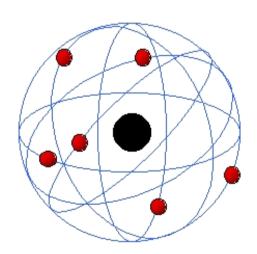

Física Moderna II Aula 13


Marcelo G. Munhoz

munhoz@if.usp.br Lab. Pelletron, sala 245 ramal 6940

1911 - Rutheford propõem a existência do núcleo atômico

- As hipóteses para o modelo atômico e a sua interação são:
 - A mecânica clássica é válida
 - O átomo contém um núcleo de carga
 +Ze e Z életrons orbitando a sua volta
 - Somente a força Coulombiana agindo
 - O núcleo e a partícula incidente são pontos
 - O núcleo alvo não sofre recuo
 - Nenhuma mudança ocorre no estado do alvo ou da partícula incidente

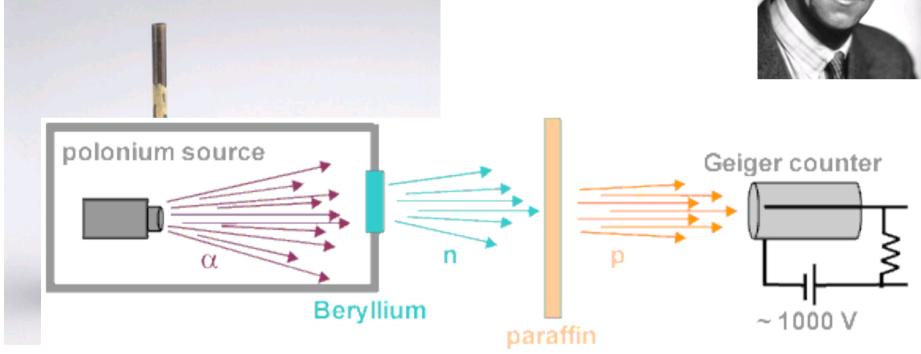
Como é o núcleo atômico?

- As hipóteses de Rutherford sobre o núcleo atômico eram bastante rudimentares. Apesar de representarem um grande avanço no entendimento da matéria, elas não são satisfatórias
- Como podemos estudar o núcleo?
- Quais são as características mais detalhadas do núcleo? Como podemos descrevê-lo?

Como podemos estudar o núcleo?

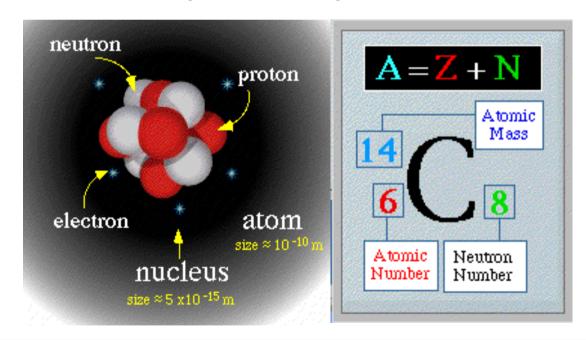
- Interações eletromagnéticas (Tópico 11):
 - Campos eletromagnéticos
 - Elétrons
- Observação do comportamento natural do núcleo (Tópico 12)
- Interações nucleares Reações nucleares (bloco 13)

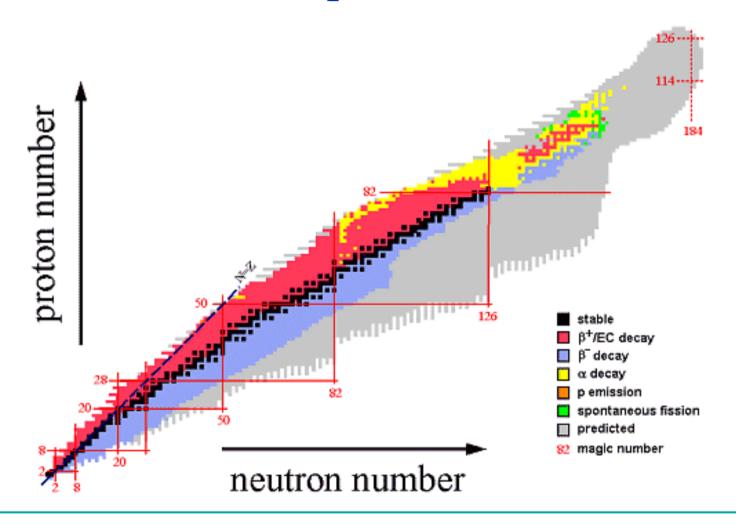
Como podemos descrever o núcleo?


- Em uma publicação de 1913 (Rays of Positive Electricity), J. J. Thomson relata a existência de um mesmo elemento com massas diferentes
- Na atual nomenclatura, esses elementos são chamados de isótopos
- Essa descoberta mostrou que o núcleo atômico não era composto apenas de "entidades" com carga positiva

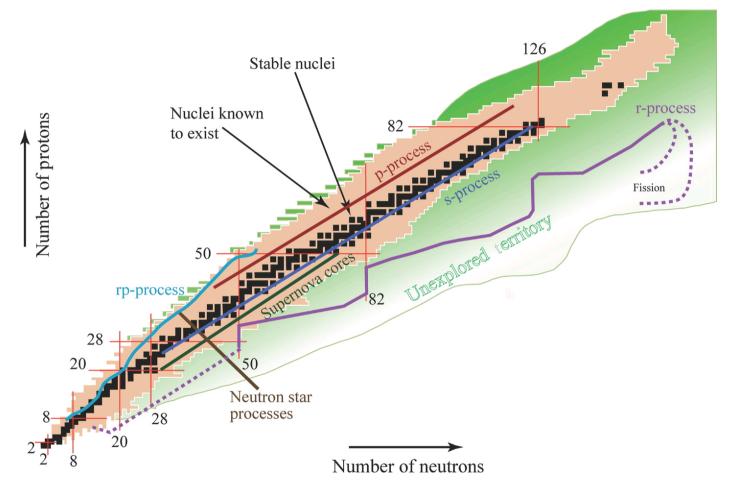
Como podemos descrever o núcleo?

- Inicialmente, especulou-se que existiam elétrons no núcleo
- Porém, essa hipótese se mostrou inviável (Por quê?)
- Somente em 1932, com a descoberta do nêutron por Chadwick (*Proc. Roy. Soc., A136, 692, 1932*), Heisenberg postulou a existência de prótons e nêutrons no núcleo atômico (*Z. Physik, 77, 1, 1932*)


1932 – Chadwick descobre os nêutrons



Como podemos descrever o núcleo?


- Descrição mais simples (estabelecida apenas após 1932):
 - O núcleo é composto de prótons e nêutrons

Quais são as possíveis combinações de prótons e nêutrons para formar os núcleos?

Estudos recentes...

Geesaman DF, et al. 2006. Annu. Rev. Nucl. Part. Sci. 56:53–92

Como podemos descrever o núcleo de maneira mais detalhada?

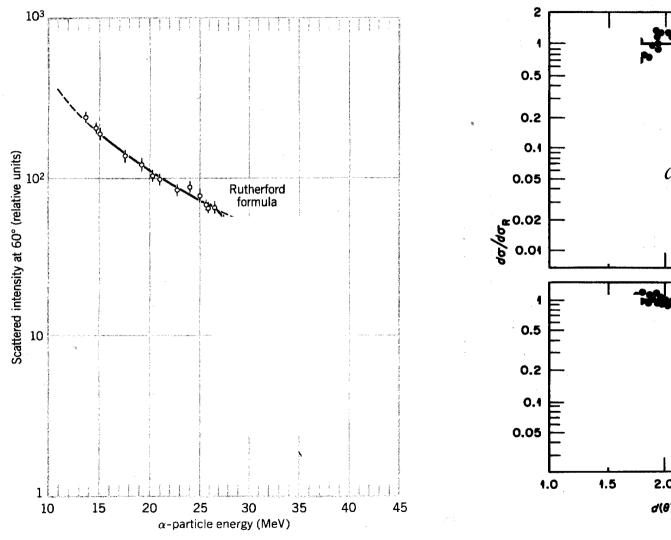
- Propriedades estáticas:
 - □ Tamanho,
 - Massa,
 - Distribuição da carga.
- Propriedades dinâmicas:
 - Dinâmica das cargas;
 - Momento angular orbital e intrínseco;
 - Instabilidade nuclear.

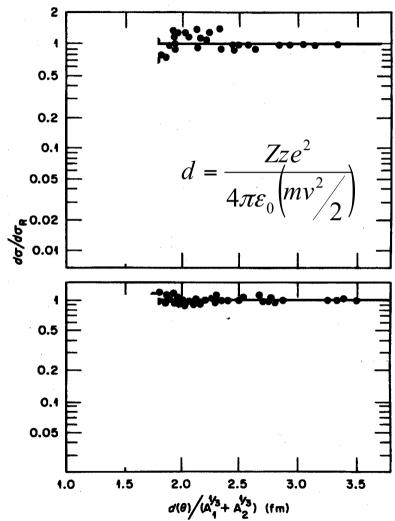
Como podemos determinar o tamanho do núcleo?

Através de Métodos indiretos:

- Interações eletromagnéticas e nucleares:
 - Espalhamento de partículas-α;
- Interações eletromagnéticas:
 - Espalhamento de elétrons;
- Interações nucleares:
 - Espalhamento de nêutrons.

Unidades nucleares

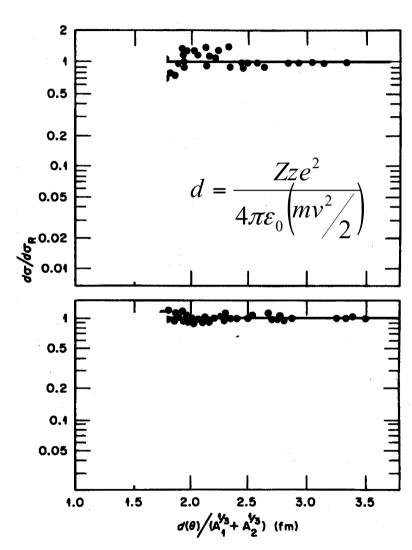

		SI Values
Energy	1 eV	=1.602×10 ⁻¹⁹ J
	1 MeV=10 ⁶ eV	$=1.602 \times 10^{-13} \text{ J}$
	1 GeV=1000 MeV	$=1.602\times10^{-10}$ J
Momentum	1 MeV/c	=5.344×10 ⁻²² kg m s ⁻¹
Mass	1 MeV/c ²	=1.783×10 ⁻³⁰ kg
The unified atomic		
mass unit (12C scale)	1 u=931.5 MeV/c ²	=1.661×10 ⁻²⁷ kg
Length	1 fermi (fm)	=1.0×10 ⁻¹⁶ m
Other quantities	ħc =197.3 MeV fm	=3.162×10 ⁻²⁶ J m
	$c_{-} = 2.998 \times 10^{23} \text{fm s}^{-1}$	=2.998×108 m s-1
	h =6.588×10 ⁻²² MeVs	=1.055×10 ⁻³⁴ Js
	=197.3 MeV/c fm	All the second of the second
The fine-structure co	nstant	Action 1886
	e^2 1	
	$\frac{e^2}{4\pi\varepsilon_0\hbar c} = \frac{1}{137.04}$	
Natural units		
	$\hbar = c = 1$	
	1 unit of mass = 1 GeV	
	1 unit of length = 1 GeV-1 = 0.197	
	1 unit of time = 1 GeV-1 = 6.588	×10 ⁻²⁵ s


Rutherford (1911)

Vimos que Rutherford deduziu a seguinte expressão para o espalhamento de partículas-α em um ângulo θ quando um feixe incide sobre um alvo fino de diferentes elementos:

$$dN = N(\theta)d\theta = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \left(\frac{Zze^2}{2mv^2}\right)^2 \frac{I \cdot \rho \cdot t}{sen^4(\theta/2)} 2\pi \cdot sen(\theta)d\theta$$

Espalhamento de partículas-α

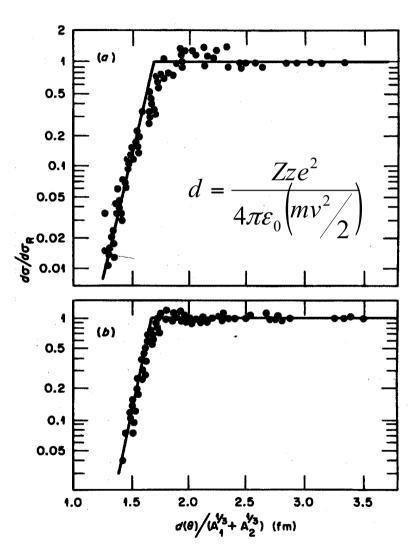

Espalhamento de partículas-α

 Evidência de que o raio do núcleo tem uma dependência do tipo:

$$R \propto A^{\frac{1}{3}}$$

Supondo que o núcleo tem uma forma esférica, tem-se que:

$$V \propto A$$

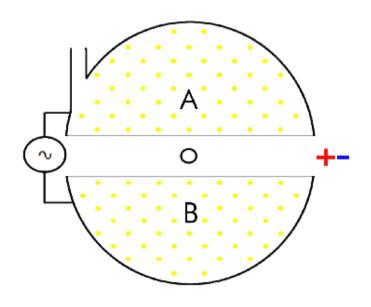


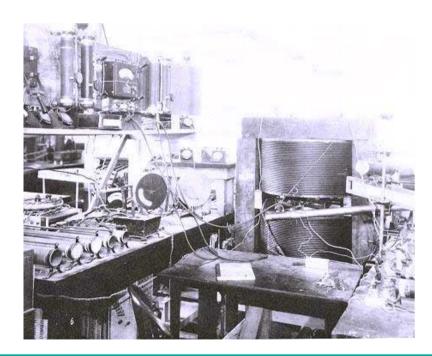
Espalhamento de partículas-α

 Evidência de que o raio do núcleo tem uma dependência do tipo:

$$R \propto A^{\frac{1}{3}}$$

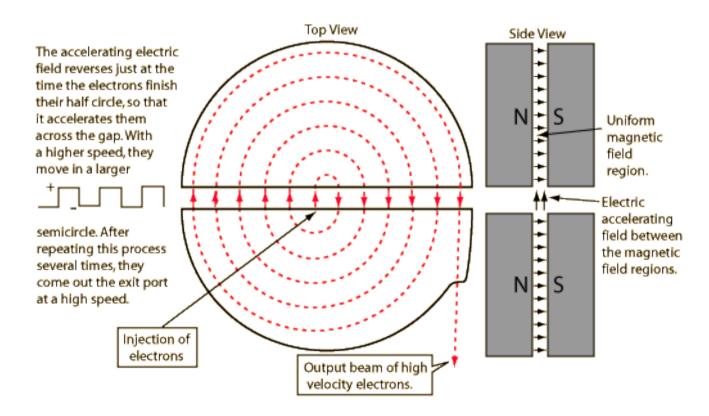
 Porém, não é apenas a força elétrica (Coulomb) que age sobre o sistema.


Espalhamento de elétrons


- Que tipo de informação sobre o núcleo conseguimos extrair com o espalhamento de elétrons?
 - Extensão da carga elétrica do núcleo;
- Qual a vantagem de se usar elétrons?
 - □ Elétrons de alta energia possuem comportamento ondulatório e permitem "enxergar" distâncias de $10^{-15} m$: $\Delta p \Delta x \approx \hbar / 2$

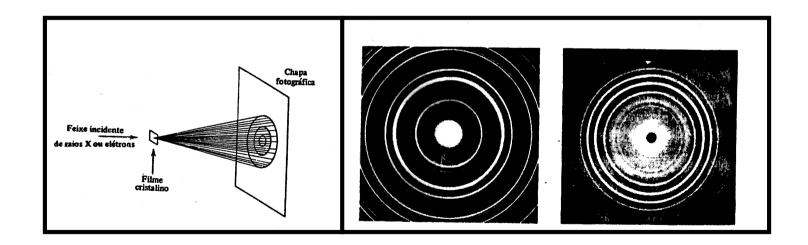
$$\Delta p \approx 100 MeV/c \Rightarrow \Delta x \approx 1 fm$$

1929 – Cyclotron


 Ernest Lawrence (University of California, Berkeley)

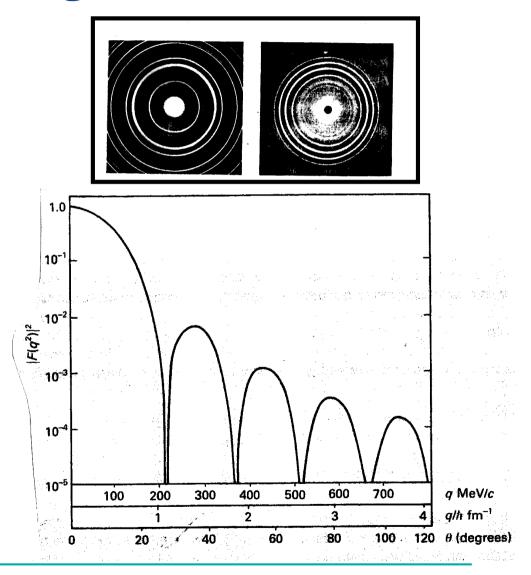
1940 - Betatron

Donald Kerst (University of Illinois)

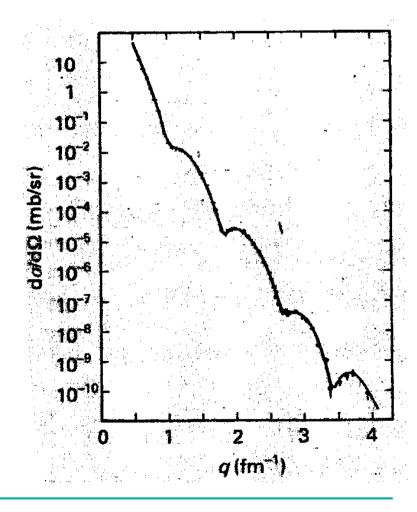


Espalhamento de elétrons

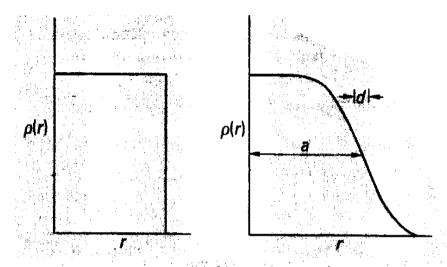
- Para extrairmos alguma informação sobre o núcleo a partir do espalhamento de elétrons devemos:
 - Considerar o caráter ondulatório do elétron;
 - Considerar a extensão da distribuição de carga do núcleo, ao invés de considerá-lo como um ponto, como fez Rutherford.
- Como fazer isso?


O caráter ondulatório do elétron ...

Ao interagir com o núcleo, o elétron sofrerá difração, da mesma maneira que a luz quando incide sobre um objeto opaco.

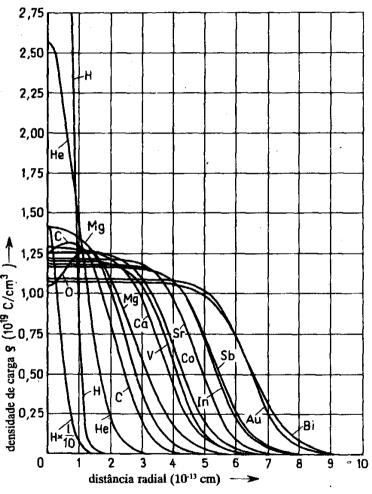

... e a extensão da carga nuclear

- Assim como a intensidade de luz, o número de elétrons varia em função da distância do centro espalhador ou ângulo em relação ao seu eixo.
- E a distância entre os mínimos e máximos depende do tamanho do objeto espalhador.


Espalhamento de elétrons

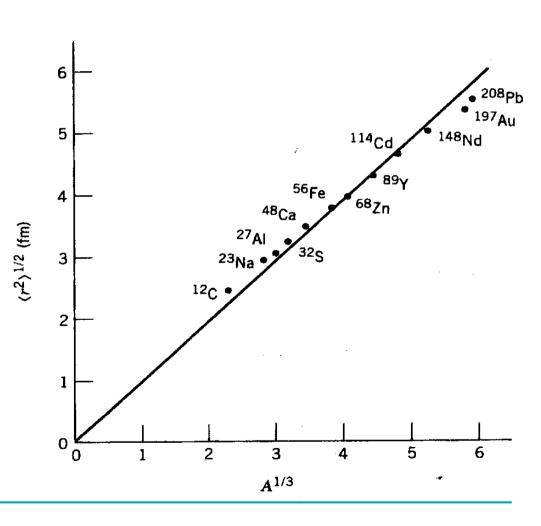
- O resultado experimental concorda com esta abordagem para o espalhamento de elétrons.
- Em seguida, é preciso verificar um modelo para a distribuição de carga que concorde com os dados experimentais.

Modelo para a distribuição de carga no núcleo


- O modelo I é o mais simples, porém resultaria em pontos de intensidade nula;
- O modelo II concorda bem com os dados, permitindo extrair os valores de ρ₀ (densidade interna), d (difusividade) e a (raio)

- (a) Model I: $\rho(r) = \rho_0, r < a,$ $\rho(r) = 0, r > a.$
- (b) Model II: $\rho(r) = \frac{\rho_0}{1 + \exp\left(\frac{r-a}{d}\right)}$

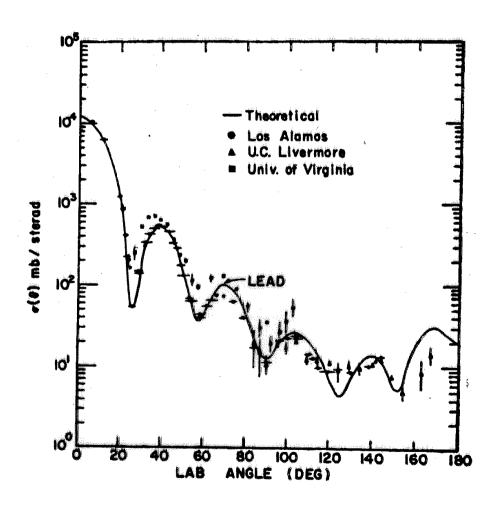
Valores obtidos para os parâmetros do modelo


O estudo do espalhamento de elétrons para vários núcleos mostra que a densidade nuclear é a mesma para diferentes núcleos, mudando apenas o raio e, em menor escala, a difusividade.

Valores obtidos para os parâmetros do modelo

 Este estudo também concorda com os resultados obtidos com o espalhamento de partículas-α:

 $R \propto A^{\frac{1}{3}}$



E o que isso significa?

- Qual o significado dessa dependência do raio nuclear com A^{1/3} ou do volume nuclear com A?
 - O volume nuclear é aditivo;
 - Isso mostra que a força que mantém o núcleo coeso é de curto alcance, pois caso contrário a densidade nuclear deveria aumentar conforme se aumenta o número de nucleons, como acontece com o átomo.

Espalhamento de nêutrons

- A fim de investigar a distribuição de matéria nuclear, podemos estudar o espalhamento de nêutrons nos núcleos;
- Os resultados são semelhantes aos de espalhamento de elétrons.
- O tratamento formal, porém é bem mais difícil, pois não conhecemos o potencial nuclear.

Como podemos descrever o núcleo de maneira mais detalhada?

- Propriedades estáticas:
 - Tamanho,
 - Massa,
 - Distribuição da carga.
- Propriedades dinâmicas:
 - Dinâmica das cargas;
 - Momento angular orbital e intrínseco;
 - Instabilidade nuclear.

Massa Atômica

- A massa dos átomos tem sido medida desde os primórdios da teoria atômica, no início do século XIX
- Com as medidas da massa do elétron no final do século XIX, logo se concluiu que a massa atômica estava concentrada na parte positiva do átomo, ou seja, no núcleo atômico

Unidades nucleares

1 eV	=1.602×10 ⁻¹⁹ J
1 MeV=10 ⁶ eV	$=1.602 \times 10^{-13} \text{ J}$
1 GeV=1000 MeV	$=1.602\times10^{-10}$ J
1 MeV/ <i>c</i>	=5.344×10 ⁻²² kg m s ⁻¹
1 MeV/c ²	=1.783×10 ⁻³⁰ kg
1 u=931.5 MeV/c ²	=1.661×10 ⁻²⁷ kg
1 fermi (fm)	=1.0×10 ⁻¹⁶ m
ħc =197.3 MeV fm	=3.162×10 ⁻²⁶ J m
$c_{-} = 2.998 \times 10^{23} \text{fm s}^{-1}$	=2.998×108 m s-1
ħ =6.588×10 ⁻²² MeVs	=1.055×10 ⁻³⁴ Js
=197.3 MeV/c fm	A Alignment of Calaba
stant	Action of
e^2 1	
$\frac{4\pi\varepsilon_0\hbar c}{137.04}$	
h=c=1	
1 unit of mass = 1 GeV	
unit of length = 1 GeV-1 = 0.197	5 fm
1 unit of time = 1 GeV-1 = 6.588	
•	1 MeV=10 ⁶ eV 1 GeV=1000 MeV 1 MeV/c 1 MeV/c ² 1 u=931.5 MeV/c ² 1 fermi (fm) $\hbar c = 197.3$ MeV fm $c = 2.998 \times 10^{23}$ fm s ⁻¹ $\hbar = 6.588 \times 10^{-22}$ MeV s =197.3 MeV/c fm stant $\frac{e^2}{4\pi\epsilon_0\hbar c} = \frac{1}{137.04}$ $\hbar = c = 1$ 1 unit of mass = 1 GeV unit of length = 1 GeV ⁻¹ = 0.197

Massa Nuclear

- Unidades de medida:
 - □ Como $E^2 = p^2c^2 + m^2c^4$, então podemos expressar a massa em unidades de MeV/c²;
 - Também podemos expressá-la em unidades de massa atômica (u.m.a.)

1 u.m.a. = $\frac{1}{12}$ Massa do átomo neutro de ¹²C

Excesso de massa:

$$\Delta = (M - A) \cdot c^2$$

Massa Nuclear

The unified atomic mass unit (12°C scale)

 $1 u = 931.5 MeV/c^2$

$$E^2 = p^2 c^2 + m^2 c^4$$

$$c^4 \qquad \Delta = (M - A) \cdot c^2$$

m_e	0,511 MeV
m_n	939,566 MeV
m_p	938,272 MeV
m_d	1875,613 MeV
$m (^3He)$	2808,350 MeV
m_{lpha}	3727,323 MeV
$oldsymbol{u}$	931,494 MeV

n = 1.00866 u.m.a.

 $^{1}H = 1.0079$ u.m.a.

 $^{2}H = 2.01410 \text{ u.m.a.}$

 $^{3}H = 3.01860 \text{ u.m.a.}$

 4 He = 4. 00260 u.m.a.

 6 Li = 6. 01512 u.m.a.

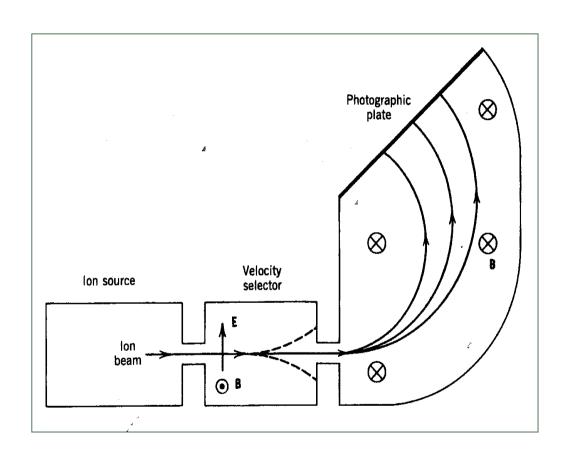
 12 C = 12.00000 u.m.a.

Como medir a massa nuclear?

- Existem diversos métodos. Entre eles:
- Espectrômetros de massa:
 - Interação eletromagnética;
- Reações nucleares:
 - Interação nuclear.

Espectrômetros de massa

Seletor de velocidade:


$$F_{elétrica} = F_{magnética}$$

$$qE = qvB \Rightarrow v = \frac{E}{B}$$

Seletor de massa - m(R):

$$F_{centrifuga} = F_{magnetica}$$

$$\frac{mv^2}{R} = qvB \Longrightarrow m = \frac{qB^2}{E} \cdot R$$

Reações nucleares:

o valor Q de uma reação

 Considere uma reação entre dois núcleos A e B, resultando nos núcleos C e D:

$$A + B \rightarrow C + D$$

- A partir do princípio da conservação da energia, podemos medir a massa de um núcleo;
- Por esse princípio, devemos ter:

$$m_A c^2 + T_A + m_B c^2 + T_B = m_C c^2 + T_C + m_D c^2 + T_D \Longrightarrow$$

 $m_A c^2 + m_B c^2 - m_C c^2 - m_D c^2 = T_C + T_D - T_A - T_B$

Reações nucleares:

o valor Q de uma reação

- Portanto, se medimos a energia cinética dos núcleos e conhecemos a massa de 3 deles, podemos medir a massa do quarto núcleo;
- Chamamos de Q da reação a diferença entre a massa total inicial da reação e a massa final, ou seja:

$$Q = (m_A + m_B - m_C - m_D) \cdot c^2$$

$$Q = (m_{inicial} - m_{final}) \cdot c^2$$

O que podemos esperar para os valores de massa dos núcleos?

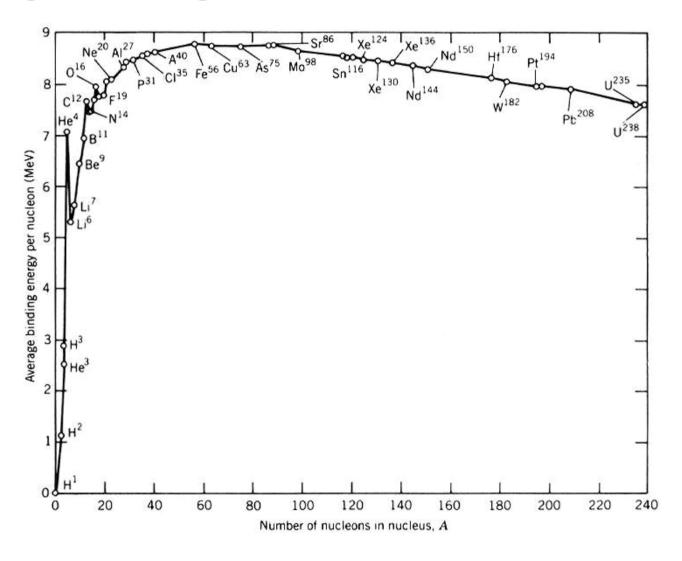
Podemos calcular a massa de um núcleo a partir da expressão:

$$m(Z,N)c^2 = Z \cdot m_p c^2 + N \cdot m_n c^2 - B$$

onde *B* é a energia de ligação do núcleo, isto é, a energia necessária para manter o núcleo como um sistema ligado;

 Se a massa dos núcleos for apenas a soma das massas de seus constituintes, devemos ter: *B* = 0

Energia de ligação


- Portanto, a energia de ligação de um núcleo (B) está intimamente conectada ao conceito de massa do mesmo;
- Normalmente, a energia de ligação é expressa a partir das massas atômicas ao invés das nucleares. Portanto, pode-se escrever:

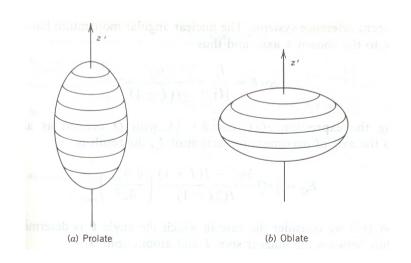
$$B = Z \cdot m_{p}c^{2} + N \cdot m_{n}c^{2} - m(Z, N)c^{2}$$

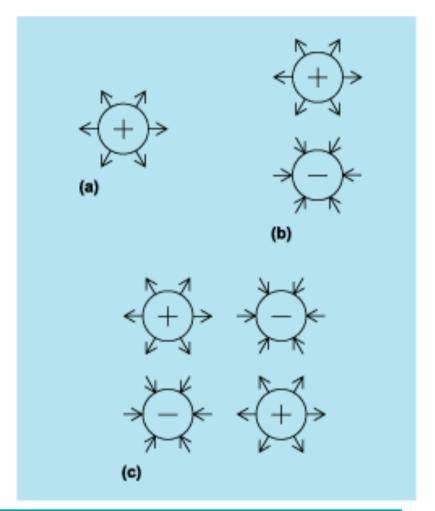
$$= Z \cdot m_{p}c^{2} + N \cdot m_{n}c^{2} - [M(Z, N) - Z \cdot m_{e}]c^{2}$$

$$= Z \cdot M_{H}c^{2} + N \cdot m_{n}c^{2} - M(Z, N)c^{2}$$

Energia de ligação

Como podemos descrever o núcleo de maneira mais detalhada?


- Propriedades estáticas:
 - Tamanho,
 - Massa,
 - Distribuição da carga.
- Propriedades dinâmicas:
 - Dinâmica das cargas;
 - Momento angular orbital e intrínseco;
 - Instabilidade nuclear.


Distribuição de carga elétrica no núcleo: momento de multipolo elétrico

- Se o núcleo tiver um tamanho finito (ao invés de infinitesimal), ele apresentará uma distribuição de carga elétrica
- Essa distribuição deverá gerar momentos de multipolo elétricos

Distribuição de carga elétrica no núcleo: momento de multipolo elétrico

- (a) Monopolo elétrico
- (b) Dipolo elétrico
- (c) Quadrupolo elétrico

Dinâmica da carga elétrica no núcleo: momento de multipolo magnético

- Cargas em movimento geram momentos de multipolo magnético
- Se o núcleo apresentar um momento angular orbital, este deve gerar momentos de multipolo magnético

Momento angular dos nucleons

- Prótons e nêutrons possuem spin (s) assim como elétrons
- Prótons e nêutrons devem se mover dentro do núcleo, portanto devem ter momento angular orbital (/) também
- Esses dois momentos devem se combinar, formando um momento angular total (j):

$$\vec{j} = \vec{l} + \vec{s}$$

Momento angular do **átomo**

No átomo, onde temos um conjunto de elétrons, o momento angular dos vários elétrons se combinam produzindo o momento angular total do átomo (J):

momento angular total do atomo (
$$\vec{J}$$
)
$$\vec{J} = \sum_{i=1}^{A} (\vec{l}_i + \vec{s}_i) = \sum_{i=1}^{A} \vec{j}_i$$

$$= \vec{L} + \vec{S}$$

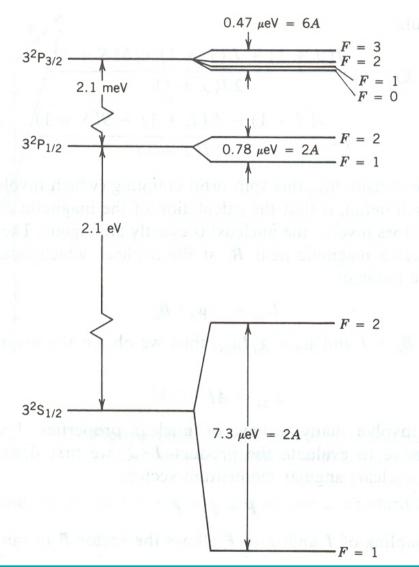
$$\vec{S} = \sum_{i=1}^{A} \vec{s}_i$$

Momento angular do **núcleo**

De maneira análoga, no núcleo temos um conjunto de prótons e nêutrons, e o momento angular dos vários nucleons se combinam produzindo o momento angular total do núcleo (/):

momento angular total do núcleo (/):
$$\vec{I} = \sum_{i=1}^{A} \left(\vec{l}_i + \vec{s}_i \right) = \sum_{i=1}^{A} \vec{j}_i$$

$$= \vec{L} + \vec{S}$$

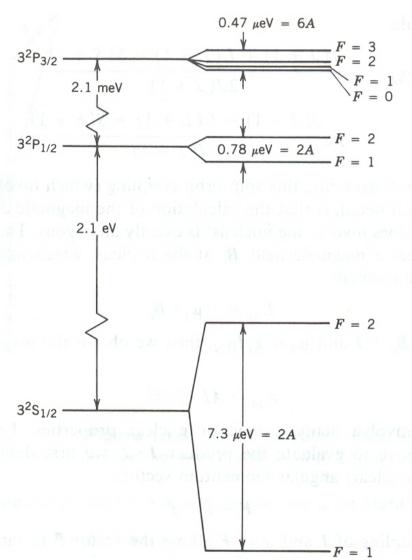

$$\vec{S} = \sum_{i=1}^{A} \vec{s}_i$$

Espectroscopia atômica: estrutura

híper-fina

- Pauli, já em 1924, propõe que a interação de elétrons com o núcleo atômico devem explicar a estruturas híper-finas dos espectros observados;
- Podemos definir um momento angular total da interação entre o núcleo e os elétrons (F):

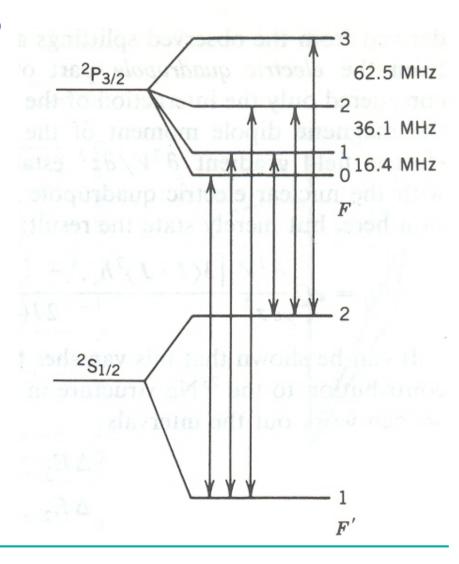
$$\vec{F} = \vec{J} + \vec{I}$$



Estrutura híper-fina: momento de

dipolo magnético

 A interação do momento de dipolo magnético do núcleo com o momento angular dos elétrons é dada por:


 $H' \propto \vec{I} \cdot \vec{J}$

Estrutura híper-fina: momento de

quadrupolo elétrico

 Um estudo detalhado do valor dos níveis de energia, mostrou que outro efeito era importante na sua determinação: o momento de quadrupolo elétrico.

Medidas de momento angular do núcleo

- Todo núcleo com número par de prótons e nêutrons apresentam I = 0;
- Para núcleos com A impar número par de prótons (nêutrons), número ímpar de nêutrons (prótons) – o momento angular é semi-inteiro, com valores entre 1/2 e 9/2;
- Para núcleos com número ímpar de prótons e nêutrons, o momento angular é inteiro e nãonulo, com valores entre 1 e 7;