Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

Chapter 1

System Models and
Enabling Technologies

Summary: Parallel, distributed, and cloud computing systems advance all works of life. This
chapter assesses the evolutional changes in computing and IT trends in the past 30 years. These
changes are driven by killer applications with variable amounts of workload and datasets at
different periods of time. We study high-performance computing (HPC) and high-throughput
computing (HTC) systems in clusters/MPP, service-oriented architecture (SOA), grids, P2P
networks, and Internet clouds. These systems are distinguished by their architectures, OS
platforms, processing algorithms, communication protocols, security demands, and service
models. This chapter introduces the essential issues in scalability, performance, availability,
security, energy-efficiency, workload outsourcing, datacenter protection, etc. The intentis to pave
the way for our readers to study the details in subsequent chapters.

1.1 Scalable Computing Towards Massive Parallelism 2

1.1.1 High-Performance vs. High-Throughput Computing
1.1.2 Analysis of Top 500 Supercomputers
1.1.3 Killer Applications and Grand Challenges

1.2 Enabling Technologies for Distributed Computing 7
121 System Components and Wide-Area Networking
1.2.2 Virtual Machines and Virtualization Middleware
1.2.3 Trends in Distributed Operating Systems
1.2.4 Parallel Programming Environments

1.3 Distributed Computing System Models 14

1.3.1 Clusters of Cooperative Computers
1.3.2 Grid Computing Infrastructures
1.3.3 Service-Oriented Architecture (SOA)
1.3.4 Peer-to-Peer Network Families
1.3.5 Cloud Computing over The Internet

1.4 Performance, Security, and Energy- Efficiency 24

1.4.1 Performance Metrics and System Scalability
1.4.2 Fault-Tolerance and System Availability
1.4.3 Network Threats and Data Integrity

1.4.4 Energy-Efficiency in Distributed Computing

1.5 References and Homework Problems 34

Distributed Computing : Clusters, Grids and Cloudsll rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

1.1 Scalable Computing Towards Massive Parallelism

Over the past 60 years, the state of computing dua®e through a series of platform and
environmental changes. We review below the evataficchanges in machine architecture, operating
system platform, network connectivity, and applimatvorkloads. Instead of using a centralized cateip
to solve computational problems, a parallel antridiged computing system uses multiple computers t
solve large-scale problems over the Internet. Disted computing becomes data-intensive and
network-centric. We will identify the killer appltions of modern systems that practice parallel and
distributed computing. These large-scale applicativave significantly upgraded the quality of lifeall
aspects of our civilization.

1.1.1 High-Performance versus High-Throughput Comp uting

For a long timehigh-performance computinglPC) systems emphasizes the raw speed performance
The speed of HPC systems increased from Gflopshénetrly 1990's to now Pflops in 2010. This
improvement was driven mainly by demands from gifienengineering, and manufacturing communities
in the past. The speed performance in term ofifiggpoint computing capability on a single systism
facing some challenges by the business computiegs uhis flops speed measures the time to complete
the execution of a single large computing tasle tie Linpack benchmark used in Top-500 ranking. In
reality, the number of users of the Top-500 HPC aters is rather limited to only 10% of all compute
users. Today, majority of computer users are stithg desktop computers and servers either looalig
huge datacenters, when they conduct Internet seatimarket-driven computing tasks.

The development of market-oriented high-end comguystems is facing a strategic change from
the HPC paradigm to high-throughput computingHTC) paradigm. This HTC paradigm pays more
attention to high-flux multi-computing. The maingdipation of high-flux computing system lies inénbet
searches and web services by millions or more ssenstaneously. The performance goal is thus esthift
to measure theigh throughputor the number of tasks completed per unit of tikieC technology needs
to improve not only high speed in batch processing,also address the acute problem of cost, energy
saving, security, and reliability at many dataeemtand enterprise computing centers. This book is
designed to address both HPC and HTC systemaniettthe demands of all computer users.

In the past, electronic computers have gone thréiugtgenerations of development. Each generation
lasted 10 to 20 years. Adjacent generations oveeldjin about 10 years. During 1950-1970, a harafful
mainframe, such as IBM 360 and CDC 6400, were hailsatisfy the demand from large business or
government organizations. During 1960-1980, lowssteninicomputers, like DEC’s PDP 11 and VAX
series, became popular in small business and eottagipuses. During 1970-1990, personal computers
built with VLSI microprocessors became widespreadise by mass population. During 1980-2000,
massive number of portable computers and pervadiwices appeared in both wired and wireless
applications. Since 1990, we are overwhelmed wsihgiboth HPC and HTC systems that are hidden in
Internet clouds. They offer web-scale servicesaimegal masses in a digital society.

Levels of Parallelism: Let us first review types of parallelism before weceed further with the
computing trends. When hardware was bulky and esiperb0 years ago, most computers were designed
in a bit-serial fashionBit-level parallelism(BLP) converts bit-serial processing to word-lepsdcessing
gradually. We started with 4-bit microprocessor8td 6, 32 and 64-bit CPUs over the years. The next
wave of improvement is thiastruction-level parallelisnfILP). When we shifted from using processor to
execute single instruction at a time to executeipialinstructions simultaneously, we have practitieP
through pipelining, superscalar, VLIW€ry-long instruction word and multithreading in the past 30
years. ILP demands branch prediction, dynamic sdhey] speculation, and higher degree of compiler

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-2

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

support to make it work efficiently.

Data-level parallelisn{DLP) was made popular through SIMEir(gle-instruction and multiple-data
and vector machines using vector or array typdasfuctions. DLP demands both even more hardware
support and compiler assistance to work propenrEBince the introduction of multicore processand
chip multiprocessor€CMP), we explore théask-level parallelisnfTLP). A modern processor explores all
of the above parallelism types. The BLP, ILP, &idP are well supported by advances in hardware and
compilers. However, the TLP is far from being venccessful due to the difficulty in programming and
compilation of codes for efficient execution on tiedres and CMPs. As we move from parallel procgssi
to distributed processing, we will see the incredsmmputing granularity tipb-level parallelisn{JLP). It
is fair to say the coarse-grain parallelism istowil top of the fine-grain parallelism.

The Age of Internet Computing : The rapid development of the Internet has restutdillions of people
login online everyday. As a result, supercomputessand datacenters have changed from providigiy hi
performance floating-point computing capabilitiesoncurrently servicing huge number of requesinfr
billions of users. The development of computingud® computing and the widely adoption of provided
computing services demand HTC systems which arenofiuilt parallel and distributed computing
technologies. We cannot meet the future computergahd by pursuing only the Linpack performance on
a handful of computers. We must build efficientadanters using low-cost servers, storage systamls, a
high-bandwidth networks.

In the future, both HPC and HTC demand multi-cprecessors that can handle hundreds or
thousand of computing threads, tens-of-kilo-threade prototype, and mobile cloud services platfor
prototype. Both types of systems emphasize pasatiehnd distributed computing. Future HPC and HTC
systems must satisfy the huge demand of computiagpin terms of throughput, efficiency, scalalilit
reliability etc. The term of high efficiency usedre means not only speed performance of computing
systems, but also the work efficiency (including firogramming efficiency) and the energy efficiency
term of throughput per watt of energy consumed.adlieve these goals, three key scientific isguest
be addressed:

(1) Efficiency measured in building blocks and execution modelexploit massive
parallelism as in HPC. This may include data axeesl storage model for HTC and
energy efficiency.

(2) Dependabilityin terms of reliability and self-management frore thip to system and
application levels. The purpose is to provide Higloughput service with QoS
assurance even under failure conditions.

(3) Adaptationin programming model which can support billionsjolb requests over
massive datasets, virtualized cloud resourcesflaxittle application service model.

The Platform Evolution: The general computing trend is to leverage moik rmore on shared web
resources over the Internet. As illustrated in Eily. we see the evolution from two tracks of system
developmentdistributed computing systerlI3CS) andhigh-performance computingdPC) systems. On
the HPC side, homogeneous supercompuieessgively parallel processotglPP) are gradually replaced
by clusters of cooperative computers out of théreés share computing resources. The clusteftén@
collection of computer nodes that are physicallyrarted in close range to each other. Clusters,, ldiRP
Grid systems are studied in Chapters 3 and 4. ©D@S sidePeer-to-Pee(P2P) networks appeared for
distributed file sharing and content delivery apgiions. A P2P system is built over many clieathines

to be studied in Chapter 5. Peer machines are Igyfahstributed in nature. Both P2P and cloud coibmg

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-3

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

and web service platforms emphasize more on HTiterahan HPC.

Dizparate Systems

omagencous

Sharing _Histributed High -Pert.
Comnputing
_] — . Results in High
Mainly for Ferﬁ:urmanceg
file sharing H -

Rescurce Sharing

Close to each other
)

o Disparate Systems
Rescurce Sharing
Geographically Sparse
Within a Framework

Geographically Sparse ’

Mo existing framewaork

Heterogeneous
Application
Interaction

Figure 1.1 Evolutional trend towards web-scale di stributed high-throughput computing and
integrated web services to s atisfy heterogeneous applications.

Distributed Computing Families: Ever since mid 90's, technologies for buildinger-to-peel(P2P)
networks anchetwork of clustersvere consolidated into many national projects dtafdish wide-area
computing infrastructures, known asmputational gridsor data grids.We will study Grid computing
technology in Chapter 4. More recently, there $sii@e of interest to explore Internet cloud resesiifor
web-scale supercomputing. Internet clouds are tesufrom moving desktop computing to a
service-oriented computing using server clustedshage databases at datacenters. This chaptetiiots
the basics of various parallel and distributed feesi Grids and clouds are disparity systems wittat
emphases on resource sharing in hardware, softaadejatasets.

Design theory, enabling technologies ease studies of these massively distribute@sysare
treated in this book. Massively distributed systeare intended to exploit a high degree of parsitebr
concurrency among many machines. In 2009, the saijester ever built has 224,162 processor cores i
Cray XT-5 system. The largest computational gridnats any where from ten to hundreds of server
clusters. A typical P2P network may involve mifimof client machines, simultaneously. Experimental
cloud computing clusters have been built with tleouls of processing nodes. We devote the matenmal mi
Chapters 7 and 8 to cover cloud computing Cagdiestiof HPC system as cluster and grids and HTC
systems as P2P networks and datacenter-basedptiitaims will be examined in Chapter 9.

1.1.2 Analysis of Top-500 Supercomputers

Figure 1.2 plots the measured performance of the50 fastest computers from 1993 to 2009. The
Y-axis is scaled by the sustained speed performiamnizems of GFlops, Tfops, and PFlops. The n&ddl
curve plots the performance of the No.1 fastestmdars recorded over the years. The peak perfarenan
increases from 58.7 GFlops to 1.76 PFlops in EésyeThe bottom curve corresponds to the number 500

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-4

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

computer speed at each year. It increases from@HE@ps to 20 Tflops in 16 years. The top curvasgibe
total sum of all 500 fastest computer speed ovetgame period. These plots give a fairly good
performance projection for years to come. For exanipPFlops was achieved by IBM Roadrunner in June
of 2007. It is interesting to observe that thaltsum increases almost linearly over the years.

100F Flops
274951 .30 TE
S B #1
10 FFlops - g o #500
=BT ITE00 T & sum
1 FFlops -_.-" R=R==}
-m -
e =888
100 TFops o5 -
A SRR R 20051 GF)
] = iF o B
= 10 TRops P&t ---_-_ﬂ" -_._- Lo o
E \;I-_-- A i oo
E 1 TFlops B % B T
- o
S Em R e
100 GFlops 4597 DDDDD
o
10 GRops et
O e S
1 Gﬂnps—q'f"n -
d
100 PMFops

2005
2006
2007 A
2008]
2009

1993
1994
1945
1996
1997 4
1435
1944
2000
2001
2002
2003
2004

Figure 1.2 The Top-500 supercomputer performance from 1993 to 2009
(Courtesy of Top 500 Organization, 2009)

It is interesting to observe in Fig.1.3 the ardttiteal evolution of the Top-500 supercomputers
over the years. In 1993, 250 systems assumedntfie (§ymmetric multiprossdrarchitecture shown in
yellow area. Most SMPs are built with shared memamg shared 1/O devices. The word “symmetric”
refers to the fact all processors are equally dagabexecute the supervisory and/or the applinatimdes.
There were 120 MPP systems (in dark orange arélaXten. The SIMD gingle instruction stream over
multiple data streamsnachines (some called array processors) and wa@gsor systems disappeared in
1997, while the cluster (light orange) architectappeared in 1999, The clustered systems growlyapid
from a few to 375 systems out of 500 by 2005. G dther hand, the SMP architecture disappeared
gradually to zero by 2002. Today, the dominatinthéiecture classes in the Top-500 list are thetetas
MPP, and constellations (pink). More than 85%ha&f Top-500 computers used in 2010 adopted the
cluster configurations and the remaining 15% chaserMPP khassively parallel processoarchitecture.

Distributed Computing : Clusters, Grids and Cloudsll rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

Architecture Share Owver Time
1993-2009

500

400
MPP
300 Cluster
m sMmP

Constellations
M Single Processor
H Others

Systems

200

100

P

06/2000
06/2001
06/2002
06/2003
06/2004
06/2005
06/2006
06/2007
06/2008
06/2009

TOPS00 Releases

Figure 1.3 Architectural evolution of the Top-500 supercomputers from 1993 to 2009.
(Courtesy of Top 500 Organization, 2009)

In Table 1.1, we summarize the key architectfeatures, sustained Linpack benchmark perfocman
and power assumption of five top 5 supercomputepsrted in November 2009. We will present the
details of the top two systems: Cray Jaguar and Bdrunner as case studies in Chapter 8. These tw
machines have exceeded the Pflops performancepdier consumptions of these systems are enormous
including the cooling electricity. This has triggdrthe increasing demand of green information telclyy
in recent years. These state of the art systethbeviised far beyond 2010 when this book was evritt

Table 1.1 Top Five Supercomputers Evaluated in Nov . 2009

Sustained Power/

System Rank Architecture Description (Core size, d
and Name Processor, GHz, OS, and Topology) Spee system
1. Jaguar at Oak Cray XT-5HE: An MPP built with 224,162 cores in 2.6 GHz 1.759 6.95 MW
Ridge Nat'l Lab, Opteron 6-core processors, interconnected by a 3-D torus PFlops
us network
2. Roadrunner IBM BladeCenter QS22/LS21 cluster of 122,400 cores in 1.042 2.35 MW
at DOE/NNSA/ 12,960 3.2 GHz POWER XCell 8i processors and 6,480 AMD PFops
LANL, US 1.8 GHz Operon dual-core processors, running Linux and
interconnected by an InfiniBand network
3. Kraken at NICS, Crat XT-5-HE : An MPP built with 98,928 cores of 2.6 GHz 831 3.09 MW
University of Opteron 6-core processors interconnected by a 3-D torus TFops
Tennessee, US network
4. JUGENE at the IBM BlueGene/P solution built with 294,912 processors: 825.5 2.27 MW
FZJ in Germany PowerPC core, 4-way SMP nodes, and 144 TB of memory in TFlops
72 racks, interconnected by a 3-D torus network
5. Tianhe-1 at NSC/ | NUST TH-1 cluster of 71,680 cores in Xeon processors and 563 1.48 MW
NUDT in China ATI Radeon GPUs, interconnected by an InfiniBand network TFlops

1.1.3 Killer Applications and Grand Challenges
High-performance computing systems offer transpgrém many application aspects. For example,

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-6

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

data access, resource allocation, process locat@rgurrency in execution, job replication, andufa
recovery should be made transparent to both usdrsystem management. In Table 1.2, we identifgvel

a few key applications that have driven the develemt of parallel and distributed systems in regeats.
These applications spread across many importantithsnin our society: science, engineering, business
education, health care, traffic control, Internetl aveb services, military, and government applicei
Almost all applications demand computing economigsh-scale data collection, system reliability, and
scalable performance.

For example, distributed transaction processimften practiced in banking and finance industry.
Distributed banking systems must be designed tte smad tolerate faults with the growing demands.
Transactions represent 90% of the existing marketdliable banking systems. We have to deal with
multiple database servers in distributed transastidHow to maintain the consistency of replicated
transaction records is crucial in real-time bankdegvices. Other complications include short ofwgafe
support, network saturation, and security threathése applications. We will study some of théekil
applications and the software standards needetapt€rs 8 and 9.

Table 1.2 Killer Applications of HPC and HTC Syst ems

Domain Specific Applications
Science and Scientific simulations, genomic analysis, etc.
Engineering

Earthquake prediction, global warming, weather forecasting, etc.

Business, Education,
service industry,
and Health Care

Telecommunication, content delivery, e-commerce, etc.

Banking, stock exchanges, transaction processing, etc.

Air traffic control , electric power Grids, distance education, etc.

Health care, hospital automation, telemedicine, etc.

Internet and
Web Services
and Government

Internet search, datacenters, decision-make systems, etc.

Traffic monitory , worm containment, cyber security, etc.

Digital government, on-line tax return, social networking, etc.

Mission-Critical
Applications

Military commend, control, intelligent systems,
crisis management, etc.

1.2 Enabling Technologies for Distributed Parallelism

This section reviews hardware, software and netwerrknologies for distributed computing system
design and applications. Viable approaches to lisigtibuted operating systems are assessed fdtihgn
massive parallelism in distributed environment.

121

In this section, we assess the growth of compoaerdtnetwork technologies in building HPC or HTC
systems in recent years. In Fig.1,4, processatsiganeasured by MIP&i(llion instructions per secoid

System Components and Wide-Area Networking

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-7

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

The network bandwidth is counted by Mbps or Giiydeda orGiga bits per secondThe unit GE refers to
1 Gbps Ethernet bandwidth.

Advances in Processors:The upper curve in Fig.1.4 plots the processordgeewth in modern micro
processors or iohip multiprocessor€CMP). We see a growth from 1 MIPS of VAX 780 @78 to 1,800
MIPS of Intel Pentium 4 in 2002, and to 22,000 BIfeak for Sun Niagara 2 in 2008. By Moore’s law,
the processor speed is doubled in every 18 monttis.doubling effect was pretty accurate in thet 38s
years. The clock rate for these processors incsdamm 12 MHz in Intel 286 to 4 GHz in Pentium 430
years. However, the clock rate has stopped inerglsilue to the need to reduce power consumptiba. T
ILP (instruction-level parallelishis highly exploited in modern processors. ILP haadsms include
multiple-issue superscalar architecture, dynamiandin prediction, and speculative execution, etc.
These ILP techniques are all hardware and comgilpported. In addition, DLRI&ta-level parallelish
and TLP thread-level parallelisthare also highly explored in today’s processors.

Many processors are now upgraded to havdi-vare and multithreaded micro-architectures. The
architecture of a typical multicore processor isvgh in Fig.1.5. Each core is essentially a promegsth
its own private cache (L1 cache). Multiple cores lapused in the same chip with a L2 cache théiasesl
by all cores. In the future, multiple CMPs coulltilt on the same CPU chip with even the L3 camhe
chip. Multicore and multithreaded processors am hailt in many high-end processors like Intel Xgon
Montecito, Sun Niagara, IBM Power 6 and X cell mssors. Each core could be also multithreaded. For
example, the Niagara Il is built with 8 cores wi&ththreads handled by each core. This implies that t
maximum ILP and TLP that can be exploited in Niggagual to 64 (= 8 x 8).

100000 1000000
— Processor Speed Intel Core 2 QX9770
. Sun Niagara 2
—o— Network Bandwidth .
10000+ Intel Pentium 4
-+ 100000

o 000 Intel Pentium 11 40 GE g

n 1 -+ .
= =
\2, Intel Pentium Pro 10 GE 1 10000 Z
§ 100 1 Motorola 68060 g
s ko)
2 11000 &
8 Motorola 68030 Gigabit M
o 107 Ethernet <
S
Intel 286 =
+ [
11 Fast Ethernet 100 2

Fvax 11/780
Ethern
0.1+ | | | | | 10
1978 1983 1988 1993 1998 2003 2008

Year

Figure 1.4 Improvement of pro cessor and network technologies over 30 years.

Multicore Architecture: With multiple of the multicores in Fig.1.5 buibyn even larger chip, the number
of working cores on the same CPU chip could reactdteds in the next few years. Both IA-32 and |A-64
instruction set architectures are built in commargrocessors today. Now, x-86 processors has been
extended to serve HPC and HTC in some high-encesgmocessors. Many RISC processors are now
replaced by multicore x-86 processors in the Top-50percomputer systems. The trend is that x-86

1-8

Distributed Computing : Clusters, Grids and Cloudsll rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

upgrades will dominate in datacenters and superaterg Graphic processing unit§&sPU) appeared in
HPC systems. In the future, Exa-scale (EFlops 8tF16ps) systems could be built with a large numifer o
multi-core CPUs and GPUs. In 2009, the No.1 supeputer in the Top-500 list (a Cray XT-5 named
Jaguar) has already with almost over 30 thousadB &-core Opteron processors resulting a total of
224,162 cores in the entire HPC system.

Multicore Processor

Core 1 Core2 Coren

L 1 Cache L1 Cache L1 Cache

‘ L2 Cache ‘

ﬁ
gt

‘ L3 Cache / DRAM ‘

Figure 1.5 The schematic of a modern multicore processor using a hierarchy of caches

Wide-Area Networking : The lower curve in Fig.1.4 plots the rapid growftEthernet bandwidth from
10 Mbps in 1979 to 1 Gbps in 1999 and 40 GE in 2@0¥as speculated that 1 Tbps network links |
available by 2012. According to Berman, Fox, bieg [3], we expect a 1,000, 1,000, 100, 10, andpsG
network links, respectively, at international, oatl, organization, optical desktop, and coppekitgs
connections in 2006. An increase factor of 2 aryn network performance was reported, whicassf
than Moore’s law on CPU speed doubling in everyb®iths. The implication is that more computer$ wil
be used concurrently in the future. High-bandwidtworking increases the capability of building
massively distributed system3he IDC 2010 report has predicted that both IBfamd and Ethernet will
be the two major interconnect choices in the HRDar

Memory, SSD, and Disk Arrays: Figure 1.12 plots the growth of DRAM chip capadityn 16 Kb in 1976

to 16 Gb in 2008. This shows that the memory chigts4 times increase in capacity every 3 years. Th
memory access time did not improve much in the. pagact, the memory wall problem is getting woase

the processor gets faster. For hard drives, thadigpincreases from 260 MB in 250 GB in 2004. The
Seagate Barracuda 7200.11 hard drive reached 1if Z&08. The increase is about 10 times in capacit
every 8 years. The capacity increase of disk aliagsen greater in the years to come. On the biued,
faster processor speed and larger memory capastitrin wider gap between processors and memory.
The memory wall becomes even a more serious prolfem before. Memory wall still limits the
scalability of multi-core processors in terms offpemance.

Distributed Computing : Clusters, Grids and Cloudsll rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)

revised May 2, 2010

100000 1000000

-0 Memory Chip

—— Di i 5 100000

100001 Disk Capacity
+ 10000
1000 -+ !

o F 1000 |,
S 0
= 1007 64Mb F100 >
< 16Mk WDC WD1200JE 9
N 10 + + 10
P 4Mb Maxtor
8 1Mb eagateDiamondMax 2160 14 %
2 14 ST43400N a)

256Kb lo1

64Kb
0.1+ lomega
j Morrow Designs -+ 0.01
DISCUS M26
0.01 | | | | | 0.001
1978 1983 1988 1993 1998 2003 2008
Year

Figure 1.6 Improvement of memory and disk technologies over 30 years

The rapid growth of flash memory aswlid-state drive(SSD) also impacts the future of HPC and
HTC systems. The mortality rate of SSD is not biadllaA typical SSD can handle 300,000 -1,000,000
write cycles per block. So SSD can last for sewsrals, even they have heavy write usage. Fla35SD
will demonstrate impressive speedups in many agipdins. For example, the Apple Macbook pro uses 128
GB solid-state hard drive, which is only $150 mitv@n a 500 GB 7200 RPM SATA drive. However to get
256 GB or 512 GB SSD drive, the cost may go upifiogmtly. At present, SSD drives are still too
expensive to replace stable disk arrays in thegomarket. Eventually, power consumption, coadind
packaging will limit the large system developmemhe power increases linearly with respect to thekc
frequency and quadratically with respect to theage applied on chips. We cannot increase the chitek
indefinitely. Lower the voltage supply is very muatdemand.

1.2.2 Virtual Machines and Virtualization Middleware

A conventional computer has a single OS images dffers a rigid architecture that tightly couples
application software to a specific hardware platfoBome software running well on one machine nay n
be executable on anther platform with a differ@istruction set under a fixed OS managem¥irtual
machines (VM) offer novel solutions to underutilized resoas, application inflexibility, software
manageability, and security concerns in existingsfgal machines.

Virtual Machines: The concept of virtual machines is illustratedrig.1.7. The host machine is equipped
with the physical hardware shown at the bottom.dx@mple, a desktop with x-86 architecture runiiisg
installed Windows OS as shown in Fig.1.7(a). T &an be provisioned to any hardware system. The
VM is built with virtual resources managed by agiu@S to run a specific application. Between thesvM
and the host platform, we need to deploy a middievayer called airtual machine monito(VMM) .
Figure 1.7(b) shows a native VM installed with tlee a VMM called &ypervisorat the privileged mode.
For example, the hardware has a x-86 architectumeimg the Windows system. The guest OS could be a
Linux system and the hypervisor is the XEN systawetbped at Cambridge University. This hypervisor
approach is also called bare-metal VM, becauséypervisor handles the bare hardware (CPU, memory,
and 1/O) directly.

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-10

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

Another architecture is the host VM showrfig.1.7(c). Here the VMM runs with a non-priviéx
mode. The host OS need not be modified. The VMbeaalso implemented with a dual mode as shown in
Fig.1.7(d). Part of VMM runs at the user level ambther portion runs at the supervisor level. is tlase,
the host OS may have to be modified to some extehtiple VMs can be ported to one given hardware
system to support the virtualization process. The VM aguoh offers hardware-independence of the OS
and applications. The user application and itsagdd OS could be bundled together as a virtudicaque,
that can be easily ported on various hardwaregslats.

Guest Apps
Guest Apps Guest Apps Guest OS
Nonprivileged
Appls Guest OS VMM VMM mode
Operating System VMM Host OS Host |VMM Privileged
(0S) (Hypervisor) oS mode
Hardware Hardware Hardware Hardware
(a) Physical Machine (b) Native VM (c) Hosted VM (d) Dual-mode V M

Figure 1.7 Three ways of constructing a virtual machine (VM) embedded in a physical
machine.The VM could run on an OS different from th at of the host computer.

Virtualization Operations: The VMM provides the VM abstraction to the guest. 3%th full
virtualization, the VMM exports a VM abstractioreiatical to the physical machine; so that a stan@8d
such as Windows 2000 or Linux can run just as theyld on the physical hardware. Low-level VMM
operations are indicated by Mendel Rosenblum [2@] #ustrated in Fig.1..8. First, the VMs can be
multiplexed between hardware machines as showrigii.F8(a). Second, a VM can be suspended and
stored in a stable storage as shown in Fig.1..8Tird, a suspended VM can be resumed or prowesido

a new hardware platform in Fig.1.8(c). Finally, 8\tan be migrated from one hardware platform to
another platform as shown in Fig.1.8 (d).

These VM operations enable a virtual machine tprogisioned to any available hardware platform.
They make it flexible to port distributed applicati executions. Furthermore the VM approach will
significantly enhance the utilization of serveraeses. Multiple server functions can be consofidain
the same hardware platform to achieve higher systificiency. This will eliminate server sprawl via
deployment of systems as VMs. These VMs move taesgy to the shared hardware. According to a
claim by VMWare, the server utilization could berieased from current 5-15% to 60-80%.

Distributed Computing : Clusters, Grids and Cloudsll rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

A
App App £
os os OS
e e VMM VMM
] — Tl — Hardware Hardware
App
Storage Storage
OSs
(a) Multiplexing (b) Suspension (Storage)
App App
oS oS App App App
OSs OSs OSs
VMM
VINVIMVE VIVIN
1Bt b Hardware Hardware
Storage Storage
(c) Provision (Resume) (d) Life migratio n

Figure 1.8 Virtual machine multiplexing, suspensi on, provision, and migration in a distributed
computing environment, (Courtesy of M. Rosenblum, Keynote address, ACM ASPLOS 2006 [29])

Virtual Infrastructures: This is very much needed in distributed computiRtpysical resources for
compute, storage, and networking at the bottormegped to the needy applications embedded in \&ariou
VMs at the top. Hardware and software are thenraggh Virtual Infrastructure is what connects tgses

to distributed applications. It is a dynamic majgpai the system resources to specific applicatidhs.
result is decreased costs and increased efficieacid responsiveness. Virtualization for server
consolidation and containment is a good examplewilletudy virtual machines and virtualization
support in Chapter 2. Virtualization support fausters, grids and clouds are studied in Chaptetséhd

6, respectively.

1.2.3 Trends in Distributed Operating Systems

The computers in most distributed systemeslaosely coupled. Thus the distributed system has
inherently multiple system images. This is mainlyedo the fact that all node machines run with an
independent operating system. To promote resouneeing and fast communications among node
machines, we desire to havdiatributedOS that manages all resources coherently andegftlgi Such a
system is most likely to be a closed system. Thhyan message passing arthote procedure ca{RPC)
for internode communications. It should be pointed that a distributed OS is crucial to upgrade the
performance, efficiency, and application flexilyilaf distributed applications. A distributed systeould
not face the shortcomings in restricted applicatiand lack of software and security support, uantil
well-built distributed OSs are in widespread use.

Distributed Operating Systems. Tanenbaum [26] classifies three approaches tdllising the resource
management functions in a distributed computelesysi he first approach is to builchatwork OSver a

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-12
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

large number of heterogeneous OS platforms. Suwtveork OS offers the lowest transparency to users.
Network OS is essentially a distributed file systémlependent computers rely on file sharing agams

of communication. The second approach is to develaleware to offer limited degree of resource
sharing like what was build for clustered systei@sction 1.2.1). The third approach is to develop a
distributed OSo achieve higher use or system transparency.

Amoeba vs. DCE: Table 1.3 summarizes the functionalities of a iisted OS Amoeba and a
middleware-based DCE developed in the last twodksal o balance the resource management workload,
the functionalities of such a DOS should be distédl to any available server. In this sense, the
conventional OS runs only on a centralized platfdffith the distribution of OS services, the DOSiges
should take either a light-weight microkernel ajgmiolike the Amoeba [27] or extend an existing RS |

the DCE [5] by extending UNIX. The trend is to fnge users from most resource management duties. We
need new web-based operating systems to supptualmation of resources in distributed environnsent
We shall study distributed OS installed in disttéaisystems in subsequent chapters.

Table 1.3 Feature Comparison of Two Distributed O perating Systems

Operating System AMOEBA developed at Vrije DCE as OSF/1 by Open

Functionality

University, Amsterdam [32]

Software Foundation [5]

History and Current
System Status

Developed at VU and tested in European

Community, version 5.2 released in 1995,

written in C.

Release as OSF/1 product, DEC was built
as user extension on top of an existing OS
like UNIX, VMS, Windows, OS/2, etc.

Distributed OS
Architecture

Microkernel-based, location transparent,
using many servers to handle files,
directory, replication, run, boot, and
TCP/IP services

This is a middleware-OS providing a
platform for running distributed applications
The system supports RPC, security, and
other DCE Threads.

Amoeba Microkernel

A special microkernel handles low-level
process , memory, I/O, and

DCE packages handle file, time, directory,
and security services, RPC, authentication

or DEC Packages

communication functions at user space.

DCE RPC supports authenticated
communication and other security services
in user programs

Use a network-layer FLIP protocol and
RPC to implement point-to-point and
group communications

Communication
Mechanisms

1.2.4 Parallel and Distributed Programming Environments

Four programming models are specificaltraduced below for distributed computing with
expected scalable performance and applicationtiléyi We summarize four distributed programming
models in Table 1.4. Some software toolsets deeeldp recent years are also identified here. mPhé
most popular programming model for message-passisggms. Google’s MapReduce and BigTable are
for effective use of resources from Internet cloadd data centers. The service clouds demand émtend
Hadoop, EC2, and S3 to facilitate distributed cotimguapplications over distributed storage systems.

Message-Passing Interfac@MPI) is the primary programming standard usedeeetbp parallel programs
to run on a distributed system. MPI is essentiallibrary of subprograms that can be called frorarC
Fortran to write parallel programs running on driisted system. We need to embody clusters, &ritl
P2P systems with upgraded web services and utititpyputing applications. Besides MPI, distributed
programming can be also supported with low-levehjtives like PVM (arallel virtual maching Both
MPI and PVM are described in Hwang and Xu [20].

MapReduce: This is a web-programming model for scalable dategssing on large clusters over large

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-13

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

datasets [11]. The model is applied mainly in webles search and cloud computing applications. UBee
specifies anap functiorto generate a set of intermediate key/value pahien the user appliesraduce
functionto merge all intermediate values with the samerimegliate key. MapReduce is highly scalable to
explore high degree of parallelism at job levelgypical MapReduce computation process many handle
Terabybe of data on tens of thousand or more alimmhines. Hundreds of MapReduce programs arg likel
to be executed, simultaneously. Thousands of Map&ebs are executed on Google’s clusters everyday

Table 1.4 Parallel and Distributed Programming Mo dels and Toolsets

Model Objectives and Web Link Attractive Features Implemented
Message-Passing Interface is a library of Specify synchronous or asynchronous point-to-
MPI subprograms that can be called from C or point and collective communication commands
Fortran to write parallel programs running on | and I/O operations in user programs for
distributed computer systems [2, 21] message-passing execution
A web programming model for scalable data | A map function to generate a set of
MapReduce | processing on large cluster over large intermediate key/value pairs. A Reduce
datasets, applied in web search operations function to merge all intermediate values with
[12] the same key
A software platform to write and run large Hadoop is scalable, economical, efficient and
Hadoop user applications on vas datasets in business | reliable in providing users with easy access of
and advertising applications. commercial clusters

http://hadoop.apache.org/core/

Hadoop Library : Hadoop offers a software platform that was oatjyndeveloped by a Yahoo group. The
package enable users write and run applicationsvast distributed data. Attractive features inelufll)
Scalability: Hadoop can easily scale to store andgss petabytes of data in the Web space. (2)datgn

An open-source MapReduce minimizes the overheatiskispawning and massive data communication,
(3) Efficiency: Processing data with high-degre@afallelism across a large number of commodityesod
and (4) Reliability: This refers to automaticallgdping multiple data copies to facilitate redepleptof
computing tasks upon unexpected system failures.

Open Grid Service Architecture (OGSA): The development of grid infrastructure is drivenpgmghing
need in large-scale distributed computing applicesj These applications must count on a high degfree
resource and data sharing. Table 1..5 introdie®6G SA Open Grid Service Architectyras a common
standard for general public use of grid servicesndsis Il is a its realization. The key featuregec®
distributed execution environment, PKPublic Key Infrastructure services using locatertificate
authority (CA), trust management and security policies id gomputing.

Globus Toolkits and Extensions:Globusis middleware library jointly developed by the USgaAnne
National Laboratory and USC Information Sciencetila® during the past decade. This library
implemented some of the OGSA standards for resaliscevery, allocation, and security enforcemerst in
Grid environment. The Globus packages support raiii mutual authentication with PKI certificates.
Globus has gone through several versions releasgguently. The current version GT 4 is in usz08.
Sun SGE and IBM Grid Toolbox: Both Sun Microsysteansl IBM have extended Globus for business
applications. We will cover grid computing prina@gland technology in Chapter 5 and grid application
Chapter 9.

Table 1.5 Grid Standards and Toolkits for scientif ic and Engineering Applications

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-14

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

Grid Major Grid Service Key Features and Security
Standards Functionalities Infrastructure
OGSA Open Grid Service Architecture | Support heterogeneous distributed environment,
Standard offers common grid service bridging CA, multiple trusted intermediaries,
standards for general public use| dynamic policies, multiple security mechanisms, etc
Globus Resource allocation, Globus Sign-in multisite authentication with PKI, Kerber,
Toolkits security infrastructure (GSI), and SSL, Proxy, delegation, and GSS API for message
generic security service API integrity and confidentiality

Sun Grid Supporting local grids and clustersUsing reserved ports, Kerberos, DCE, SSL, and
Engine (SGE)| inenterprise or campus Intranet (authentication in classified hosts at various trust

applications levels and resource access restrictions
IBM Grid AIX and Linux grids built on top | Using simple CA, granting access, grid service
Toolbox of Globus Toolkit, autonomic (ReGS), supporting Grid application framework for
computing, Replica services Java (GAF4J), GridMap in IBM IntraGrid for

security update, etc.

1.3 Distributed Computing System Models

Amassively parallel and distributed computing systetin short anassive systei built over a large
number of autonomous computer nodes. These nodemeaare interconnected bystem-area networks
(SAN), local-are networkgLAN), or wide-area network§WAN) in a hierarchical manner. By today’s
networking technology, a few LAN switches can gasiinnect hundreds of machines as a working cluster
A WAN can connect many local clusters to form amarge cluster of clusters. In this sense, onebeala
a massive system to have millions of computers ecied to edge networks in various Internet domains.

System Classification:Massive systems are considered highly scalableachra web-scale connectivity,
either physically or logically. In Table 1.6, wéassify massive systems into four classes: nantaly t
clusters, P2P networks, computing griésd Internet cloudsover huge datacenterdn terms of node
number, these four system classes may involve ledsdthousands, or even millions of computers as
participating nodes. These machines work collelstivaoperatively, or collaboratively at variousdds.

The table entries characterize these four systasses in various technical and application aspects.

From the application prospective, clussgesmost popular in supercomputing application2089,
417 out of the top-500 supercomputers were buit &icluster architecture. It is fair to say thlassters
have laid the necessary foundation to build la@esgrids and clouds. P2P networks appeal most to
business applications. However, the content inglus&s reluctant to accept P2P technology for lack o
copyright protection in ad hoc networks. Many nadilogrids built in the past decade were underetilifor
lack of reliable middleware or well-coded applicats. Potential advantages of cloud computing ligsin
low cost and simplicity to both providers and users

New Challengeddtility computing focuses on a business model, Iyciv customers receive computing
resources from a paid service provider. All gridim platforms are regarded as utility service pfers.
However, cloud computing offers a broader condeg tutility computing. Distributed cloud applicats

run on any available servers in some edge netwdtkfor technological challenges include all aspefts
computer science and engineering. For example, @eal mew network-efficient processors, scalable
memory and storage schemes, distributed OS, middéevor machine virtualization, new programming
model, effective resource management, and apgitgtiogram development in distributed systems that
explore massive parallelism at all processing kevel

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-15

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

Table 1.6 Classification of Distributed Parallel C omputing Systems

Functionality, Multicomputer Peer-to-Peer Data/Computational Cloud Platforms
Applications Clusters [11, 21] Networks [13, 33] Grids [4, 14, 33] [7, 8, 22, 31]
Architecture, |Network of compute Flexible network of Heterogeneous cluster of |Virtualized cluster of
Network nodes interconnected by|client machines clusters connected by servers over many
Connectivity |SAN, LAN, or WAN, logically connected by |high-speed network links |datacenters via
and Size hierarchically an overlay network over selected resource |service-level
sites. agreement
Control and Homogeneous nodes [Autonomous client Centralized control, Dynamic resource
Resources with distributed control, |nodes, free in and out, |server oriented with provisioning of servers,
Management |running Unixor Linux \with distributed self- |authenticated security, |storage, and networks
organization and static resources over massive datasets
management
Applications |High-performance Most appealing to Distributed super- Upgraded web search,
and network- |computing, search business file sharing, |computing, global utility computing, and
centric engines, and web content delivery, and |problem solving, and outsourced computing
services services, etc. social networking datacenter services services
Representative |Google search engine, |Gnutella, eMule, TeraGrid, GriPhyN, Google App Engine,
Operational SunBlade, IBM BitTorrent, Napster, UK EGEE, D-Grid, IBM Bluecloud,
Systems BlueGene, Papestry, KaZaA, ChinaGrid, 1BM Amazon Web
Road Runner, Skype, JIXTA, IntraGrid, etc. Service(AWS), and
Cray XT4, etc. and .NET Microsoft Azure,

1.3.1 Clusters of Cooperative Computers

A computing cluster is built by a collectiof interconnected stand-alone computers, whichkwor
cooperatively together as a single integrated caimgpuesource. To handle heavy workload with large
datasets, clustered computer systems have dentedsimgpressive results in the past.

Cluster Architecture: Figure 1.9 shows the architecture of a typical sestaster built around a
low-latency and high-bandwidth interconnection reatw This network can be as simple as a SAN (e.qg.
Myrinet) or a LAN (e.g. Ethernet). To build a largcluster with more nodes, the IN can be builhwit
multiple levels of Gigabit Ethernet, Myrinet, orfimBand switches. Through hierarchical construgtio
using SAN, LAN, or WAN, one can build scalable ¢&rs with increasing number of nodes. The whole
cluster is connected to the Internet via a VPNwgate The gateway IP address could be used to Iticate
cluster over the cyberspace.

Single-System ImageThe system image of a computer is decided by tnethe OS manages the shared
cluster resources. Most clusters have loosely-emlipbde computers. All resources of a server nede i
managed by its own OS. Thus, most clusters havepleubystem images coexisting simultaneously. Greg
Pfister [27] has indicated that an ideal clusteyuith merge multiple system images intsiagle-system
image (SSI) at various operational levels. We need aalided cluster operating system or some
middlware to support SSI at various levels, inahgdihe sharing of all CPUs, memories, and I/O acatls
computer nodes attached to the cluster.

eserved

The Internet

System-Area Network, or
Local-Area Networks, or
Storage-Area Network
(Ethernet, Myrinet,
InfiniBand, etc.)

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

Figure 1.9 A cluster of servers (S 1, S,,...,Sy) interconnected by a high-bandwidth system-area or
local-area network with shared I/O devices and disk arrays. The cluster acts as a single computing
node attached to the Internet throught a gateway.

A single system image is the illusion, ceglaby software or hardware that presents a cadleaif
resources as an integrated powerful resource. nta&eés the cluster appear like a single machirieeto
user, applications, and network. A cluster withltiple system images is nothing but a collectidn o
independent computers. Figure 1.10 shows the haedasad software architecture of a typical cluster
system. Each node computer has its own operayistgra. On top of all operating systems, we deploy
some two layers of middleware at the user spaseagport the high availability and some SSI featfves
shared resources or fast MPI communications.

Programuming Environ- Web Windows Other Subsystems
e an fE o Gl User Interface atahase, OLTP, eic
MP II PVAIY (D ! !)

Single System Image Infrastructure

Availahility Infrastruc ture

05 0 05
Mode Mode

|_I Gigahit Network Interconnect

Figure 1.10 The architecture of a working clust er with full hardware, software, anAd
middleware support for availability and single syst em image.

For example, since memory modules are Higedd at different server nodes, they are managed
independently over disjoint address spaces. Thidiés that the cluster has multiple images at the
memory-reference level. On the other hand, we mamgtwall distributed memories to be shared by all
servers by forming distributed shared memofldSM) with a single address space. A DSM clustasth
has asingle-system imag&SI) at the memory-sharing level. Cluster exgatata parallelism at the job
level with high system availability.

Cluster Design IssuestUnfortunately, a cluster-wide OS for complete re@sewsharing is not available yet.
Middleware or OS extensions were developed at 8er gpace to achieve SSI at selected functional

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-17

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

levels.Without the middleware, the cluster nodemoawork together effectively to achieve coopemrati

computing. The software environments and applioatimust rely on the middleware to achieve high
performanceThe cluster benefits come from scalable performagffieient message-passing, high system
availability, seamless fault tolerance, and clugtiele job management as summarized in Table 1.7.

Clusters and MPP designs are treated in Chapter 3.

Table 1.7 Critical Cluster Design Issues and Feas

ible Implementations

Fault-Tolerance

eliminate all single points of failure

Features Functional Characterization Feasible Imple mentations
Availability Hardware and software support for Failover, failback, checkpointing, roll back
Support sustained high availability in cluster recovery, non-stop OS, etc
Hardware Automated failure management to Component redundancy, hot swapping,

RAID, and multiple power supplies, etc.

Single-System

Achieving SSI at functional level with

Hardware mechanisms or middleware

Communications

overhead and hide latencies

Image (SSI) hardware and software support, support to achieve distributed shared
middleware, or OS extensions. memory (DSM) at coherent cache level.
Efficient To reduce message-passing system Fast message passing , active messages,

enhanced MPI library, etc.

Cluster-wide Job
Management

Use a global job management system with
better scheduling and monitory

Apply single-job management systems such
as LSF, Codine, etc

Dynamic Load
Balancing

Balance the workload of all processing
nodes along with failure recovery

Workload monitory, process migration, job
replication and gang scheduling, etc.

Scalability and
Programmability

Adding more servers to a cluster or adding
more clusters to a Grid as the workload or

Use scalable interconnect, performance
monitory, distributed execution environment,

data set increases and better software tools

1.3.2 Grid Computing Infrastructures

In 30 years, we have experienced arabgrowth path from Internet to web and grid coring
services. Internet service such asTeietcommand enables connection from one computer ¢onate
computer. The Web service likdtp protocol enables remote access of remote web p&gielscomputing
is envisioned to allow close interactions amondiaations running on distant computers, simultars&pu
Forbes Magazindas projected the global grow of IT-based econoragnf$1 Trillion in 2001 to 20
Trillion by 2015. The evolution from Internet to lvand grid services is certainly playing a majoe to
this end.

Computing Grids: Like an electric-utility power grid, @omputing gridoffers an infrastructure that
couples computers, software/middleware, speciatungents, and people and sensors together. Grid is
often constructed across LAN,WAN, or Internet bamrkd networks at regional, national, or global szale
Enterprises or organizations present grids as riated computing resources. They can be viewedaasso
virtual platformsto supporwirtual organizationsThe computers used in a grid are primarily watishs,
servers, clusters, and supercomputers. Personaluters, laptops and PDAs can be used as accesgslevi
to a grid system. The grid software and middlevane needed as applications and utility libraried an
databases, Special instruments are used to searife in the galaxy, for example.

Figure 1.11 shows the concept of a computationa built over three resource sites at the
University of Wisconsin at Madison, University diffiois at Champaign-Urbana, and California Ingétu
of Technology. The three sites offer complementaimputing resources, including workstations, large

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-18

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technologié2 pages)
revised May 2, 2010

servers, mesh of processors, and Linux clustesatisfy a chain of computational needs. Three sieps
shown to the chain of weather data collectionyithisted computations, and result analysis in athegp
simulations. Many other even larger computatianals like NSF TeraGrid and EGEE, and ChinaGrid
have built similar national infrastructures to enf distributed scientific grid applications.

T T
: 1.Weather senscrs feed data to
. :‘_ "’ workstation at Caltech that is per-
S forming atmospheric simulations.
\)) ..I 3 i
N 5 2. Workstation enlists computers at
= University of Wiscansin to help.
5.Linux machines crunch data

frem server and transfer output
ta Caltech workstation.

_

3. Dozens of computers

scattered acress Wisconsin

B o campus perform pieces of
4. 5erver at University of Hlinois : S

, the simulation.
fetches results from Wisconsin

computers.
Figure 1.11 An example computational Grid built o ver specialized computers at three
resource sites at Wisconsin, Calte ch, and lllinois. (Courtesy of Michel Waldrop,
“Grid Computing”, IEEE Computer Magazine, 2000. [34])

Grid Families: Grid technology demands new distributed computingdels, software/middleware
support, network protocols, and hardware infrastmes. National grid projects are followed by inigias

grid platform development by IBM, Microsoft, SunPHDell, Cisco, EMC, Platform Computing, etc New
grid service provider§GSP) and new grid applications are opened rapsittyijar to the growth of Internet
and Web services in the past two decades. In ThBlewe classify grid systems developed in the past
decade into two families: nametpmputational or data gridandP2P grids. These computing grids are
mostly built at the national level. We identifyethmajor applications, representative systems |esgbn
learned so far. Grid Computing will be studiedCinapters 4 and 8.

Table 1.8 Two Grid Computing Infrastructures and Representative Systems

Design Issues Computational and Data Grids P2P Grid s
Grid Applications Distributed Supercomputing, National Open grid with P2P flexibility, all resources
reported Grid Initiatives, etc from client machines
Representative TeraGrid in US, JXTA, FightAid@home,
Systems ChinaGrid, UK e-Science, etc. SETI@home
Development Restricted user groups, middleware bugs, | Unreliable user-contributed resources,
Lessons learned rigid protocols to acquire resources limited to a few apps.

1.3.3 Service-Oriented Architectures (SOA)
Technology has advanced at breakneck speesgarghe last decade with many changes that

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-18

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

are still occurring. However in this chaos, theueabf building systems in terms of services has
grown in acceptance and it has become a core fdeagi distributed systems. Always one builds
systems in layered fashion as sketched below irlLHig. Here we use the rather clumsy term
“entity” to denote the abstraction used as thedobsilding block. In Grids/Web Services, Java

and CORBA, an entity is respectively a serviceaJabject or a CORBA distributed object in a

variety of languages.

The architectures build on the tradition@SI layers providing the base networking absitas. On
top of this we have a base software environmenthwvhiould be .NET or Apache Axis for Web Services,
the Java Virtual Machine for Java or a Broker nekwior CORBA. Then on top of this base environment,
one builds a higher-level environment reflecting tbpecial features of the distributing computing
environment and represented by the green box id Hig,. This starts with Entity Interfaces and Iraatity
communication which can be thought of as rebuildhmgtop 4 OSI layers but at the entity and notiihe
level.

The entity interfaces correspond to the WSIava method and CORBA IDL specifications in thes
example distributed systems. These interfaces iaked with customized high level communication
systems — SOAP, RMI and IIOP in the three examgleese communication systems support features
including particular message patterns (such as RP@emote procedure call), fault recovery and
specialized routing. Often these communicationdesys are built on message oriented middleware
(enterprise bus) infrastructure such as WebSph@reMIMS (Java Message Service) which provide rich
functionality and support virtualization of routingender and recipients.

In the case of fault tolerance, we find featurehmmWeb Service Reliable Messaging framework
that mimic the OSI layer capability (as in TCP faalerance) modified to match the different absticms
(such as messages versus packets, virtualizedsadfuypat the entity levels. Security is a criticapability
that either uses or re-implements the capabil#&s in concepts like IPSec and secure sockets i@ $l
layers. Entity communication is supported by higbeel services for registries, metadata and manage
of the entities discussed in Section 4.4.

Application Specific Entities and Systems c
Generally Useful Entities and Systems
Entity Coordination
Entity Management
Entity Discovery and Information
Inter-Entity Communication
Entity Interfaces \ 4
Base Software Environment
Protocol HTTP FTP DNS ... 1

Distributed
Entities

A

Presentation XDR ... Bit level
Session SSH ... Internet
Transport TCP UDP ...
Network IP ...
Data Link / Physical v

Fig. 1.12. General layered architecture for distri buted entities

Here one might get several models with for exardpleand JNDI illustrating different approaches
within the Java distributed object model. The CORBAder Service, UDDI, LDAP and ebXML are other
examples of discovery and information services iesd in Section 4.4. Management services include
service state and lifetime support; examples ireltite CORBA Life Cycle and Persistent State, the
different Enterprise Javabean models, Jini's tifetmodel and a suite of Web service specificatibas

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-20

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

we will study further in Chapter 4.

We often term this collection of entity level capitiies that extend the OSI stack the “Internet on
the Internet”: or the “Entity Internet built on tigt Internet”. The above describes a classic ithisted
computing model and as well as intense debateeheht ways of implementing distributed systemeethe
is competition with "centralized but still moduladpproaches where systems are built in terms of
components in an Enterprise Javabean or equivapgmbach.

The latter can have performance advantages andaffghared memory" model allowing more
convenient exchange of information. However théritisted model has two critical advantages -- ngmel
higher performance (from multiple CPU's when comitation is unimportant) and a cleaner separation of
software functions with clear software re-use argintenance advantages. We expect the distributed
model to gain in popularity as the default approtackoftware systems. Here the early CORBA and Java
approaches to distributed systems are being raplacéne service model shown in Fig.1.13.

Loose coupling and support of heterogasemnplementations makes services more
attractive than distributed objects. The architextf this figure underlies modern systems with
typically two choice of service architecture -- Wgbrvices or REST systems. These are further
discussed in chapter 4 and have very distinct agges to building reliable interoperable systems.
in Web services, one aims to fully specify all agpeof the service and its environment. This
specification is carried with communicated messaggag the SOAP protocol. The hosting
environment then becomes a universal distributedraimg system with fully distributed
capability carried by SOAP messages.

Application Specific Services/Grids I Higher
Generally Useful Services and Grids Level
Workflow Services
Service Management Service
Service Discovery and Information t Context
Service Internet Transport - Protocol Service
Service Interfaces t Internet
Base Hosting Environment
Protocol HTTP FTP DNS ...
Presentation XDR ... Bit level
Session SSH ... Internet
Transport TCP UDP ...
Network IP ...
Data Link / Physical

Figure 1.13 Layered architecture for web srviceand grids

Experience has seen mixed success foagiigach as it has been hard to agree on keygfatie
protocol and even harder to robustly and efficiemtiplement the universal processing of the prat@oy
software like Apache Axis). In the REST approaate adopts simplicity as the universal principle and
delegated most of the hard problems to applicdfioplementation specific) software. In a Web Sesvic
language REST has minimal information in the heasher the message body (that is opaque to generic
message processing) carries all needed informadi&ST architectures are clearly more appropriate to
rapidly technology environments that we see today.

However, the ideas in Web Services are napband probably will be needed in mature systahas
different level in stack (as part of applicatioNbte that REST can use XML schemas but not usaditba
part of SOAP; "XML over HTTP" is a popular desigimice. Above the communication and management
layers, we have the capability to compose newiestidr distributed programs by integrating several

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-21
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technologié2 pages)
revised May 2, 2010

entities together as sketched in Fig.1.14. In CORBA Java, the distributed entities are linked vathote
procedure calls and the simplest way to build casitp@pplications is to view the entities as olgeatd

use the traditional ways of linking them togetheor Java, this could be as simple as writing a Java
program with method calls replaced by RMI (Remottivd Invocation) while CORBA supports a similar
model with a syntax reflecting the C++ style oféetstity (object) interfaces.

Raw Data > Data = Information -> Knowledge > Wisdom -> Decisions

Another
Grid
Another
Grid

i N
P
A\
i
NG P
Filter ' » Y
Service i i i
i i] i
; g i i
i . i
P P
i i

Traditional Grid
with exposed
services

Another

Grid s
TS l)

Compute
J

Figure 1.14. Grids of Clouds and Grids where SS re fers to Sensor Service and fs to a filter or
transforming service.

Sensor or Data
s Interchange
S FD Service

aiaiall

a
y 9D
Qaasgy

There are also very many distributed progning models built on top of these of these basic
constructs. For Web Services, workflow technologies used to coordinate or orchestrate servicds wit
special specifications used to define critical basg process models such as two phase transadtions.
section 4.2, we describe the general approach insearkflow, the BPEL Web Service standard and
several important workflow approaches Pegasus,rfiay&epler, Trident and Swift. In all approaches o
is building collections of services which togettemskle all or part of a problem. As always one endk
systems of systems as the basic architecture.

Allowing the term Grid to refer to a singlervice or represent a collection of servicesfing the
architecture of Fig.1.14. Here sensors represeitiesn(such as instruments) that output data @sseges)
and Grids and Clouds represent collections of sesvihat have multiple message-based inputs apdtsut
The figure emphasizes the system of systems ods@ird Clouds of Grids and Clouds" architecturestMo
distributed systems requires a web interface otapshown in Fig.1.14 and two examples (OGFCE and
HUBzero) are described in Section 4.3 using bothbV&ervice (portlet) and Web 2.0 (gadget)
technologies.

Distributed Computing : Clusters, Grids and Cloudsll rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technologié2 pages)
revised May 2, 2010

1.3.4 Peer-to-Peer Network Families

A well-established distributed system is ttent-server architectureClient machines (PC and
workstations) are connected to a central servecdampute, or Email, file access, database appticati
Thepeer-to-pee(P2P)architectureoffers a distributed model of networked systemsstFa P2P network
is client-oriented instead of server-oriented.his section, we introduce P2P systems at the pdiyisicel
and overlay networks at the logical level.

P2P Networks:In a P2P system, every node acts as both a elieh& server, providing part of the system
resources. Peer machines are simply client conmgpuetainected to the Internet. All client machinets ac
autonomously to join or leave the system freelysTiplies that no master-slave relationship exasteng
the peers. No central coordination or no centatdloase is needed. In other words, no peer mabhsa
global view of the entire P2P system. The systeselisorganizing with distributed control.

The architecture of a P2P network is showFig.1.15 at two abstraction levels. Initiallize peers
are totally unrelated. Each peer machine joinsavés the P2P network, voluntarily. Only the pgréitng
peers form thephysical networlat any time. Unlike the cluster or grid, a P2P mekwdoes not use a
dedicated interconnection network. The physicalvogt is simply an ad hoc network formed at various
Internet domains randomly using TCP/IP and NAI cots. Thus, the physical network varies in sizeé an
topology dynamically due to the free membershifhanP2P network.

JXTA Virtual
Network

|
Overlay Peer ID
Network . :
Peer ID
4 3 : S

i

Physical
Network

Figure 1.15 The structure of a peer-to -peer system by mapping a physical network
to a virtual overla y network (Courtesy of JXTA, http://www.jxta.com)

Overlay Networks: Data items or files are distributed in the parttipg peers. Based on communication
or file-sharing needs, the peer IDs formaerlay networkat the logical level. This overlay is a virtual
network formed by mapping each physical maching itstID, logically through a virtual mapping shown
in Fig.1.7. When a new peer joins the system,gtx D is added as a node in the overlay netwotieMan
existing peer leaves the system, its peer ID ikt from the overlay network, automatically. Thiere,

it is the P2P overlay network that characterizedalyical connectivity among the peers.

There are two types of overlay netwonksstructuredversusstructured. An unstructured overlay
networkis characterized by a random graph. There isxadfroute to send messages or file among the
nodes. Often, flooding is applied to send a quealltnodes in an unstructured overlay, thus endmgith
heavy network traffic and nondeterministic searebuits. Structured overlay networkf®llow certain
connectivity topology and rules to insert or removles (Peer IDs) from the overlay graph. Routing
mechanisms are developed to take advantage ofrttotused overlays.

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-23
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

P2P Application Families: Based on applications, we classify P2P netwartcsfour classes in Table 1.9.
The first family is for distributed file sharing digital contents (music, video, etc.) on the P2Bwvork.
This includes many popular P2P networks like Ghatelapster, BitTorrent, etc. Collaboration P2P
networks include MSN or Skype chatting, instant saging, collaborative design, etc. The third farisly
for distributed P2P computing in specific applioas. For example, SETI@home provides 25 Tflops
distributed computing power, collectively, over dlion Internet host machines. Other P2P platforms
like JXTA, .NET, and FightingAID@home, support nagy discovery, communication, security, and

resource aggregation in some P2P applications. Wetudy these topics in Chapters 5 and 8.

Table 1.9 Major Categories of Peer-to-Peer Netwo rk Families
System Distributed File Collaborative Distributed P2P Peer-to-Peer
Features Sharing Platform Computing Platform
Attractive Content distribution of Instant Messaging, Scientific Open networks
Applications MP3 music, video, open | Collaborative design exploration and for public
software, etc. and gaming social networking resources
Operational Loose security Lack of trust, disturbed | Security holes, Lack of standards
Problems and on-line by spam, privacy, and | selfish partners, or protection
copyright violations peer collusions and peer collusion protocols
Example Gnutella, Napster, ICQ, AIM, Groove, SETI@home, JXTA, .NET,
Systems eMule, BitTorrent, Magi, Multiplayer Geonome@ FightingAid@
Aimster, KaZaA, etc. Games, Skype, etc. home, etc. home, etc.

P2P Computing Challenges:P2P computing faces three types of heterogenedtiyl@ms in hardware,
software and network requirements. There are tagyrhardware models and architectures to select.from
Incompatibility exists between software and OSfédént network connections and protocols makeait to
complex to apply in real applications. We need esystcalability as the workload increases. System
scaling is directly related to performance and badth.

Data location is also important to afffecllective performance. Data locality, networloximity,
and interoperability are three design objectivedistributed applications. The P2P performancéfécted
by routing efficiency and self-organization by feticipating peers. Fault Tolerance, failure mamagnt,
and load balancing are other important issues imgusverlay networks. Lack of trust among the peers
posts another problem. Peers are strangers toatheh Security, privacy, and copyright violaticer®
major worries by industry to apply P2P technolagpiisiness applications.

1.3.5 Virtualized Cloud Computing Infrastructure

Gordon Bell, Jim Gray, and Alex Szalay lidlve advocated: “Computational science is chaniging
be data-intensive. Supercomputers must be balayséeims, not just CPU farms but also petascalaitD
networking arrays.” In the future, working with dgr data sets will typically mean sending the
computations (programs) to the data, rather thaging the data to the workstations. This reflektsttend
in IT that moves computing and data from desktopkitge datacenters, where on-demand provision of
software, hardware, and data as a service. Datastap leads to the idea of cloud computing.

Cloud computing has been defined differently by ynasers and designers. Just to cite a few, IBM
being a major developer of cloud computing hasneeficloud computing as: “A cloud is a pool of
virtualized computer resources. A cloud can hogargety of different workloads, including batchdsty
backend jobs and interactive, user-facing appboati allow workloads to be deployed and scaled-out

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-24

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

quickly through the rapid provisioning of virtualachines or physical machines, support redundant,
self-recovering, highly scalable programming mod#iat allow workloads to recover from many
unavoidable hardware/software failures; and monisource use in real time to enable rebalancing of
allocations when needed.”

Internet Clouds: Cloud computing applies a virtualized platform weélastic resources on-demand by
provisioning hardware, software, and datasets, micelly. The idea is to move desktop computing to
service-oriented platform using server clusters hnde databases at datacent&mud computing
leverages its low cost and simplicity that benlefith users and the providers. Machine virtualizatias
enabled such cost-effectiveness. Cloud computitends to satisfy many heterogeneous user applisatio
simultaneously. The cloud ecosystem must be degignbe secure, trustworthy, and dependable.

lan Foster defined cloud computing as fooWA large-scale distributed computing paradigm that i
driven by economics of scale, in which a pool oftedcted virtualized, dynamically-scalable, managed
computing power, storage, platforms, and serviceslalivered on demand to external customers dner t
Internet”. Despite some minor differences in thewe definitions, we identify six common charactcs
of Internet clouds as depicted in Fig.1.16.

Paid Service

Internet
Cloud

User

Submit R&

Figure 1.16 Concept of virtualized resources prasioning through the Internet cloud, where the hadware,
software, storage, network and services are put tegher to form a cloud platform.

(1) Cloud platform offers a scalable computingagligm built around the datacenters.
(2) Cloud resources are dynamically provisiongdi#itacenters upon user demand.

(3) Cloud system provides computing power, stersgace, and flexible platforms
for upgraded web-scale application services

(4) Cloud computing relies heavily on the virfaation of all sorts of resources.

(5) Cloud computing defines a new paradigncfilective computing, data consumption
and delivery of information services otle Internet.
(6) Clouds stress the cost of ownership redndti mega datacenters.

Basic Cloud Models:Traditionally, a distributed computing system temalbe owned and operated by an
autonomous administrative domain (e.g., a reseatmbratory or company) for on-premises computing
needs. However, these traditional systems haveuete@d several performance bottlenecks: constant
system maintenance, poor utilization and increasivgfs associated with hardware/software upgrades.
Cloud computing as an on-demand computing paradigulves or relieves from these problems. In

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-25
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technologié2 pages)
revised May 2, 2010

Figure 1.17, we introduce the basic concepts eftlcioud computing service models. More cloudildeta
are given in Chapters 7, 8 and 9.

o T

Software as a Service

Web 2.0
Application Runtime

)

Platform as a Service

PRAS

Data Center
[Fa bric

IAAS

| | | L
-_l | .

Infrastructure as a Service

Figure 1.17 Basic concept of cloud ¢ omputing models and services provided
(Courtesy of IBM Corp. 2009)

Infrastructure as a Service (laaS)This model allows users to server, storage, ndtsy@nd datacenter
fabric resources. The user can deploy and run oftipteu VMs running guest OSes on specific
applications. The user does not manage or comealnderlying cloud infrastructure, but can spewifien

to request and release the needed resources.

Platform as a Service (PaaS)his model provides the user to deploy user-bwlliaations onto a
virtualized cloud platform The platform include hobardware and software integrated with specific
programming interfaces. The provide supplies thé @il software tools (e.g., Java, python, Web 2.0,
.Net). The user is freed from managing the undeglyiloud infrastructure.

Software as a Service (SaaS)his refers to browser-initiated application softevaver thousands of paid
cloud customers. The SaaS model applies to bisspresesses, industry applications, CRMnsumer
relationship mamagmentlERP énterprise resources plannipdHR (human resourcgsand collaborative
applications. On the customer side, there is dmuapinvestment in servers or software licensifg.the
provider side, costs are rather low, compared wativentional hosting of user applications.

Internet ouds offer four deployment modesrivate, public, managedndhybrid[22]. These modes
demand different levels of security implicationdheTdifferent service level agreements and service
deployment modalities imply the security to be arstd responsibility of all the cloud providers, theud
resource consumers and the third party cloud edauaiftware providers. Advantages of cloud compptin
have been advocated by many IT experts, indusaigeliss, and computer science researchers.

Benefits of Outsourcing to The Cloud:Outsourcing local workload and/or resources todloeid has

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-26
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

become an appealing alternative in terms of opmratiefficiency and cost effectiveness. This outsiog
practice particularly gains its momentum with thexibility of cloud services from no lock-in coafrts
with the provider and the use of a pay-as-you-gaimg model. Clouds are primarily driven by
economics—the pay-per-use pricing model simildrasic utilities of electricity, water and gas. Frtim
consumer’s perspective, this pricing model for catimg has relieved many issues in IT practicesh s1sc
the burden of new equipment purchases and theiesterasing costs in operation of computing faeiiti
(e.g., salary for technical supporting personnédl elactricity bills).

Specifically, a sudden surge of workload ba effectively dealt with; and this also has eon®mic
benefit in that it helps avoid over provisioning @sources for such a surge. From the provider’s
perspective, charges imposed for processing constservice requests—often exploiting underutilized
resources—are an additional source of revenuece3ie cloud service provider has to deal withvardie
set of consumers, including both regular and neesafi consumers, and their requests most likelfedif
from one another, the judicious scheduling of thregeests plays a key role in the efficient usesburces
for the provider to maximize its profit and for tbensumer to received satisfactory service quédity.,
response time). Recently, Amazon introduced EC2t 8mtances for which the pricing dynamically
changes based on the demand-supply relationshipp:/(&tvs.amazon.com/ec2/spot-instances/).
Accountability and security are two other majorcems associated with the adoption of clouds. Thése
be treated in Chapters 7.

Chapter 6 offers details of datacedesign, cloud platform architecture and resourqgoyenent,
Chapter 7 provides major cloud platforms built @adous cloud services being offered. Listed beémes
8 motivations of adapting the cloud for upgradintginet applications and web services in general.

(1). Desired location in areas with protected st better energy efficiency.

(2). Sharing of peak-load capacity among a large poabefs, improving the overall utilization
(3). Separation of infrastructure maintenance ddittea domain-specific application development.
(4). Significant reduction in cloud computing cost, g@ared with traditional computing paradigms.
(5). Cloud computing programming and applicationed@oment

(6). Service and data discovery and content/sedigtebution

(7). Privacy, security, copyright, and reliability issue

(8). Service agreements, business models, anagcilicies

Representative Cloud Providers in Table 1.10, we summarize the features of thieed platforms built
up to 2008. The Google platform is a closed sys@ynamically built over a cluster of servers,. Tes
servers selected from over 460,000 Google sewersiwide. This platform is proprietary in natucely
programmable by Google staff. Users must order stamdard services through Google. The IBM
BlueCloud offers a total system solution by sejlthe entire server cluster plus software packémes
resources management and monitoring, WebSphereagglications, DB2 databases, and virtualization
middleware. The third cloud platform is offeredAdyazon as a custom-service utility cluster. Useasé
special subcluster configuration antbrage space to run custom-coded applications.

The IBM BlueCloud allows cloud users to fill outfarm defining their hardware platform, CPU,
memory, storage, operating system, middleware,teach members and their associated roles. A SaaS
bureau may order travel or secretarial servicesifeocommon cloud platform. The MSP coordinates
service delivery and pricing by user specificatidviany IT companies are now offering cloud compgitin
services. We desire a software environment thatigges many useful tools to build cloud applicasion
over large datasets. In addition to MapReduce, &g, EC2, and 3S and the established environment
packages like Hadoop, AWS, AppEngine, and WebSghéetails of these cloud systems are given in
Chapter 7 and 8.

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-27

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)

revised May 2, 2010

Table 1.10

Three Cloud Computing Platforms and Un

derlying Technologies [21]

Features

Google Cloud [18]

IBM BlueCloud [7]

Amazon Elastic Cloud

Architecture
and Service
Models applied

Highly scalable server
clusters, GFS, and data-
centers operating with
PaaS or SaaS models

A sever cluster with limited
scalability for distributed
problem solving and web-
scale under a PaaS model

A 2000-node utility cluster
(iDataPlex) for distributed
computing/storage services
under the laaS model

Technology, Commodity hardware. Custom hardware, Open e-commerce platform,
Virtualization, Application-level API, software, Hadoop library, virtualization based on XEN,
and Reliability simple service, and high | virtualization with XEN and | and simple reliability

reliability PowerVM, high reliability

System Datacenter security is WebSphere-2 security, Rely on PKI and VPN for
Vulnerability, loose, no copyright PowerVM could be tuned authentication and access
and Security protection, Google for security protection, and | control, lack of security
Resilience rewrites desktop access control and VPN defense mechanisms

applications for web support

1.3 Performance, Security, and Energy-Efficiency

In this section, we introduce the fundamental degignciples and rules of thumb for building
massively distributed computing systems. We stuzhtability, availability, programming models, and
security issues that are encountered in clusteds,d2P networks, and Internet clouds.

141

Performance metrics are needed to measure varistisbdted systems. We present various
dimensions of scalability and performance laws.ermiwve examine system scalability against OS image
and the limiting factors encountered.

System Performance and Scalability Analysis

Performance Metrics: We have use€€PU speedn MIPS andnetwork bandwidthin Mbps in Section
1.3.1 to estimate processor and network performdneedistributed system, the performance iskaitad

to a large number of factors. Thestem throughpuis often measured by the MIPS rate, Tflopsré&
floating-point operations per second PS (ransactions per secohcetc. Other measures include the job
response timandnetwork latency.

We desire to use an interconnection network that Ibav latency and high bandwidth. System
overhead is often attributed to OS boot time, cdertpne, I/O data rate, and run-time support sysised.
Other pereformanc-related metrics include ¢lity of servicg(QoS) for Internet and Web services;
system availabilittanddependability;andsecurity resiliencdor system defense against network attacks.
We will study some of these in remaining subsestion

Dimensions of Scalability: We want to design a distributed system to achieatable performance. Any
resource upgrade in a system should be backwargatdste with the existing hardware and software
resources. Overdesign may not be cost-effectivateBy scaling can increase or decrease resources
depending on many practical factors. We chara@etiz following dimensions of scalability in paedll

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-28

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

and distributed systems.

a) Size Scalability:This refers to achieve higher performance or perfiog more functionality by
increasing thenachine sizeThe word “size” refers to adding the number afgessors; more cache,
memory, storage or I/O channels. The most obvioay %@ simple counting the number of
processors installed. Not all parallel computedistributed architectures are equally size-scalable
For example, IBM S2 was scaled up to 512 processdr997. But in 2008, the IBM BlueGene/L
system can scale up to 65,000 processors.

b) Software Scalability: This refers to upgrades in OS or compilers, addimthematical and
engineering libraries, porting new application wafte, and install more user-friendly programming
environment. Some software upgrade may not work laitge system configurations. Testing and
fine-tuning of new software on larger system ioa-ftrivial job.

c) Application scalability: This refers to the match pfoblem sizescalability with themachine size
scalability. Problem size affects the size of ttatadset or the workload increase. Instead of
increasing machine size, we enlarge the problera 8z enhance the system efficiency or
cost-effectiveness.

d) Technology ScalabilityThis refers to a system that can adapt to chaindasilding technologies,
such as those component and networking technoldigesissed in Section 3.1. Scaling a system
design with new technology must consider threecspgame, spaceandheterogeneityTime refers
to generation scalability. Changing to new-genergafirocessors, one must consider the impact to
motherboard, power supply, packaging and coolittg, Based on the past experience, most system
upgrade their commodity processors every 3 to Bsyespace is more related to packaging and
energy concerns. Heterogeneity scalability demdmatsnony and portability among different
component suppliers.

Scalability vs. OS Image Count: In Fig.1.18, we estimate thecalable performancegainst the
multiplicity of OS imagem distributed systems deployed up to 2010. Stalperformance implies that
the system can achieve higher speed performan@diyng more processors or servers, enlarging the
physical node memory size, extending the disk dapar adding more I/O channels, etc. The OS imiage
counted by the number of independent OS imagesdtsén a cluster, grid, P2P network, or the cloud.
We include the SMP and NUMA in the comparison. AFSserver has a single system image. Which
could be a single node in a large cluster. By 2&&0dard, the largest shared—-memory SMP node has at
most hundreds of processors. This low scalabilft®IP system is constrained by the packaging and
system-interconnect used.

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-29
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

Scalability

(No. of

Processors

10% &~ orcoresina RSN s - -~
system) pa

4107 =

105
10

10°

102

AL sSMP ik TS L

1 10 102 103 104 105 10% 107

Multiplicity of OS Images in a System

Figure 1.18 System scalability versus multiplici ty of OS images in HPC clusters, MPP, and grids
and HTC systems like P2P networks and the clo uds. (The magnitude of scalability and OS image
count are estimated based on system configurations deployed up to 2010. The SMP and NUMA are
included for comparison purpose)

The NUMA machines are often made out of SMP nod#sdistributed shared memories. A NUMA
machine can run with multiple operating systemscdh scale to a few thousands of processors
communicating with MPI library. For example, an NiBNhachine may have 2048 processors running by
32 SMP operating systems. Thus, there are 32 O&eisria the 2048-processor NUMA system. The cluster
nodes can be either SMP servers or high-end maztiiaeare loosely coupled together. Thereforetets
have much higher scalability than NUMA machinese Rlumber of OS images in a cluster is counted by
the cluster nodes concurrently in use. The cloudicoe a virtualized cluster. By 2010, the largdstd in
use commercially has size that can scale up tevahfeusand VMs at most.

Reviewing the fact many cluster nodes Sk& (multiprocessor) or multicore servers, theltota
number of processors or cores in a cluster systeme or two orders of magnitude greater than tingoer
of OS images running in the cluster. The nodedoraputational grid could be either a server chistea
mainframe, or a supercomputer, anassively parallel processdMPP). Therefore, OS image count in a
large grid structure could be hundreds or thouséintess fewer than the total number of processothen
grid. A P2P network can easily scale to milliofisndependent peer nodes, essentially desktop meshi
The performance of a P2P file-sharing network ddpem thequality of servic€QoS) received in a public
networks. We plot the low-speed P2P networks inlFld. Internet clouds are evaluated similarlyhe t
way we assess cluster performance.

Amdahl’'s Law: Consider the execution of a given program on arongssor workstation with a total
execution time o minutes. Now, the program has been parallelizquhditioned for parallel execution
on a cluster of many processing nodes. Assumeatfiattiona of the code must be executed sequentially,
called thesequential bottlenecK herefore, (1) of the code can be compiled for parallel execubgn
processors. The total execution time of the pnogsacalculated bya T + (1-a)T/n , where the first term

is the sequential execution time on a single pmmred he second term is the parallel execution time
processing nodes.

We will ignore all system or communicatioverheads, I/O time, or exception handling timéhe
then following speedup analysis. Amdahl’'s Law stdteat: Thespeedup factoof using then-processor
system over the use of a single processor is esguldsy:

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-30

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

Speedup=S=T/[aT +(1-a)T/n]=1/[a+ (1w)/n] (1.2)

The maximum speedup ofis achieved, only if theequential bottleneakis reduced to zero or the code is
fully parallelizable withe = 0. As the cluster becomes sufficiently large,ni.— o, we haveS = 1/a , an
upper bound on the speedup S. Surprisingly, thgeupound is independent of the cluster size
Sequential bottlenecis the portion of the code that cannot be parakeli For example, the maximum
speedup achieved speedup is 4,3 0.25 or 1& = 0.75, even we use hundreds of processors. Amdahl’s
law teaches us that we should make the sequentitéfeck as small as possible. By increasing lilnster

size alone may not give us a good speedup we ecect

Problem with Fixed Workload: In Amdahl’s law, we have assumed the same amouwbdiload for
both sequential and parallel execution of the mogwith a fixed problem size or dataset. This valked
fixed-workload speedupy Hwang and Xu [14]. To execute a fixed worklaatdn processors, parallel
processing may lead to gssem efficiencgefined as follows:

E=S/n=1/[an+1a] (1.2)

Very often the system efficiency is rather low, exsplly when the cluster size is very large. Tocexe the
aforementioned program on a cluster with 256 nodes, extremely low efficienEy= 1/[0.25x256 + 0.75]
= 1.5% is observed. This is due to the fact thdy @ few processors (say 4) are kept busy, white t
majority of the nodes are left idling.

Scaled-Workload Speedup:To achieve higher efficiency in using a large @dustve must consider
scaling the problem size to match with the clustgpability. This leads to the following speedup law
proposed by John Gustafson (1988). Métbe the workload in a given program. When we use a
n-processor system, we scale the workload/te aW+(1-a)nW. Note that only the parallelizable portion
of the workload is scaledtimes in the second term. This scaled workM&ds essentially the sequential
execution time on a single processor. The pam¥etution time o¥V’ workload onmn processors is kept at
the level of the original workload/. Thus, ascaled-workload speedup defined as follows:

S =W/W=[aW+{1l-a)n"W]/W=a+(1-a)n (1.3)

This speedup is known as Gustafsonis. LBy fixing the parallel execution time at lew# we
achieve the following efficiency expression:

E=S/n=ahn+(1-a) (1.4)

For the above program with a scaled workload, wdrgrove the efficiency of using a 256-node clugie

E’' =0.25/256 +0.75 =0.751. We shall apply eitherAmdahl’'s Law or Gustafson’s Law under different
workload conditions. For fixed workload, we applyndahl’s law. To solve scaled problems, we apply
Gustafson’s Law.

1.4.2 System Availability and Application Flexibili ty

In addition to performance, system availability apglication flexibility are two other most impaonta
design goals in a distributed computing system. cAsek these related two concerns, separately.

System Availability: High availability (HA) is desired in all clusters, grids, P2P, alalid systems. A
system is highly available if it h&sng mean time to failur@MTTF) and shortmean time to repafMTTR).

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-31

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

Thesystem availabilitys formally defined as flows:

System Availability = MTTF (MTTF + MTTR) (1.5)

The system availability is attributed to many fastd\ll hardware, software, and network componerdy
fail. Any failure that will pull down the operatiaf the entire system is callediagle point of failureThe
rule of thumb is to design a dependable computystesn with no single point of failure. Adding hexatre
redundancy, increasing component reliability, aedigh for testability will all help enhance the teys
availability and dependability.

In Fig.1.19, we estimate the effects osteay availability by scaling the system size imtaf the
number of processor cores in a system. In gerasal,distributed system increases in size, théasy
decrease due to higher chance of failure and diffido isolate the failures. Both SMP and MPP raest
vulnerable under the mangement of a single OSre#&sing system size will result in higher chance to
break down. The NUMA machine has limited improveini@ availability from an SMP due to use of
multiple system managements.

Most clusters are designed to have higlileiity (HA) with failover capability, even as ¢hcluster
gets much bigger. Vrtualized clouds form a subctddbe hosting server clusters at various datacent
Hence a cloud has an estimated availability sinidathat of the hosting cluster. A grid is visuzelil as a
hierarchical cluster of clusters. They have eveghéi availability due to the isolation of faulthérefore,
clusters, clouds, and grids have a decreasingadifity as system gets larger. A P2P file-shariegvork
hass the highest aggregation of client machinesgder, they operate essentially independently toith
availability even many peer nodes depart or failldianeously.

F
High
(100%)
oy
E
=
3
a
E
@ s
» P2P -,
Network :
Low T, aaet’
(0) .

Small System Size (# processor cores) Large (10€)

Figure 1.19 Estimated effects on the system avail ability by the size of clusters, MPP, Grids, P2P
file-sharing networks, and computing clouds. (The estimate is based on reported experiences in
hardware, OS, storage, network, and packaging technologies in available system configurations in 2010.)

1.4.3 Security Threats and Defense Technologies

Clusters, Grids, P2P, and Clouds all dedvsecurity and copyright protection. These areiatuo
their acceptance by a digital society. In thisisectwe introduce the system vulnerability, netwtirteats,
defense countermeasures, and copyright protectidisiributed or cloud computing systems.

Threats To Systems and Networks Network viruses have threatened many users in widasl attacks

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-32

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

constantly. These incidents created worm epidemi@udling down many routers and servers. These
attacks had caused billions of dollars loss iness, government, and services. Various attacls tgpd
the potential damages to users are summarizedgiri.BD. Information leakage leads to the loss of
confidentiality. Loss of data integrity may be cedidy user alteration, Trojan horse, and servicefing
attacks. Thelenial of servicdDoS) result in loss of system operation and h@keconnections.

Lack of authentication or authorizatioadeo illegitimate use of computing resources bgckers.
Open resources like datacenters, P2P networksagddtloud infrastructures could well become thd ne
targets. We need to protect clusters, grids, cloanis P2P systems. Otherwise, no users dare tr trisest
them for outsourced work. Malicious intrusionghese systems may destroy valuable hosts, netandk,
storage resources. Internet anomalies found irersugateways, and distributed hosts may hinder the
acceptance of these public-resource computingcasvi

Security Responsibilities: We identify three security requirementsonfidentiality, integrity, and
availability for most internet service providers and cloud usesshown in Fig.1.21, in the order of SaaS,
PaaS, and laaS, the providers gradually releagespensibilities of security control to the claugkrs. In
summary, the SaaS model relies on the cloud provmerform all security functions. On the other
extreme, the laaS model wants the users to assim@staall security functions except leaving the
availability to the hands of the providers. The Pazodel relies on the provider to maintain datagrity
and availability, but burdens the user with confiilgity and privacy control.

Loss of Loss of Loss of Improper
Confidentiality Integrity Availahility Authentication
Information Integrity Denial of lllegitimate
Leakage Violation Service Use

T~

=gty
<

* Eavesdroppin * Penetration N
* Traffic Ar?’ji'_.rsﬁls * Masquerade : Dos =
* EM/RF Interceptian * Bypassing controls Trojan Horse
* Indiscretions * Mo authorization * Trap-!:ln-ur
of personnel * Physical infrusion * Service spoofing
* Media Scavenging
*Resource exhaustion ’ RESG"W.E
Intercept/ alter “Integrity violation e
*Repudiation TTheft E Ir_|t&gntg,r
*Replay viclation

Figure 1.20 Various system attacks and network teats to cyberspace.

System Defense TechnologieShree generations of network defense technologiee hppeared in the
past. In the first generation, tools were desigteegrevent or avoid intrusions. These tools uguall
manifested as access control policies or tokengtagraphic systems, etc. However, the intruder can
always penetrate a secure system because thelwaigsaa weakest link in the security provisioning
process. The second generation detects intrusimedytto exercise remedial actions. These techsique
include firewalls, Intrusion Detection System($DS), PKI service, reputation systems, etc. Thiedt
generation provides more intelligent responsesttasgions.

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-33
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

VeryHigh - -
| | ¥
- |
= | |
[) |
E_ High } |] [
£ |
=4 |
E o B | |
e = B | { 1 | _
= | [F5] [Confide ntiality
5 L |
é’ i W |rite grity
prit Low | L |] |
o i 2 Avallability
o
@ |
-4 ‘ :
o Verylow | i |] |]
L
= |
3 |
& Mone L | | | 1
1AAS PAAS SAAS 1AAS FAAS SAAS
Cloud Service Models
Cloud Service Provider Cloud Service User

Figure 1.21: Internet security responsibilities by cloud service providers and by the user mass.

Copyright Protection: Collusive piracyis the main source of intellectual property viadas within the
boundary of a P2P network. Paid clients (colludengy illegally share copyrighted content files with
unpaid clients (pirates). On-line piracy has hiedethe use of open P2P networks for commercialecont
delivery. One can develop a proactive content piigpscheme to stop colluders and pirates frongatle
copyright infringements in P2P file sharing. Pisatee detected timely with identity-based signataned
time-stamped tokens. The scheme stops collusieepivithout hurting legitimate P2P clients. We will
cover grid security, P2P reputation systems, apgroght-protection issues in Chapters 5 and 7.

Data Protection Infrastructure: Security infrastructure is needed to support safejuveb and cloud
services. At the user level, we need to performattnegotiation and reputation aggregation ovenssts.

At the application end, we need to establish sgcyriecautions in worm containment and intrusion
detection against virus, worm, and DDoS attacks. n&ed also deploy mechanism to prevent on-line
piracy and copyright violations of digital contenta Chapter 6, we will study reputation system for
protecting distributed systems and datacenters.

1.4.4 Energy-Efficiency in Distributed Computing

Primary performance goals in conventional paraledl distributed computing systems are high
performance and high throughput, considering samm fof performance reliability, e.g., fault tolecan
and security. However, these systems recently eneownew challenging issues including energy
efficiency, and workload and resource outsourcliigse emerging issues are crucial not only in their,
but also for the sustainability of large-scale catimg systems in general. In this section, we re\gaergy
consumption issues in servers and HPC systemss3ihe of workload and resource outsourcing foralou
computing is discussed. Then we introduce theeptigin issues of datacenters and explore solutions.

The energy consumption in parallel and distributedhputing systems raises various monetary,
environmental and system performance issues. Fongbe, Earth Simulator and Petaflop are two example
systems with 12 and 100 megawatts of peak powspeively. With an approximate price of 100 dallar
per megawatt, their energy costs during peak opertéimes are 1,200 and 10,000 dollars per hois;ish

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-34

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

beyond the acceptable budget of many (potentiafesy operators. In addition to power cost, coolgng
another issue that must be addressed due to negdfiacts of high temperature on electronic comptme
The rising temperature of a circuit not only derahlie circuit from its normal range but also resitt
decreasing the lifetime of its components.

Energy consumption of unused serversto run a server farm (data center) a company hsigetod a huge
amount of money for hardware, software (softwarerlces), operational support and energy every year.
Therefore, the company should thoroughly identi@ather the installed server farm (more specificétlg
volume of provisioned resources) is at an apprépravel in terms particularly of utilization. Some
analysts estimate that on average around one-§is%b) of the full-time servers in a company is left
powered on without being actively used (i.e., ig)imn a daily basis. This indicates that with 44liomi
servers in the world, around 4.7 million servees ot doing any useful work.

The potential savings by turning off theeevers are large, globally $3.8 billion in enecggts alone
and $24.7 billion in the total cost of running nreductive servers according to a study by 1E Compa
partnership with thalliance to Save EnergASE). With the respect to environment, this amairnergy
wasting is equal to entering 11.8 million tons afton dioxide per year which is equivalent to th@ C
pollution of 2.1 million cars. This ratio in the & comes to 3.17 million tons of carbon dioxide580,678
cars. Therefore, the first step in IT department$oi analyze their servers to find out unused and/o
underutilized servers.

Reducing energy in active serverdn addition to the identification of unused/und¢itized servers for
energy savings, the application of appropriate riegles to decrease energy consumption in active
distributed systems with negligible influence oaitlperformance is necessary. Power managemet issu
in distributed computing platforms can be categmtiinto four layers (Fig.1.22): application layer,
middleware layer, resource layer and network layer.

Distributed Computing : Clusters, Grids and Cloudsll rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technologié2 pages)
revised May 2, 2010

Application Layer

DNA Sequence Event Simulation and Analysis High Energy Physics Weather
Aliarimant Forecasting

MiddleWare Layer

-

Resource Layer

@ 9

Server Laptop Supercomputer Telescope Desktop

Network Layer

Router Switch Copper Fiber Optic

Figure 1.22 Four operational layers of distribute d computing systems

Application layer: Until now, most user applications in science, bes& engineering, and financial areas,
tend to increase the speed or quality performaBg@ntroducing energy-aware applications, the adraje

is how to design sophisticated multilevel and mddimain energy management applications without
hurting performance. The first step is to exploreretationship between performance and energy
consumption. Indeed, the energy consumption ofpafiGation has a strong dependency with the number
of instructions needed to execute the applicatioth hhe number of transactions with storage unit (or
memory). As well these two factors (computation atawtage) are correlated and they affect applinatio
completion time.

Middleware layer: The middleware layer acts as a bridge betweenghkcation layer and the resource
layer. This layer provides resource broker, comcaiion service, task analyzer, task scheduler,riggcu
access, reliability control and information servigis layer is susceptible for applying energyeééit
technigues particularly in task scheduling. Urgitently, scheduling is aimed to minimize a costfiom
generally the makespan, i.e., the whole executiorp bf a set of tasks. Distributed computing system
necessitates a new cost function covering both sgeiteand energy consumption.

Resource layer:The resource layer consists of a wide range ofuress including computing nodes and
storage units. This layer generally interacts \wélhdware devices and also operating system; aneftine

it is responsible for controlling all distributeglsources in distributed computing systems. Ingbent past,
several mechanisms have been developed for maceaffpower management of hardware and operating
systems. The majority of them are hardware appemgarticularly for processor®ynamic power

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-36
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

managementDPM) anddynamic voltage-frequency scaliflgVFS) are two popular methods incorporated
in recent computer hardware systeris DPM, hardware devices, such as CPU have thebdapao
switch from idle mode to one or more lower-powerde®m In DVFS, energy savings are achieved on the
fact that the power consumption in CMOS circuits tiee direct relationship with frequency and theesg

of voltage supply. In this case, the execution tamd power consumption are controllable by switghin
between different frequencies and voltages. Figu?8 shows the principle of the DVFS method. This
method enables the exploitation of the slack tirdke time) typically incurred by inter-task relatiships
(e.g., precedence constraints) [24]. Specificalig, slack time associated with a task is utilizedxecute

the task in a lower voltage-frequency. The relatiop between energy and voltage-frequency in CMOS
circuits is related by the following expression:

E =C, fvit

- 2 (1.6)
f - K (V Vt)

\'

wherev, Ce;, K, andv, are the voltage, circuit switching capacity, ahtemlogy dependent factor, and
threshold voltage, respectively. The parametsithe execution time of the task under cloclkgdiency f .

By reducing voltage and frequency the eneansumption of device can be reduced. Howeveh bot
DPM and DVFS techniques may cause some negatigetefon power consumption of a device in both
active and idle, and create a transition overloadsfvitching between states or voltage/frequencies.
Transition overload is especially important in DPfchnique: if the transition latencies between
lower-power modes are assumed to be negligible, ¢hergy can be saved by simply switching between
these modes. However, this assumption is rarelyaidé and therefore switching between low-power
modes affects performance.

Freq (MHz) Freq (MHz)

200 200

100 |- 100
[| I I T |
1 2 34 5 67 1 2 3 4 5

time [msec] ‘ time [misec)

Figure 1.23 DVFS technique (right) original task(left) voltage-frequency scaled taskCourtesy olR.Ge, et al,
“Performance Constrained Distributed DVS SchedulorgScientific Applications on Power-aware ClusteProc.
of ACM Supercomputing Con¥Wash. DC, 2005 [16].)

Another important issue in the resource layer ihanstorage area. Storage units interact with the
computing nodes greatly. This huge amount of ictasas keeps the storage units always active. This
results in large energy consumption. Storage deeipend about 27% of the total energy consumptian i
data center. What is even worse is this figureeiases rapidly due to 60% increase in storage need
annually.

Network layer: Routing and transferring packets and enabling ndtwervices to the resource layer are
the main responsibility of the network layer intdlsuted computing systems. The major challendauitul
energy-efficient networks is again how to measpredict and make balance between energy consumption
and performance. Two major challenges to designggrefficient networks are identified below:

= The models should represent the networks comprerynss they should give a full understanding
1-37

Distributed Computing : Clusters, Grids and Cloudsll rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

of interactions between time, space and energy.

= New energy-efficient routing algorithms need talegeloped. New energy-efficient protocols should
be developed against network attacks.

As information resources drive economic and sadéalelopment, datacenters become increasingly
important as where the information items are stomcessed, and services provided. Datacenters
becomes another core infrastructure just like paywerand transportation systems. Traditional dertser
suffers from high construction and operational costnplex resource management and poor usabdity, |
security and reliability, and huge energy consuampétc. It is necessary to adopt new technologieskt
generation datacenter designs as studies in Chapter

1.5 References and Homework Problems

In the past 4 decades, parallel processing andhditgd computing have been hot topics for research
and development. Earlier work in this area werat&e in several classic books [1, 11, 20, 21]. Mecent
coverage can be found in newer books [6, 13, 1418626] published beyond 2000. Cluster computing
was covered in [21, 27] and grid computing in [314, 34]. P2P networks are introduced in [13, @8ud
computing is studied in [7-10, 15, 19, 22, 23, 3jrtualization techniques are treated in [28-30].
Distributed algorithms and parallel programming stiedied in [2, 12, 18, 21, 25]. Distributed opirgt
systems and software tools are covered in [5,B2rgy efficiency and power management are studied
[17, 24, 35]. Clusters serve as the foundatiorisifiduted and cloud computing. All of these topidl be
studied in more details in subsequent chapters.

References
[1] G.Almas and A. Gottlieb, Highly Parallel Computing, Banjamin-Cummins Publisher, 1989.

[2] G.Andrewa, Foundations of multithreaded, Parallel and Distributed Programming,
Addison-Wesley, 2000.

[3] G.Bdl,J Gray. And A. Szalay, “Petascale Computational Systems : Balanced Cyberstructurein a
Data-Centric World”, IEEE Computer Magazine, 2006

[4 F.Berman, G. Fox, and T. Hey (Editors), Grid Computing, Wiley and Sons, 2003, ISBN:
0-470-85319-0

[5] M. Bever, et d, “Distributed Systems, OSF DCE, and Beyond”, in DCE-The OSF Distributed
Computing Environment, A. Schill (edtor), Belin, Springer-Verlag, pp. 1-20, 1993

[6] K. Birman, Reliable Distributed Systems: Technologes, Web Services, and Applications,
Springer Verlag 2005.

[71 G.Boss, eta, “Cloud Computing-The BlueCloud Project “, www.ibm.com/devel operworks/
websphere/zones/hipods/ Oct. 2007

[8] R.Buyya, C.Yeo; and S. Venugopal, "Market-Oreh€Cloud Computing: Vision, Hype, and
Reality for Delivering IT Services as Computinglitigs," 10th IEEE Int'l Conf. on High Perf.
Computing and CommSept. 2008

[99 F.Chang, et d., “Bigtable: A Distributed Storage System for Structured Data’, OSDI 2006.

[10] T. Chou,Introduction to Cloud Computing : Business and Tetbgy,Lecture Notes at Stanford
University and at Tsinghua Universityctive Book Press, 2010.

[11] D. Culler, J. Singh, and A. Gupta, Parallel Computer Architecture, Kaufmann Publishers,

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-38

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

[12]

[13]

[14]
[19]

[16]
[17]

[18]
[19]

[20]

[21]

[22]

(23]

[24]

[29]

[26]
[27]
[28]

[29]

[30]
[31]

(32]
[33]

1999.

J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters’,
Proc. of OSDI 2004.

J. Dillimore, T. Kindberg, and G. CoulouriRistributed Systems: Concepts and Design,
(4th Edition), Addison Wesley, May 2005, ISBN)-03-2126-3545.

J. Dongarra, et al, (editors§purce Book of Parallel Computingorgan Kaufmann, 2003.

l. Foster, Y. Zhao, J.Raicu, and S. Lu, "Cloud @ating and Grid Computing 360-Degree
Compared,'Grid Computing Environments Workshdj2-16 Nov. 2008.

V. K. Garg,Elements of Distributed Computing/iley-IEEE Press, 2002.

R.Ge, X. .Feng, and K.W.Cameron, “Performance caim&d distributed DVS scheduling for
scientific applications on power-aware clusteRrpc. Supercomputing Contash. DC, 2005.

S. GhoshpDistributed Systems- An Algorithmic Approa€tihapman & Hiall/lCRC, 2007.

Google, Inc. “ Google and the Wisdom of Clouds’, http://www.businessweek.com/
magazine/content/ 0752/ b4064048925836.htm

K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programming,
McGraw-Hill, 1993.,

K. Hwang and Z. Xu: Scalable Parallel Computing, McGraw-Hill, 1998.

K. Hwang, S. Kulkarni, and Y. Hu, “Cloud SecuritytlvVirtualized Defense and Reputation-based
Trust ManagementlEEE Conf. Dependable, Autonomous, and Secure Cimgg@AC-2009),
Chengdu, China, Dec.14, 2009

K. Hwang and D. Li, “ Security and Data Protentfor Trusted Cloud ComputinglEEE Internet
Computing September. 2010.

Kelton ResearcH1E / Alliance to Save Energy Server Energy & Eifncy Report”,
http://www.1e.com/
EnergyCampaign/downloads/Server_Energy and EffigieReport 2009.pdfSept. 2009.

Y.C. Leeand A. Y. Zomaya, “A Novel State TrarmitiMethod for Metaheuristic-Based Scheduling
in Heterogeneous Computing SystemEEE Trans. Parallel and Distributed SysterSgpt. 2008.

D. PelegDistributed Computing : A Locality-Sensitive ApprbaSIAM Publisher, 2000.
G.F. PfisterJn Serach of Clustergsecond Edition), Prentice-Hall, 2001

M. Rosenblum and T. Garfinkel, “Virtual Machine Mtars: Current Technology and Future
Trends”,IEEE ComputerMay 2005, pp.39-47.

M. Rosenblum, “Recent Advances in Virtual Machiaesl Operating SystemsKeynote Address,
ACM ASPLOS006

J. Smith and R. NairVirtual Machines,Morgan Kaufmann , 2005

B. Sotomayor, R. Montero, and I. Foster, “Virtirgtastructure Management in Private and Hybrid
Clouds”,IEEE Internet Computingsept. 2009

A. TannenbaunDistributed Operating SystenBrentice-Hall, 1995.
|. Taylor, From P2P to Web Services and Grids, Springer-Verlag, London, 2005.

Distributed Computing : Clusters, Grids and Cloudsll rights reserved

by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

[34] M. Waldrop, “Grid Computing”, IEEEEomputer Magazine2000

[35] Z. Zong, “Energy-Efficient Resource ManagementHayh-Performance Computing Platforms”,
PhD Dissertation Auburn University, August 9, 2008

Homework Problems

Problem 1.1: Map ten abbreviated terms and system modelbelett with the best-match descriptions
on the right. Just enter the description labeby c, ...,j) in the underlined blanks in front of the terms.

Globus (a)A scalable software platform promoted by Apachierfeb users to write and
run applications over vast amounts of distedufata.

BitTorrent (b) A P2P network for MP3 music delivery using a celigeal directory server

Gnutella (c) The programming model and associated implementatidBoogle
for distributed mapping and reduction of very ladgda sets
EC2 (d) A middleware library jointly developed by USC/ISicdhArgonne

National Lab. for Grid resource management ahdgheduling

TeraGrid (e) A distributed storage program by Google for manggimuctured
data that can scale to very large size.

EGEE (f) A P2P file-sharing network using multiple file esdtrackers

Hadoop (9)A critical design goal of cluster of computersdtetate
nodal faudtsrecovery from host failures.

SETI@home (h) The service architecture specification as an opséa skandard

Napster (i) An elastic and flexible computing environment taidws web
application developers to acquire cloud resouetestively

Bigtable ()) A P2P Grid over 3 millions of desktops for distiiéd signal processing in
easch of extra-terrestrial intelligence

Problem 1.2: Circle only one correct answer in each of thlefdang questions.

(@D In today’s Top 500 list of the fastest compgtsystems, which architecture class
dominates the population ?

a. Symmetric shared-memory multiprocessor systems
b. Centralized massively parallel processor (MPP)esyst
c. Clusters of cooperative computers.

(2) Which of the following software packages is pattcly designed as a distributed storage
management system of scalable datasets Internet clouds?

a. MapReduce
b. Hadoop
C. Bigtable

(3) Which global network system was best designedirtreate isolated resource islands ?
a. The Internet for computer-to-computer inter@etiising Telnet command
b. The Web service for page-to-page visits usitg:// command

c. The Grid service using midleware to establighriactions between applications
running on a federation of cooperative machines

Distributed Computing : Clusters, Grids and Cloudsll rights reserved 1-40
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

(4) Which of the following software tools is spfamlly designed for scalable storage
services in distributed cloud computing applicagi@n

a. Amazon EC2
b. Amazon S3
C. Apache Hadoop library
(5) Inacloud formed by a cluster of servers, all sesvmust be select as follows:
a. All cloud machines must be bulit on physical sesve
b. All cloud machines must be built with virtual serse
C. The cloud machines can be either physical or airservers.

Problem 1.3: Content delivery networks have gone through tiyeseerations of development: namely the
client-server architecture, massive network of ennservers, and P2P networks. Discuss the adyesita
and shortcomings of using these content delivetyorks.

Problem 1.4: Conduct a deeper study of the three cloud platimodels presented in Talll&s. Compare
their advantages and shortcomings in developmedistifbuted applications on each cloud platforine T
material in Table 1.7 and Table 1.8 are usefubiuryassessment.

Problem 1.5: Consider parallel execution of an MPIl-coded Ggpam in SPMD (single program and
multiple data streams) mode on a server clustesistimg ofn identical Linux servers. SPMD mode means
that the same MPI program is running simultaneooslgll servers but over different data sets afiidel
workload. Assume that 25% of the program execusi@ttributed to the execution of MPI commandst Fo
simplicity, assume that all MPI commands take #maes amount of execution time. Answer the following
guestions using Amdahl’s law:

(a) Given that the total execution time of the MRdgmam on a 4-server clusterTigninutes. What
is the speedup factor of executing the same MRjraro on a 256-server cluster, compared with
using the 4-server cluster. Assume that the progreecution is deadlock-free and ignore all
other run-time execution overheads in the calcutati

(b). Suppose that all MPI commands are now enhancedfégtar of 2 by using active messages
executed by message handlers at the user spacenfiiecement can reduce the execution time
of all PMI commands by half. What is the speedtithe 256-server cluster installed with this
MPI enhancement, computed with the old 256-servmster without MPI enhancement?

Problem 1.6: Consider a program to multiply two large-sddle N matrices, wher#l is the matrix size.
The sequential multiply time on a single seveF.is ¢ N® minutes, where is a constant decided by the
server used. A MPI-code parallel program requiiesc N*/n+ d N?/ n®° minutes to complete execution
on ann-server cluster system, whetés a constant determined by the MPI version usésl can assume
the program has a zero sequential bottleneck@). The second term i, accounts for the total message
passing overhead experiencednservers.

Answer the following questions for a giv&uaster configuration withh = 64 servers ancl= 0.8 andd
= 0.1. Parts (a, b) have a fixed workload corredpanto the matrix siz&l = 15,000. Parts (c, d) have a
scaled workload associated with an enlarged maizeN’ = n'* N = 64“*x 15,000= 4x15,000 = 60,000.
Assume the same cluster configuration to proceisworkloads. Thus the system parameters, andd
stay unchanged. Running the scaled workload, teehead also increases with the enlarged matrixX\size

(@) Using Amdahl’s law, calculate the speedup ofrifemrver cluster over a single server.
(b) What is the efficiency of the cluster system uselart (a) ?
(c) Calculate the speedup in executing the scaled wadklfor an enlargedN’ x N’ matrix

1-41

Distributed Computing : Clusters, Grids and Cloudsll rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

on the same cluster configuration using Gustafsaw.
(d) Calculate the efficiency of running the scaled vioaki in Part (ton the 64-processor cluster.
(e) Compare the above speedup and efficiency results@mment on their implications.

Problem 1.7: Cloud computing is an emerging distributed compuparadigm. An increasing number of
organizations in industry and business sectorstatlopd systems as their system of choice. Ansher t
following questions on cloud computing.

(a) List and describe main characteristics of cloud poting systems.
(b) Discuss key enabling technologies in cloud compusiystems.
(c) Discuss different ways for cloud service providersnaximize their revenue.

Problem 1.8: Compare the similarities and differences betweaditional computing clusters/grids and
the computing clouds launched in recent years. stmuld consider all technical and economic asests
listed below. Answer the following questions agaiesl example systems or platforms built in recent
years. Also discuss the possible convergence diMbeomputing paradigms in the future..

(a) Hardware, software, and networking support
(b) Resource allocation and provisioning methods
(c) Infrastructure management and protection.

(d) Supporting of utility computing services

(e) Operational and cost models applied.

Problem 1.9: Answer the following questions opersonal computingPC) andhigh-performance
computing(HPC) systems:

(a) Explain why the changes jmersonal computingPC) andhigh-performance computingdPC)
were evolutionary rather revolutionary in the [@&tyears.

(b) Discuss the drawbacks in disruptive changes ingasar architecture. Why memory wall is a
major problem in achieving scalable performance?

(c) Explain why x-86 processors are still dominating BC and HPC markets ?

Problem 1.10: Multi-core and many-core processors have appeareddespread use in both desktop
computers and HPC systems. Answer the followingstimes in using advanced processors, memory
devices, and system interconnects.

(&) What are differences between multi-core CPU and @Pachitecture and usages ?
(b) Explain why parallel programming cannot match wfth progress of processor technology.

(c) Suggest ideas and defend your argument by somsilglasolutions to this mismatch problem
between core scaling and effective programmingusedof multicores.

(d) Explain why flash memory SSD can deliver betteresiops in some HPC or HTC applications.
(e) Justify the prediction that Infiniband and Ehterwdt continue dominating the HPC market.

Problem 1.11Compare the HPC and HTC computing paradigms astémsyg. Discuss their commonality
and differences in hardware and software suppatiag@plication domains.

Problem 1.12 Answer the roles of multicore processors, membips; solid-state drives, and disk arrays.
in building current and future distributed and daomputing systems.

Problem 1.13 What are lopment trends of operating systems aodr@amming paradigms in modern

1-42

Distributed Computing : Clusters, Grids and Cloudsll rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

distributed systems and cloud computing platforms ?

Problem 1.14 Distinguish P2P networks from Grids and P2P Ghbigdilling the missing table entries.
Some entries are already given. You need to shalgntries in Table 1.3, Table 1.5, and Tablelefbre
you try to distinguish these systems precisely.

Discuss the major advantages and disadvantagks foltowing challenge areas:
(&) Why virtual machines and virtual clusters are sst)gd in cloud computing systems ?
(b) What are the breakthrough areas needed to builealized cloud systems cost effectively ?
(c) What is your observations of the impact of clolatfprms on the future of HPC industry ?

Problem 1.16: Briefly explain each of the following cloud commui services. Identify two clouder
providers in each service category.

(a) Application cloud services

(b) Platform cloud services

(c) Compute and storage services
(d). Co-location cloud services

(e). Network cloud services.

Table 1.11 Comparison among P2P Networks, Grids, a nd P2P Grids

Features P2P Networks Grid Systems P2P Grids
Applications Distributed file sharing,
and Peer or content distribution, peer
Node Roles machines acting as both
clients and servers
System Control Policy-based control in a
and Service grid infrastructure, all
Model services from clent
machines
System Static conections with
Connectivity high-speek links over
grid resource sites
Resource Autonomous peers without
Discovery and discovery, no use of a
Job central job scheduler
Management
Repersentative NSF TeraGrid, UK
Systems EGGE Grid, China Grid

Problem 1.15: plain the impacts of machine virtualization to Imésis computing and HPC systems.

Problem 1.17: Biefly explain the following terms associated wittwork threats or security defense in
a distributed computing system:

(@) Denial of service (DoS)

Distributed Computing : Clusters, Grids and Cloudsll rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

Chapter 1: System Models and Enabling Technolog{é2 pages)
revised May 2, 2010

(b) Trojan horse

(c) Network worms

(d) Masquerade

(e) Evasdropping

() Service sproofing

(g) Authorization

(h) Authentication

® Data integrity

() Confidentaility
Problem 1.18: Briefly answer following questions on green infotioa technology and energy
efficiency in distributed systems. You can findaers in later chapters or search over the Web.

(&) Why power consumption is critical to datacenterrapjens ?

(b) Justify Equation (1.6) by reading a cited informatsource.

(c) What is dynamic voltage frequency scaling (DVF$hteque ?
Problem Problem 1.19: Distinguish the following terminologies associatigh multithreaded processor
architecture:

(@) Whatis fine-grain multithreading architecturddentify two example processors.

(b) Whatis course-grain multithreading architecturtl@ntify two example processors.

(c) What is simultaneously multithreading (SMT) arehbture ? Identify two example proccesors.

Problem 1.20: Characterize the following three cloud computimgdels:
(@) What is an laaS (Infrastructure as a Servica)d® Give one example system.
(b) What is a PaaS (Platform as a Service) cloudv/@ Gie example system.
(c) What is a SaaS (Sofftware as a Service) cloud @ Gie example system.

Distributed Computing : Clusters, Grids and Cloudsll rights reserved
by Kai Hwang, Geoffrey Fox, and Jack Dongarra, Ma2010.

