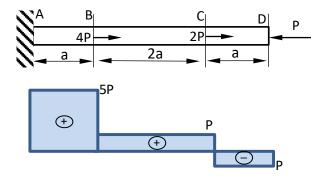
PME3210 – Mecânica dos Sólidos I – Primeira Prova – 19/04/2017 Resolução

1ª Questão (3,0 pontos)

A barra prismática da figura está rigidamente engastada em A e possui forças axiais aplicadas nos centróides das seções transversais B, C e D, cuja área é S= 400 mm². Sabe-se ainda que o material é elástico linear com módulo de elasticidade E=60 GPa e coeficiente de Poisson $\nu = 0,3$. Considere a=0,4 m e P= 10 kN. Pede-se:

- a) obter o alongamento total da barra na direção axial sob a ação das forças indicadas;
- b) obter o alongamento da barra na direção transversal no trecho entre C e D.



Solução:

a) O alongamento total é dado pela soma das contribuições de cada seção:

$$\delta = \frac{N_{AB}a}{EA} + \frac{N_{BC}2a}{EA} + \frac{N_{CD}a}{EA} \,. \tag{1,0}$$

Nessa expressão, N_{AB} , N_{BC} e N_{CD} , forças normais em cada seção, mostradas no diagrama de esforços normais solicitantes (acima), são dadas por:

$$N_{AB} = 5P; \quad N_{BC} = P; \quad N_{CD} = -P.$$
 (1,0)

b) Dado o coeficiente de Poisson, calcula-se primeiro a deformação na seção transversal no

$$\epsilon' = -\nu\epsilon = -\frac{\nu\delta_{CD}}{L_{CD}} = -\frac{\nu(-Pa)}{EA}\frac{1}{a} = \frac{0.3 \times (10 \times 10^3)}{60 \times 10^9 \times 400 \times 10^{-6}} = \frac{1}{8} \times 10^{-3} = 0.125 \times 10^{-3} \frac{m}{m}$$

Considerando uma seção transversal quadrada, a aresta valerá
$$\sqrt{A} = 20 \ mm$$

$$\therefore \quad \epsilon' = \frac{\delta'}{\sqrt{A}} \Longrightarrow \delta' = 0.125 \times 10^{-3} \times 20 \times 10^{-3} = 2.5 \times 10^{-6} \ m \tag{0.5}$$

Obs: como as dimensões da seção transversal não foram fornecidas, outras geometrias adotadas como hipótese pelo aluno também foram consideradas corretas, desde que os valores tenham sido adequadamente calculados.

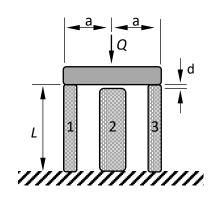
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Departamento de Engenharia Mecânica

2ª Questão (3,5 pontos)

Uma plataforma rígida é apoiada nas barras 1, 2 e 3, de mesmo material (módulo de elasticidade E) e comprimento nominal L. As áreas das seções transversais das barras 1 e 3 são idênticas e iguais a A, ao passo que a área da seção transversal da barra 2 é 2A. Devido a um erro de montagem, foi deixada uma pequena folga d entre a barra 2 e a plataforma rígida. Nessas condições, pede-se:

- a) obter o valor da carga Q a ser aplicada no centro da plataforma de modo a eliminar a folga;
- b) obter o deslocamento para baixo da placa rígida quando uma carga P>Q é aplicada no centro da plataforma, supondo que toda a estrutura trabalhe no regime elástico;
- c) se a tensão de escoamento for σ_Y , obter a carga plástica P_P .



Solução:

a) Por simetria, sabe-se que a força normal aplicada às barras

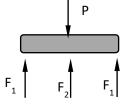
1 e 3 é
$$\frac{Q}{2}$$
. Para determinar Q faz-se:
$$d = \frac{Q}{2} \frac{L}{EA} \implies Q = \frac{2dEA}{L} \tag{0,5}$$

b) Para obter o deslocamento para baixo da placa rígida quando submetida a uma carga P>Q temos, de acordo com o diagrama de corpo livre da placa e, novamente devido à simetria,

$$\sum F_V = 0 \to 2F_1 + F_2 = P$$
 (1) (0,5)

Os alongamentos das barras 1,2 e 3 são:

$$\delta_1 = \delta_3 = d + \frac{F_1 L}{EA}$$
 $\delta_2 = \frac{F_2 L}{2EA}$ (0,5)



Equação de compatibilidade:

Equação de compatibilidade.
$$\delta_1 = \delta_2 \Rightarrow d + \frac{F_1 L}{EA} = \frac{F_2 L}{2EA}$$

$$\Rightarrow F_2 = \frac{2dEA + 2F_1 L}{L} \quad (2) \quad (0,5)$$

Resolvendo (1) e (2):

$$2F_1 + \frac{2dEA + 2F_1L}{L} = P \rightarrow 4F_1L + 2dEA = P \Longrightarrow$$

$$F_1 = \frac{PL - 2dEA}{4L} \tag{0.5}$$

$$\delta = d + \frac{PL - 2dEA}{4L} \frac{L}{EA} \rightarrow \delta = \frac{PL + 2dEA}{4EA}$$
 (0,5)

c) A carga plástica P_P é obtida impondo que todas os

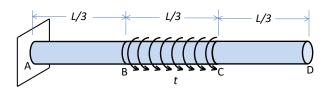
membros da estrutura tenham atingido sua tensão admissível de escoamento, $\sigma_Y = \sigma$. Assim, as cargas axiais atuantes são:

$$F_1 = \sigma_Y A; \quad F_2 = \sigma_Y 2A; \quad F_3 = \sigma_Y A.$$

Com isso, o equilíbrio da placa na direção vertical fornece

$$P_P = F_1 + F_2 + F_3 : P_P = 4\sigma_Y A \tag{0.5}$$

3ª Questão (3,5 pontos)



A barra cilíndrica da figura tem diâmetro d=20mm e tem comprimento L=9m. Ela está engastada em A e livre em C. O seu material é elástico linear com módulo de cisalhamento G=60GPa. No trecho BC há aplicado um torque distribuído t= 20N.m/m. Pede-se:

- a) calcular a máxima tensão de cisalhamento na barra;
- b) calcular a máxima tensão normal na barra;
- c) calcular o giro da seção B;
- d) calcular o giro da seção C;
- e) calcular o giro da seção D;
- f) se o material tem resistência à compressão σ_u =80MPa, calcular o fator de segurança.

Nota: usar a aproximação π =3.

a) A máxima tensão de cisalhamento em cada seção e dada por:

$$\tau_{max} = \frac{Tr}{I_P}$$

Assim, a tensão de cisalhamento máxima na barra ocorrerá nas seções em que o momento de torção for máximo. O diagrama de momentos de torção ao longo da barra é:

Então, o máximo valor do momento de torção será igual a 60 kN.m/m e a tensão de cisalhamento máxima será:

$$I_{P} = \frac{\pi d^{4}}{32} = \frac{3 \times (20 \times 10^{3})^{4}}{32} = 1,5 \times 10^{-8} m^{4}$$

$$\tau_{max} = \frac{60 \times 10 \times 10^{3}}{1,5 \times 10^{-8}} \times 10^{-6} \Rightarrow \qquad \tau_{max} = 40 MPa$$
(0,5)

b) A tensão normal máxima ocorre em planos inclinados a 45° em relação ao eixo da barra e seu valor é igual ao da tensão de cisalhamento máxima:

$$\sigma_{max} = \tau_{max} \Rightarrow \sigma_{max} = 40MPa$$
 (0,5)

c) No trecho AB a torção é uniforme (pura), portanto:

$$\phi_B = \frac{TL}{GI_P} = \frac{60 \times 3}{60 \times 10^9 \times 1,5 \times 10^{-8}} \Rightarrow \qquad \phi_B = 0,2rd$$
 (0,5)

d) No trecho BC a torção é não uniforme. Sendo ϕ_{BC} o acréscimo de giro no trecho BC:

$$\phi_{BC} = \int_0^{L/3} \frac{tx}{GI_P} dx = \frac{t}{GI_P} \left[\frac{x^2}{2} \right]_0^{\frac{L}{3}} = \frac{tL^2}{18GI_P}$$

$$\phi_{BC} = \frac{20 \times 9^2}{18 \times 60 \times 10^9 \times 1.5 \times 10^{-8}} \Rightarrow \phi_{BC} = 0.1 rd$$

O giro da seção C é a soma do giro da seção B com o acréscimo de giro no trecho BC:

$$\phi_C = \phi_B + \phi_{BC} \Rightarrow \boxed{\phi_C = 0.3rd} \tag{1.0}$$

e) O momento de torção no trecho CD é nulo, então:

$$\phi_D = \phi_C = 0.3rd\tag{0.5}$$

f) O fator de segurança será o quociente entre a tensão de compressão admissível e o módulo da tensão de compressão máxima. Então:

$$FS = \frac{\sigma_u}{\sigma_c} = \frac{80}{40} \Rightarrow \qquad FS = 2 \tag{0,5}$$