Ligação, permuta e mapeamento

Prof. David De Jong Depto. de Genética

Terceira lei do Mendel

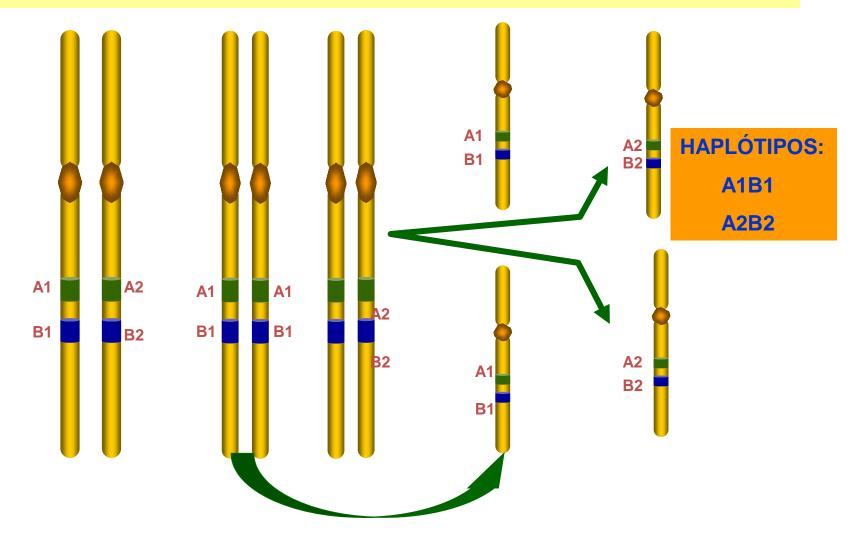
- Membros de pares de pares diferentes de genes distribuem se para as gametas independentemente um do outro
- Alelos de genes em loci diferentes segregam se independentemente
- Verdade para genes em cromossomos diferentes
- Nem sempre para genes no mesmo cromossomo genes sintênicos

Slide 2

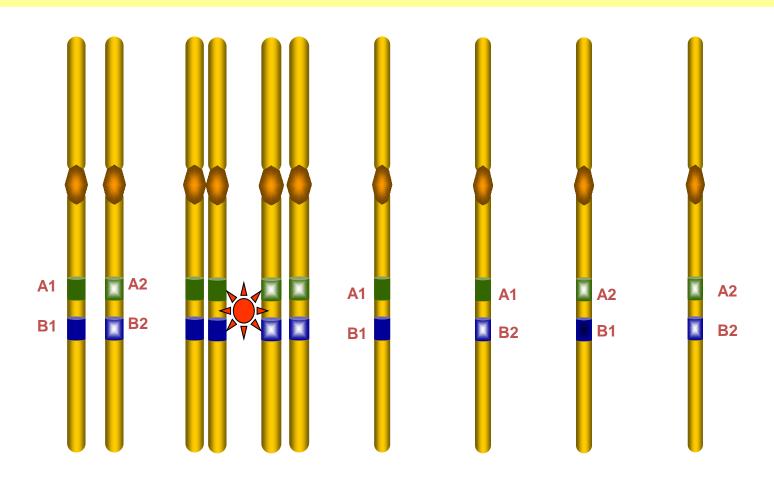
Loci ligados

- Dois loci próximos, herdados juntos mais frequentemente do que não
- Perto pouco chance que separam por crossing over
- Ligados no mesmo cromossomo em acoplamento
- Em cromossomos homólogos em repulsão
- - Fase de ligação

Fração de Recombinação


- 0
- Medida de distancia que separa dois loci
- Indicacao da probabilidade que ocorre um crossing-over entre eles
- Dois loci não ligados. $\Theta = 0.5$
- Θ = 0,05 um crossing em media 1 em
 20 meioses

Centimorgans


- Unidade de mapa (cM)
- 1 cM crossing over 1 em cada 100 meioses
- $\Theta = 0.01$

- Não é distancia física
- Kb quilobases 1.000 pares de bases
- Mb − 1.000 kb
- Mais ou menos 1 cM = 1 Mb

Alelos LIGADOS segregam juntos, formando HAPLÓTIPOS

ALELOS LIGADOS PODEM RECOMBINAR-SE

PROPORÇÃO MÁXIMA DE RECOMBINAÇÃO

- Se 100% das células apresentam crossing over:
 - 25% A1B1
- 25%A2B2
- 25% A1B2
- 25%A2B1
- Se 50% das células apresenta crossing over,
 - (25+12,5)% A1B1 e (25+12,5%) A2B2 PARENTAIS
 - 12,5% A1B2 e 12,5% A2B1

RECOMBINANTES

- Considerando-se vários lócus:
 - Distância máxima entre qualquer par de lócus: 50%
 - Distância entre o <u>primeiro</u> e o <u>último</u> lócus de uma série é igual à <u>soma</u> das distâncias entre os lóci intermediários.

FASE

- Dois alelos de lóci diferentes em um mesmo cromossomo constituem um haplótipo e, por isso, diz-se que estão em fase de <u>CIS</u> ou de <u>ACOPLAMENTO</u>.
- Em um indivíduo A1 B1 / A2 B2, diz-se que A1 e
 B1 estão em acoplamento; idem os alelos A2 e B2;
- A1 e B2 estão em fase <u>TRANS</u> ou de <u>REPULSÃO</u>.

Cruzamento entre parentais

	MACHO	FÊMEA	GERAÇÃO
			F1
GENÓTIPOS	AABB	aabb	AaBb
FENÓTIPOS	AB	ab	AB

QUADRO 1. Genótipos possíveis na prole de um cruzamento entre dois indivíduos duplo heterozigotos (AaBb x AaBb).

GAMETAS	GAMETAS MASCULINOS			
FEMININOS	AB	Ab	aB	ab
AB	AABB	AABb	AaBB	AaBb
Ab	AABb	AAbb	AaBb	Aabb
aB	AaBB	AaBb	aaBB	aaBb
ab	AaBb	Aabb	aaBb	aabb

QUADRO 2. Freqüências das classes genotípicas e fenotípicas na prole de um cruzamento entre duplo heterozigotos (*AaBb x AaBb*).

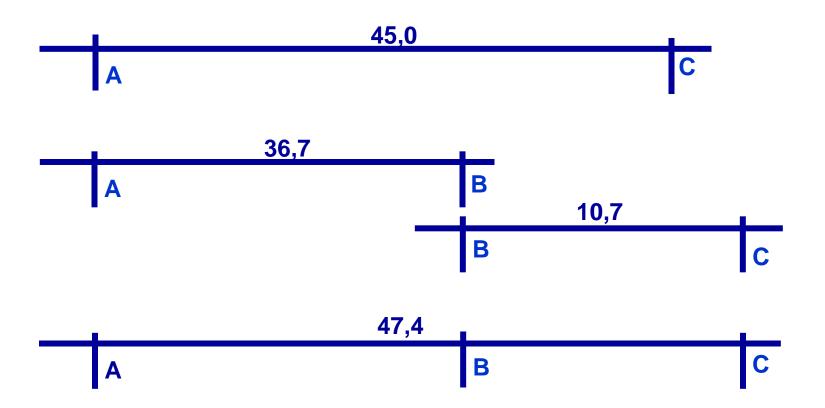
CLASSES	S GENOTÍPICAS	CLASSES FENOTÍPICAS		
TIPO	FREQÜÊNCIAS	TIPO	FREQÜÊNCIAS	
AABB	1/16			
AABb	2/16	AB	9/16	
AaBB	2/16			
AaBb	4/16			
AAbb	1/16	Ab	3/16	
Aabb	2/16			
aaBb	2/16	аВ	3/16	
aaBB	1/16			
aabb	1/16	ab	1/16	

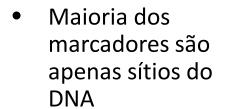
Quadro 3: Genótipos e Fenótipos obtidos após união dos Gametas F1, com o único tipo de gametas (ab) produzindo pelo duplo recessivo *aabb*

GAMETAS	GAMETA	GENÓTIPOS	FENÓTIPOS	FREQÜÊNCIAS
F1	PARENTAL	F2	F2	ESPERADAS
AB	ab	AaBb	AB	25 %
Ab	ab	Aabb	Ab	25 %
aB	ab	aaBb	aB	25 %
ab	ab	aabb	ab	25 %

Quadro 4. Descendência de cruzamento teste entre fêmea duplo heterozigota e macho duplo homozigoto recessivo para as características cor de olho e tipo de asa em drosófila.

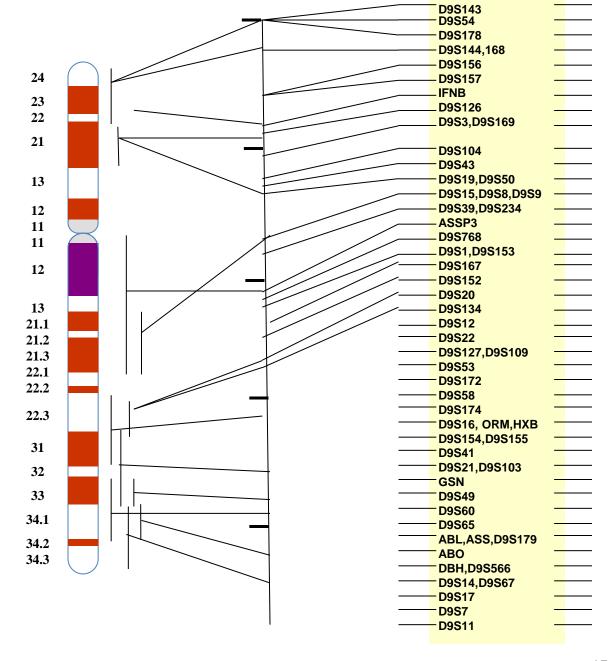
GAMETAS	GENÓTIPO DA	FENÓTIPOS DA	FREQÜÊNCIAS
MATERNOS	GERAÇÃO F2	GERAÇÃO F2	OBSERVADAS
bw+arc+	bw+arc+/bw arc	Selvagem (olhos	47,4%
		e asas normais)	
bw+arc	bw+arc/bw arc	Olho normal, asa	2,6%
		arqueada	
bw arc+	bw arc+/bw arc	Olho marrom e	2,6%
		asa normal	
bw arc	bw arc/bw arc	Olho marrom-asa	47,4%
		arqueada	


RESULTADOS DO CRUZAMENTO


AaBbCc x aabbcc

Quadro 5. Exemplo hipotético de freqüências fenotípicas observadas entre os descendentes de um cruzamento teste em relação a três caracteres.

descendentes de um cruzamento teste em relação a tres caracteres.					
FENÓTIPOS DOS DESCENDENT	TOTAL DE DESCENDENTES	NÚMERO DE RECOMBINAN A-B B-C		IANTES A-C	
ES	510021102111120				
ABC	261	-	-	-	
abc	277	-	-	-	
Abc	173	173	-	173	
aBC	182	182	-	182	
ABc	44	-	44	44	
abC	51	-	51	51	
AbC	5	5	5	-	
аВс	7	7	7	-	
TOTAIS	1000	367	107	450	


Quadro 5						
FENÓTIPOS DOS TOTAL DE NÚMERO DE RECOMBINANTES DESCENDENT DESCENDENTES A-B B-C A-C ES						
TOTAIS	1000	367	107	450		

- Mapa genético do Homem é diferente do da Mulher
- Se 1 cM
 corresponde a 1
 Mpb, qual é o
 tamanho
 genético do
 cromossomo 9? –
 145 milhões de
 pb

E do genoma humano que tem 3 bilhões de pb?

Proporções de gametas Recombinantes e Não-recombinantes

```
Gametas recombinantes = \theta

Gametas Gt ou gT = \theta/2 CADA UM

Gametas não recombinantes = 1 - \theta

Gametas GT ou gt = (1 - \theta)/2 CADA UM
```

No exemplo da drosófila, $\theta = 0.052$.

Portanto: $\theta/2 = 0.026$ e $(1-\theta)/2 = 0.474$

Dois lócus dois alelos

Se dois *lócus* não estiverem no mesmo cromossomo (isto é, não forem *sintênicos*) ou se estiverem no mesmo cromossomo mas muito distantes entre si $(\theta > 0,5)$, haverá igual número dos quatro tipos de gametas.

MAPEAMENTO GENÉTICO vs CITOGENÉTICO (físico)

- Mapeamento Citogenético ou Mapeamento físico
 - Localização regional no cromossomo
- Mapeamento genético
 - Posição relativa dos genes
 - Distância entre genes determinada pela taxa de recombinação (θ)

O projeto Genoma gerou o conhecimento de toda a sequência do DNA.

Milhares de sítios polimórficos (marcadores) são conhecidos.

Muitos genes ainda não estão mapeados

LIGAÇÃO vs. ASSOCIAÇÃO

- Ao surgir por mutação um novo alelo em um determinado loco, os alelos ligados (próximos) estarão *associados* ao alelo novo.
- Por exemplo, se o indivíduo for homozigoto L1/L1 no Loco 1 e, no Loco 2, surgir uma mutação D, este novo alelo ficará associado a um dos alelos L1
- Note que todas as vezes em que o alelo D estiver presente, estará presente um alelo L1 no loco vizinho (ligado), mas nem sempre o L1 será acompanhado da mutação D.
- Se a mutação D for dominante e causar uma doença, podemos usar o alelo associado para auxiliar o diagnóstico: diante de um paciente com suspeita da doença, examina-se o Loco 1. Ausência do alelo L1 significa que o paciente NÃO tem a doença, mas a presença dele não confirma a doença. Apenas aumenta a probabilidade.