems deployed up to 2010. Scalable performance implies that
the system can achieve higher speed performance by adding more processors or servers, enlarging the
physical node memory size, extending the disk capacity, or adding more I/O channels, etc. The OS image is
counted by the number of independent OS images observed in a cluster, grid, P2P network, or the cloud.
We include the SMP and NUMA in the comparison. An SMP server has a single system image. Which
could be a single node in a large cluster. By 2010 standard, the largest shared–memory SMP node has at
most hundreds of processors. This low scalability of SMP system is constrained by the packaging and
system-interconnect used.

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 30

Figure 1.18 System scalability versus multiplici ty of OS images in HPC clusters, MPP, and grids
 and HTC systems like P2P networks and the clo uds. (The magnitude of scalability and OS image
 count are estimated based on system configurations deployed up to 2010. The SMP and NUMA are
 included for comparison purpose)

The NUMA machines are often made out of SMP nodes with distributed shared memories. A NUMA

machine can run with multiple operating systems. It can scale to a few thousands of processors
communicating with MPI library. For example, an NUMA machine may have 2048 processors running by
32 SMP operating systems. Thus, there are 32 OS images in the 2048-processor NUMA system. The cluster
nodes can be either SMP servers or high-end machines that are loosely coupled together. Therefore, clusters
have much higher scalability than NUMA machines. The number of OS images in a cluster is counted by
the cluster nodes concurrently in use. The cloud could be a virtualized cluster. By 2010, the largest cloud in
use commercially has size that can scale up to a few thousand VMs at most.

 Reviewing the fact many cluster nodes are SMP (multiprocessor) or multicore servers, the total
number of processors or cores in a cluster system is one or two orders of magnitude greater than the number
of OS images running in the cluster. The node in a computational grid could be either a server cluster, or a
mainframe, or a supercomputer, or a massively parallel processor (MPP). Therefore, OS image count in a
large grid structure could be hundreds or thousands times fewer than the total number of processors in the
grid. A P2P network can easily scale to millions of independent peer nodes, essentially desktop machines.
The performance of a P2P file-sharing network depends on the quality of service (QoS) received in a public
networks. We plot the low-speed P2P networks in Fig.1.15. Internet clouds are evaluated similarly to the
way we assess cluster performance.

Amdahl’s Law: Consider the execution of a given program on a uniprocessor workstation with a total
execution time of T minutes. Now, the program has been parallelized or partitioned for parallel execution
on a cluster of many processing nodes. Assume that a fraction α of the code must be executed sequentially,
called the sequential bottleneck. Therefore, (1- α) of the code can be compiled for parallel execution by n
processors. The total execution time of the program is calculated by α T + (1-α)T/n , where the first term
is the sequential execution time on a single processor. The second term is the parallel execution time on n
processing nodes.

 We will ignore all system or communication overheads, I/O time, or exception handling time in the
then following speedup analysis. Amdahl’s Law states that: The speedup factor of using the n-processor
system over the use of a single processor is expressed by:

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 31

 Speedup = S = T / [αT + (1-α)T/ n] = 1 / [α + (1-α) /n] (1.1)

The maximum speedup of n is achieved, only if the sequential bottleneck α is reduced to zero or the code is
fully parallelizable with α = 0. As the cluster becomes sufficiently large, i.e. n → ∞, we have S = 1/ α , an
upper bound on the speedup S. Surprisingly, this upper bound is independent of the cluster size n.
Sequential bottleneck is the portion of the code that cannot be parallelized. For example, the maximum
speedup achieved speedup is 4, if α = 0.25 or 1-α = 0.75, even we use hundreds of processors. Amdahl’s
law teaches us that we should make the sequential bottleneck as small as possible. By increasing the cluster
size alone may not give us a good speedup we expected.

 Problem with Fixed Workload: In Amdahl’s law, we have assumed the same amount of workload for
both sequential and parallel execution of the program with a fixed problem size or dataset. This was called
fixed-workload speedup by Hwang and Xu [14]. To execute a fixed workload on n processors, parallel
processing may lead to a system efficiency defined as follows:

 E = S / n = 1 / [α n + 1-α] (1.2)

Very often the system efficiency is rather low, especially when the cluster size is very large. To execute the
aforementioned program on a cluster with n = 256 nodes, extremely low efficiency E = 1/[0.25 x256 + 0.75]
= 1.5% is observed. This is due to the fact that only a few processors (say 4) are kept busy, while the
majority of the nodes are left idling.

Scaled-Workload Speedup: To achieve higher efficiency in using a large cluster, we must consider
scaling the problem size to match with the cluster capability. This leads to the following speedup law
proposed by John Gustafson (1988). Let W be the workload in a given program. When we use an
n-processor system, we scale the workload to W’ = αW+(1-α)nW. Note that only the parallelizable portion
of the workload is scaled n times in the second term. This scaled workload W’ is essentially the sequential
execution time on a single processor. The parallel execution time of W’ workload on n processors is kept at
the level of the original workload W. Thus, a scaled-workload speedup is defined as follows:

 S’ = W’/W = [αW+(1 – α)nW] /W = α +(1 – α)n (1.3)

 This speedup is known as Gustafson’s Law. By fixing the parallel execution time at level W, we
achieve the following efficiency expression:

 E’ = S’ / n = α/n + (1- α) (1.4)

For the above program with a scaled workload, we can improve the efficiency of using a 256-node cluster to
E’ = 0.25/256 + 0.75 = 0.751. We shall apply either the Amdahl’s Law or Gustafson’s Law under different
workload conditions. For fixed workload, we apply Amdahl’s law. To solve scaled problems, we apply
Gustafson’s Law.

1.4.2 System Availability and Application Flexibili ty

In addition to performance, system availability and application flexibility are two other most important
design goals in a distributed computing system. We check these related two concerns, separately.

System Availability: High availability (HA) is desired in all clusters, grids, P2P, and cloud systems. A
system is highly available if it has long mean time to failure (MTTF) and short mean time to repair (MTTR).

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 32

The system availability is formally defined as flows:

 System Availability = MTTF / (MTTF + MTTR) (1.5)

The system availability is attributed to many factors. All hardware, software, and network components may
fail. Any failure that will pull down the operation of the entire system is called a single point of failure. The
rule of thumb is to design a dependable computing system with no single point of failure. Adding hardware
redundancy, increasing component reliability, and design for testability will all help enhance the system
availability and dependability.

 In Fig.1.19, we estimate the effects on system availability by scaling the system size in term of the
number of processor cores in a system. In general, as a distributed system increases in size, the availability
decrease due to higher chance of failure and difficulty to isolate the failures. Both SMP and MPP are most
vulnerable under the mangement of a single OS. Increasing system size will result in higher chance to
break down. The NUMA machine has limited improvement in availability from an SMP due to use of
multiple system managements.

 Most clusters are designed to have high-availability (HA) with failover capability, even as the cluster
gets much bigger. Vrtualized clouds form a subclass of the hosting server clusters at various datacenters.
Hence a cloud has an estimated availability similar to that of the hosting cluster. A grid is visualized as a
hierarchical cluster of clusters. They have even higher availability due to the isolation of faults. Therefore,
clusters, clouds, and grids have a decreasing availability as system gets larger. A P2P file-sharing network
hass the highest aggregation of client machines. However, they operate essentially independently with low
availability even many peer nodes depart or fail simultaneously.

Figure 1.19 Estimated effects on the system avail ability by the size of clusters, MPP, Grids, P2P
file-sharing networks, and computing clouds. (The estimate is based on reported experiences in
hardware, OS, storage, network, and packaging technologies in available system configurations in 2010.)

1.4.3 Security Threats and Defense Technologies

 Clusters, Grids, P2P, and Clouds all demand security and copyright protection. These are crucial to
their acceptance by a digital society. In this section, we introduce the system vulnerability, network threats,
defense countermeasures, and copyright protection in distributed or cloud computing systems.

Threats To Systems and Networks : Network viruses have threatened many users in widespread attacks

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 33

constantly. These incidents created worm epidemic by pulling down many routers and servers. These
attacks had caused billions of dollars loss in business, government, and services. Various attack types and
the potential damages to users are summarized in Fig.1.20. Information leakage leads to the loss of
confidentiality. Loss of data integrity may be caused by user alteration, Trojan horse, and service spoofing
attacks. The denial of service (DoS) result in loss of system operation and Internet connections.

 Lack of authentication or authorization lead to illegitimate use of computing resources by attackers.
Open resources like datacenters, P2P networks, grid and cloud infrastructures could well become the next
targets. We need to protect clusters, grids, clouds, and P2P systems. Otherwise, no users dare to use or trust
them for outsourced work. Malicious intrusions to these systems may destroy valuable hosts, network, and
storage resources. Internet anomalies found in routers, gateways, and distributed hosts may hinder the
acceptance of these public-resource computing services.

Security Responsibilities: We identify three security requirements: confidentiality, integrity, and
availability for most internet service providers and cloud users. As shown in Fig.1.21, in the order of SaaS,
PaaS, and IaaS, the providers gradually release the responsibilities of security control to the cloud users. In
summary, the SaaS model relies on the cloud provider to perform all security functions. On the other
extreme, the IaaS model wants the users to assume almost all security functions except leaving the
availability to the hands of the providers. The PaaS model relies on the provider to maintain data integrity
and availability, but burdens the user with confidentiality and privacy control.

Figure 1.20 Various system attacks and network threats to cyberspace.

System Defense Technologies: Three generations of network defense technologies have appeared in the
past. In the first generation, tools were designed to prevent or avoid intrusions. These tools usually
manifested as access control policies or tokens, cryptographic systems, etc. However, the intruder can
always penetrate a secure system because there is always a weakest link in the security provisioning
process. The second generation detects intrusions timely to exercise remedial actions. These techniques
include firewalls, Intrusion Detection Systems (IDS), PKI service, reputation systems, etc. The third
generation provides more intelligent responses to intrusions.

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 34

Figure 1.21: Internet security responsibilities by cloud service providers and by the user mass.

Copyright Protection: Collusive piracy is the main source of intellectual property violations within the
boundary of a P2P network. Paid clients (colluders) may illegally share copyrighted content files with
unpaid clients (pirates). On-line piracy has hindered the use of open P2P networks for commercial content
delivery. One can develop a proactive content poisoning scheme to stop colluders and pirates from alleged
copyright infringements in P2P file sharing. Pirates are detected timely with identity-based signatures and
time-stamped tokens. The scheme stops collusive piracy without hurting legitimate P2P clients. We will
cover grid security, P2P reputation systems, and copyright-protection issues in Chapters 5 and 7.

Data Protection Infrastructure: Security infrastructure is needed to support safeguard web and cloud
services. At the user level, we need to perform trust negotiation and reputation aggregation over all users.
At the application end, we need to establish security precautions in worm containment and intrusion
detection against virus, worm, and DDoS attacks. We need also deploy mechanism to prevent on-line
piracy and copyright violations of digital contents. In Chapter 6, we will study reputation system for
protecting distributed systems and datacenters.

1.4.4 Energy-Efficiency in Distributed Computing

Primary performance goals in conventional parallel and distributed computing systems are high
performance and high throughput, considering some form of performance reliability, e.g., fault tolerance
and security. However, these systems recently encounter new challenging issues including energy
efficiency, and workload and resource outsourcing. These emerging issues are crucial not only in their own,
but also for the sustainability of large-scale computing systems in general. In this section, we review energy
consumption issues in servers and HPC systems. The issue of workload and resource outsourcing for cloud
computing is discussed. Then we introduce the protection issues of datacenters and explore solutions.

The energy consumption in parallel and distributed computing systems raises various monetary,
environmental and system performance issues. For example, Earth Simulator and Petaflop are two example
systems with 12 and 100 megawatts of peak power, respectively. With an approximate price of 100 dollars
per megawatt, their energy costs during peak operation times are 1,200 and 10,000 dollars per hour; this is

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 35

beyond the acceptable budget of many (potential) system operators. In addition to power cost, cooling is
another issue that must be addressed due to negative effects of high temperature on electronic components.
The rising temperature of a circuit not only derails the circuit from its normal range but also results in
decreasing the lifetime of its components.

Energy consumption of unused servers: To run a server farm (data center) a company has to spend a huge
amount of money for hardware, software (software licences), operational support and energy every year.
Therefore, the company should thoroughly identify weather the installed server farm (more specifically, the
volume of provisioned resources) is at an appropriate level in terms particularly of utilization. Some
analysts estimate that on average around one-sixth (15%) of the full-time servers in a company is left
powered on without being actively used (i.e., idling) on a daily basis. This indicates that with 44 million
servers in the world, around 4.7 million servers are not doing any useful work.

 The potential savings by turning off these servers are large, globally $3.8 billion in energy costs alone
and $24.7 billion in the total cost of running non-productive servers according to a study by 1E Company in
partnership with the Alliance to Save Energy (ASE). With the respect to environment, this amount of energy
wasting is equal to entering 11.8 million tons of carbon dioxide per year which is equivalent to the CO2
pollution of 2.1 million cars. This ratio in the U.S comes to 3.17 million tons of carbon dioxide, or 580,678
cars. Therefore, the first step in IT departments is to analyze their servers to find out unused and/or
underutilized servers.

 Reducing energy in active servers: In addition to the identification of unused/under-utilized servers for
energy savings, the application of appropriate techniques to decrease energy consumption in active
distributed systems with negligible influence on their performance is necessary. Power management issue
in distributed computing platforms can be categorized into four layers (Fig.1.22): application layer,
middleware layer, resource layer and network layer.

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 36

Figure 1.22 Four operational layers of distribute d computing systems

Application layer: Until now, most user applications in science, business, engineering, and financial areas,
tend to increase the speed or quality performance. By introducing energy-aware applications, the challenge
is how to design sophisticated multilevel and multi-domain energy management applications without
hurting performance. The first step is to explore a relationship between performance and energy
consumption. Indeed, the energy consumption of an application has a strong dependency with the number
of instructions needed to execute the application and the number of transactions with storage unit (or
memory). As well these two factors (computation and storage) are correlated and they affect application
completion time.

Middleware layer: The middleware layer acts as a bridge between the application layer and the resource
layer. This layer provides resource broker, communication service, task analyzer, task scheduler, security
access, reliability control and information service. This layer is susceptible for applying energy-efficient
techniques particularly in task scheduling. Until recently, scheduling is aimed to minimize a cost function
generally the makespan, i.e., the whole execution time of a set of tasks. Distributed computing systems
necessitates a new cost function covering both makespan and energy consumption.

Resource layer: The resource layer consists of a wide range of resources including computing nodes and
storage units. This layer generally interacts with hardware devices and also operating system; and therefore
it is responsible for controlling all distributed resources in distributed computing systems. In the recent past,
several mechanisms have been developed for more efficient power management of hardware and operating
systems. The majority of them are hardware approaches particularly for processors. Dynamic power

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 37

management (DPM) and dynamic voltage-frequency scaling (DVFS) are two popular methods incorporated
in recent computer hardware systems In DPM, hardware devices, such as CPU have the capability to
switch from idle mode to one or more lower-power modes. In DVFS, energy savings are achieved on the
fact that the power consumption in CMOS circuits has the direct relationship with frequency and the square
of voltage supply. In this case, the execution time and power consumption are controllable by switching
between different frequencies and voltages. Figure 1.23 shows the principle of the DVFS method. This
method enables the exploitation of the slack time (idle time) typically incurred by inter-task relationships
(e.g., precedence constraints) [24]. Specifically, the slack time associated with a task is utilized to execute
the task in a lower voltage-frequency. The relationship between energy and voltage-frequency in CMOS
circuits is related by the following expression:









−=

=

v

vv
Kf

tfvCE

t

eff

2

2

)((1.6)

where v, Ceff, K, and tv are the voltage, circuit switching capacity, a technology dependent factor, and

threshold voltage, respectively. The parameter t is the execution time of the task under clock frequency f .

 By reducing voltage and frequency the energy consumption of device can be reduced. However, both
DPM and DVFS techniques may cause some negative effects on power consumption of a device in both
active and idle, and create a transition overload for switching between states or voltage/frequencies.
Transition overload is especially important in DPM technique: if the transition latencies between
lower-power modes are assumed to be negligible, then energy can be saved by simply switching between
these modes. However, this assumption is rarely valuable and therefore switching between low-power
modes affects performance.

Figure 1.23 DVFS technique (right) original task (left) voltage-frequency scaled task (Courtesy of R.Ge, et al,
“Performance Constrained Distributed DVS Scheduling for Scientific Applications on Power-aware Clusters”, Proc.
of ACM Supercomputing Conf., Wash. DC, 2005 [16].)

Another important issue in the resource layer is in the storage area. Storage units interact with the
computing nodes greatly. This huge amount of interactions keeps the storage units always active. This
results in large energy consumption. Storage devices spend about 27% of the total energy consumption in a
data center. What is even worse is this figure increases rapidly due to 60% increase in storage need
annually.

Network layer: Routing and transferring packets and enabling network services to the resource layer are
the main responsibility of the network layer in distributed computing systems. The major challenge to build
energy-efficient networks is again how to measure, predict and make balance between energy consumption
and performance. Two major challenges to design energy-efficient networks are identified below:

� The models should represent the networks comprehensively as they should give a full understanding

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 38

of interactions between time, space and energy.

� New energy-efficient routing algorithms need to be developed. New energy-efficient protocols should
be developed against network attacks.

As information resources drive economic and social development, datacenters become increasingly
important as where the information items are stored, processed, and services provided. Datacenters
becomes another core infrastructure just like power grid and transportation systems. Traditional datacenter
suffers from high construction and operational cost, complex resource management and poor usability, low
security and reliability, and huge energy consumption etc. It is necessary to adopt new technologies in next
generation datacenter designs as studies in Chapter 7.

1.5 References and Homework Problems
In the past 4 decades, parallel processing and distributed computing have been hot topics for research

and development. Earlier work in this area were treated in several classic books [1, 11, 20, 21]. More recent
coverage can be found in newer books [6, 13, 14, 16, 18, 26] published beyond 2000. Cluster computing
was covered in [21, 27] and grid computing in [3, 4, 14, 34]. P2P networks are introduced in [13, 33]. Cloud
computing is studied in [7-10, 15, 19, 22, 23, 31]. Virtualization techniques are treated in [28-30].
Distributed algorithms and parallel programming are studied in [2, 12, 18, 21, 25]. Distributed operating
systems and software tools are covered in [5, 32]. Energy efficiency and power management are studied in
[17, 24, 35]. Clusters serve as the foundation of distributed and cloud computing. All of these topics will be
studied in more details in subsequent chapters.

References
[[11]] GG.. AAllmmaassii aanndd AA.. GGoottttll iieebb,, HHiigghhllyy PPaarraall lleell CCoommppuuttiinngg,, BBaannjjaammiinn--CCuummmmiinnss PPuubbll iisshheerr,, 11998899..

[[22]] GG.. AAnnddrreewwaa,, FFoouunnddaattiioonnss ooff mmuull ttii tthhrreeaaddeedd,, PPaarraall lleell aanndd DDiissttrr iibbuutteedd PPrrooggrraammmmiinngg,,
AAddddiissoonn--WWeesslleeyy,, 22000000..

[[33]] GG.. BBeell ll ,, JJ.. GGrraayy.. AAnndd AA.. SSzzaallaayy,, ““ PPeettaassccaallee CCoommppuuttaattiioonnaall SSyysstteemmss :: BBaallaanncceedd CCyybbeerrssttrruuccttuurree iinn aa
DDaattaa--CCeennttrriicc WWoorrlldd”” ,, IIEEEEEE CCoommppuutteerr MMaaggaazziinnee,, 22000066

[[44]] FF.. BBeerrmmaann,, GG.. FFooxx,, aanndd TT.. HHeeyy ((EEddii ttoorrss)),, GGrr iidd CCoommppuuttiinngg,, WWii lleeyy aanndd SSoonnss,, 22000033,, IISSBBNN::
00--447700--8855331199--00

[[55]] MM.. BBeevveerr,, eett aall ,, ““ DDiissttrriibbuutteedd SSyysstteemmss,, OOSSFF DDCCEE,, aanndd BBeeyyoonndd”” ,, iinn DDCCEE--TThhee OOSSFF DDiissttrr iibbuutteedd
CCoommppuuttiinngg EEnnvvii rroonnmmeenntt,, AA.. SScchhii ll ll ((eeddttoorr)),, BBeell iinn,, SSpprriinnggeerr--VVeerrllaagg,, pppp.. 11--2200,, 11999933

[[66]] KK.. BBii rrmmaann,, RReell iiaabbllee DDiissttrr iibbuutteedd SSyysstteemmss:: TTeecchhnnoollooggeess,, WWeebb SSeerrvviicceess,, aanndd AAppppll iiccaattiioonnss,,
 SSpprriinnggeerr VVeerrllaagg 22000055..

[[77]] GG.. BBoossss,, eett aall ,, ““ CClloouudd CCoommppuuttiinngg--TThhee BBlluueeCClloouudd PPrroojjeecctt ““ ,, wwwwww..iibbmm..ccoomm//ddeevveellooppeerrwwoorrkkss//
wweebbsspphheerree//zzoonneess//hhiippooddss// OOcctt.. 22000077

[[88]] R. Buyya, C. Yeo; and S. Venugopal, "Market-Oriented Cloud Computing: Vision, Hype, and
Reality for Delivering IT Services as Computing Utilities," 10th IEEE Int’l Conf. on High Perf.
Computing and Comm., Sept. 2008

[[99]] FF.. CChhaanngg,, eett aall ..,, ““ BBiiggttaabbllee:: AA DDiissttrriibbuutteedd SSttoorraaggee SSyysstteemm ffoorr SSttrruuccttuurreedd DDaattaa”” ,, OOSSDDII 22000066..

[[1100]] T. Chou, Introduction to Cloud Computing : Business and Technology, Lecture Notes at Stanford
University and at Tsinghua University, Active Book Press, 2010.

[[1111]] DD.. CCuull lleerr,, JJ.. SSiinngghh,, aanndd AA.. GGuuppttaa,, PPaarraall lleell CCoommppuutteerr AArrcchhii tteeccttuurree,, KKaauuffmmaannnn PPuubbll iisshheerrss,,

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 39

11999999..

[[1122]] JJ.. DDeeaann aanndd SS.. GGhheemmaawwaatt,, ““MMaappRReedduuccee:: SSiimmppll ii ff iieedd DDaattaa PPrroocceessssiinngg oonn LLaarrggee CClluusstteerrss”” ,,
PPrroocc.. ooff OOSSDDII 22000044..

[[1133]] J. Dillimore, T. Kindberg, and G. Coulouris, Distributed Systems: Concepts and Design,
(4th Edition), Addison Wesley, May 2005, ISBN -10-03-2126-3545.

[[1144]] J. Dongarra, et al, (editors), Source Book of Parallel Computing, Morgan Kaufmann, 2003.

[[1155]] I. Foster, Y. Zhao, J.Raicu, and S. Lu, "Cloud Computing and Grid Computing 360-Degree
Compared," Grid Computing Environments Workshop, 12-16 Nov. 2008.

[[1166]] V. K. Garg, Elements of Distributed Computing, Wiley-IEEE Press, 2002.

[[1177]] R.Ge, X. .Feng, and K.W.Cameron, “Performance constrained distributed DVS scheduling for
scientific applications on power-aware clusters”, Proc. Supercomputing Conf., Wash. DC, 2005.

[[1188]] S. Ghosh, Distributed Systems- An Algorithmic Approach, Chapman & Hiall/CRC, 2007.

[[1199]] Gooooggllee,, IInncc.. ““ GGooooggllee aanndd tthhee WWiissddoomm ooff CClloouuddss”” ,, hhttttpp::////wwwwww..bbuussiinneesssswweeeekk..ccoomm//
mmaaggaazziinnee//ccoonntteenntt// 00775522// bb44006644004488992255883366..hhttmm

[[2200]] KK.. HHwwaanngg,, AAddvvaanncceedd CCoommppuutteerr AArrcchhii tteeccttuurree:: PPaarraall lleell iissmm,, SSccaallaabbii ll ii ttyy,, PPrrooggrraammmmiinngg,,
MMccGGrraaww--HHii ll ll ,, 11999933..,,

[[2211]] KK.. HHwwaanngg aanndd ZZ.. XXuu:: SSccaallaabbllee PPaarraall lleell CCoommppuuttiinngg,, MMccGGrraaww--HHii ll ll ,, 11999988..

[[2222]] K. Hwang, S. Kulkarni, and Y. Hu, “Cloud Security with Virtualized Defense and Reputation-based
Trust Management”, IEEE Conf. Dependable, Autonomous, and Secure Computing (DAC-2009),
Chengdu, China, Dec.14, 2009

[[2233]] K. Hwang and D. Li, “ Security and Data Protection for Trusted Cloud Computing”, IEEE Internet
Computing, September. 2010.

[[2244]] Kelton Research,, “1E / Alliance to Save Energy Server Energy & Efficiency Report”,
http://www.1e.com/
EnergyCampaign/downloads/Server_Energy_and_Efficiency_Report_2009.pdf , Sept. 2009.

[[2255]] Y. C. Lee and A. Y. Zomaya, “A Novel State Transition Method for Metaheuristic-Based Scheduling
in Heterogeneous Computing Systems,” IEEE Trans. Parallel and Distributed Systems, Sept. 2008.

[[2266]] D. Peleg, Distributed Computing : A Locality-Sensitive Approach, SIAM Publisher, 2000.

[27] G.F. Pfister, In Serach of Clusters, (second Edition), Prentice-Hall, 2001

[28] M. Rosenblum and T. Garfinkel, “Virtual Machine Monitors: Current Technology and Future
Trends”, IEEE Computer, May 2005, pp.39-47.

[29] M. Rosenblum, “Recent Advances in Virtual Machines and Operating Systems”, Keynote Address,
ACM ASPLOS 2006

[30] J. Smith and R. Nair, Virtual Machines, Morgan Kaufmann , 2005

[31] B. Sotomayor, R. Montero, and I. Foster, “Virtual Infrastructure Management in Private and Hybrid
Clouds”, IEEE Internet Computing, Sept. 2009

[[3322]] A. Tannenbaum, Distributed Operating Systems, Prentice-Hall, 1995.

[[3333]] II.. TTaayylloorr,, FFrroomm PP22PP ttoo WWeebb SSeerrvviicceess aanndd GGrr iiddss ,, SSpprriinnggeerr--VVeerrllaagg,, LLoonnddoonn,, 22000055..

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 40

[[3344]] M. Waldrop, “Grid Computing”, IEEE Computer Magazine, 2000

[[3355]] Z. Zong, “Energy-Efficient Resource Management for High-Performance Computing Platforms”,
PhD Dissertation, Auburn University, August 9, 2008

Homework Problems

Problem 1.1: Map ten abbreviated terms and system models on the left with the best-match descriptions
on the right. Just enter the description label (a, b, c, …,j) in the underlined blanks in front of the terms.

________ Globus (a) A scalable software platform promoted by Apache for web users to write and
 run applications over vast amounts of distributed data.

______ BitTorrent (b) A P2P network for MP3 music delivery using a centralized directory server

________ Gnutella (c) The programming model and associated implementation by Google
for distributed mapping and reduction of very large data sets

_______ EC2 (d) A middleware library jointly developed by USC/ISI and Argonne
 National Lab. for Grid resource management and job scheduling

_____ TeraGrid (e) A distributed storage program by Google for managing structured
data that can scale to very large size.

______ EGEE (f) A P2P file-sharing network using multiple file index trackers

 __________Hadoop (g) A critical design goal of cluster of computers to tolerate
 nodal faults or recovery from host failures.

______ SETI@home (h) The service architecture specification as an open Grid standard

________ Napster (i) An elastic and flexible computing environment that allows web
 application developers to acquire cloud resources effectively

________ Bigtable (j) A P2P Grid over 3 millions of desktops for distributed signal processing in
 search of extra-terrestrial intelligence

Problem 1.2: Circle only one correct answer in each of the following questions.

(1) In today’s Top 500 list of the fastest computing systems, which architecture class
 dominates the population ?

a. Symmetric shared-memory multiprocessor systems

b. Centralized massively parallel processor (MPP) systems.

c. Clusters of cooperative computers.

(2) Which of the following software packages is particularly designed as a distributed storage
 management system of scalable datasets over Internet clouds?

 a. MapReduce

 b. Hadoop

 c. Bigtable

(3) Which global network system was best designed to eliminate isolated resource islands ?

a. The Internet for computer-to-computer interaction using Telnet command

b. The Web service for page-to-page visits using http:// command

c. The Grid service using midleware to establish interactions between applications
 running on a federation of cooperative machines.

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 41

(4) Which of the following software tools is specifically designed for scalable storage
services in distributed cloud computing applications ?

a. Amazon EC2

b. Amazon S3

c. Apache Hadoop library

(5) In a cloud formed by a cluster of servers, all servers must be select as follows:

a. All cloud machines must be bulit on physical servers

b. All cloud machines must be built with virtual servers

c. The cloud machines can be either physical or virtual servers.

Problem 1.3: Content delivery networks have gone through three generations of development: namely the
client-server architecture, massive network of content servers, and P2P networks. Discuss the advantages
and shortcomings of using these content delivery networks.

Problem 1.4: Conduct a deeper study of the three cloud platform models presented in Table 1.6. Compare
their advantages and shortcomings in development of distributed applications on each cloud platform. The
material in Table 1.7 and Table 1.8 are useful in your assessment.

Problem 1.5: Consider parallel execution of an MPI-coded C program in SPMD (single program and
multiple data streams) mode on a server cluster consisting of n identical Linux servers. SPMD mode means
that the same MPI program is running simultaneously on all servers but over different data sets of identical
workload. Assume that 25% of the program execution is attributed to the execution of MPI commands. For
simplicity, assume that all MPI commands take the same amount of execution time. Answer the following
questions using Amdahl’s law:

(a) Given that the total execution time of the MPI program on a 4-server cluster is T minutes. What
is the speedup factor of executing the same MPI program on a 256-server cluster, compared with
using the 4-server cluster. Assume that the program execution is deadlock-free and ignore all
other run-time execution overheads in the calculation.

(b). Suppose that all MPI commands are now enhanced by a factor of 2 by using active messages
executed by message handlers at the user space. The enhancement can reduce the execution time
of all PMI commands by half. What is the speedup of the 256-server cluster installed with this
MPI enhancement, computed with the old 256-server cluster without MPI enhancement?

Problem 1.6: Consider a program to multiply two large-scale N x N matrices, where N is the matrix size.
The sequential multiply time on a single sever is T1 = c N3 minutes, where c is a constant decided by the
server used. A MPI-code parallel program requires Tn = c N3/n + d N2 / n0.5 minutes to complete execution
on an n-server cluster system, where d is a constant determined by the MPI version used. You can assume
the program has a zero sequential bottleneck (α = 0). The second term in Tn accounts for the total message
passing overhead experienced by n servers.

 Answer the following questions for a given cluster configuration with n = 64 servers and c = 0.8 and d
= 0.1. Parts (a, b) have a fixed workload corresponding to the matrix size N = 15,000. Parts (c, d) have a
scaled workload associated with an enlarged matrix size N’ = n1/3 N = 641/3 x 15,000= 4x15,000 = 60,000.
Assume the same cluster configuration to process both workloads. Thus the system parameters n, c, and d
stay unchanged. Running the scaled workload, the overhead also increases with the enlarged matrix size N’.

(a) Using Amdahl’s law, calculate the speedup of the n-server cluster over a single server.

(b) What is the efficiency of the cluster system used in Part (a) ?

(c) Calculate the speedup in executing the scaled workload for an enlarged N’ x N’ matrix

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 42

 on the same cluster configuration using Gustafson Law.

(d) Calculate the efficiency of running the scaled workload in Part (c) on the 64-processor cluster.

(e) Compare the above speedup and efficiency results and comment on their implications.

Problem 1.7: Cloud computing is an emerging distributed computing paradigm. An increasing number of
organizations in industry and business sectors adopt cloud systems as their system of choice. Answer the
following questions on cloud computing.

(a) List and describe main characteristics of cloud computing systems.

(b) Discuss key enabling technologies in cloud computing systems.

(c) Discuss different ways for cloud service providers to maximize their revenue.

Problem 1.8: Compare the similarities and differences between traditional computing clusters/grids and
the computing clouds launched in recent years. You should consider all technical and economic aspects as
listed below. Answer the following questions against real example systems or platforms built in recent
years. Also discuss the possible convergence of the two computing paradigms in the future..

(a) Hardware, software, and networking support

(b) Resource allocation and provisioning methods

(c) Infrastructure management and protection.

(d) Supporting of utility computing services

(e) Operational and cost models applied.

Problem 1.9: Answer the following questions on personal computing (PC) and high-performance
computing (HPC) systems:

(a) Explain why the changes in personal computing (PC) and high-performance computing (HPC)
were evolutionary rather revolutionary in the past 30 years.

(b) Discuss the drawbacks in disruptive changes in processor architecture. Why memory wall is a
major problem in achieving scalable performance?

(c) Explain why x-86 processors are still dominating the PC and HPC markets ?

Problem 1.10: Multi-core and many-core processors have appeared in widespread use in both desktop
computers and HPC systems. Answer the following questions in using advanced processors, memory
devices, and system interconnects.

(a) What are differences between multi-core CPU and GPU in architecture and usages ?

(b) Explain why parallel programming cannot match with the progress of processor technology.

(c) Suggest ideas and defend your argument by some plausible solutions to this mismatch problem
between core scaling and effective programming and use of multicores.

(d) Explain why flash memory SSD can deliver better speedups in some HPC or HTC applications.

(e) Justify the prediction that Infiniband and Ehternet will continue dominating the HPC market.

Problem 1.11 Compare the HPC and HTC computing paradigms and systems. Discuss their commonality
and differences in hardware and software support and application domains.

Problem 1.12 Answer the roles of multicore processors, memory chips, solid-state drives, and disk arrays.
in building current and future distributed and cloud computing systems.

Problem 1.13 What are lopment trends of operating systems and programming paradigms in modern

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 43

distributed systems and cloud computing platforms ?

Problem 1.14 Distinguish P2P networks from Grids and P2P Grids by filling the missing table entries.
Some entries are already given. You need to study the entries in Table 1.3 , Table 1.5, and Table 1.9 before
you try to distinguish these systems precisely.

Discuss the major advantages and disadvantages in the following challenge areas:

(a) Why virtual machines and virtual clusters are suggested in cloud computing systems ?

(b) What are the breakthrough areas needed to build virtualized cloud systems cost effectively ?

(c) What is your observations of the impact of cloud platforms on the future of HPC industry ?

Problem 1.16: Briefly explain each of the following cloud computing services. Identify two clouder
providers in each service category.

(a) Application cloud services

(b) Platform cloud services

(c) Compute and storage services

(d). Co-location cloud services

 (e). Network cloud services.

 Table 1.11 Comparison among P2P Networks, Grids, a nd P2P Grids

Features P2P Networks Grid Systems P2P Grids

Applications
and Peer or
Node Roles

Distributed file sharing,
content distribution, peer
machines acting as both
clients and servers

System Control
and Service

Model

 Policy-based control in a
grid infrastructure, all
services from clent
machines

System
Connectivity

 Static conections with
high-speek links over
grid resource sites

Resource
Discovery and

Job
Management

Autonomous peers without
discovery, no use of a
central job scheduler

Repersentative
Systems

 NSF TeraGrid, UK
EGGE Grid, China Grid

Problem 1.15: plain the impacts of machine virtualization to business computing and HPC systems.

Problem 1.17: Briefly explain the following terms associated with network threats or security defense in
a distributed computing system:

(a) Denial of service (DoS)

Chapter 1: System Models and Enabling Technologies (42 pages)
revised May 2, 2010

Distributed Computing : Clusters, Grids and Clouds, All rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, May 2, 2010.

1 - 44

(b) Trojan horse

(c) Network worms

(d) Masquerade

(e) Evasdropping

(f) Service sproofing

(g) Authorization

(h) Authentication

(i) Data integrity

 (j) Confidentaility

Problem 1.18: Briefly answer following questions on green information technology and energy
efficiency in distributed systems. You can find answers in later chapters or search over the Web.

(a) Why power consumption is critical to datacenter operations ?

(b) Justify Equation (1.6) by reading a cited information source.

(c) What is dynamic voltage frequency scaling (DVFS) technique ?

Problem Problem 1.19: Distinguish the following terminologies associate with multithreaded processor
architecture:

(a) What is fine-grain multithreading architecture ? Identify two example processors.

(b) What is course-grain multithreading architecture ? Identify two example processors.

(c) What is simultaneously multithreading (SMT) architecture ? Identify two example proccesors.

Problem 1.20: Characterize the following three cloud computing models:

(a) What is an IaaS (Infrastructure as a Service) cloud ? Give one example system.

(b) What is a PaaS (Platform as a Service) cloud ? Give one example system.

(c) What is a SaaS (Sofftware as a Service) cloud ? Give one example system.

