PEA 2504 Laboratório de Máquinas Elétricas

Prof^a. Viviane Cristine Silva e Prof. Silvio I. Nabeta

1° semestre 2004

Máquinas Síncronas

Objetivo: Determinação experimental dos parâmetros X_D, X_Q, de uma máquina síncrona.

Referências Bibliográficas:

- **1. Máquinas Síncronas,** Rúbens Guedes Jordão, Livros Técnicos e Científicos Editora S.A., Editora da USP, 1980.
- **2. Norma IEC International Electrotechnical Commission,** Publication 34-4, *Recommendations for Rotating Electrical Machinery*, First Edition 1967, Amendment no 1, 1973.

Nomenclatura:

X_D: Reatância síncrona segundo o eixo direto

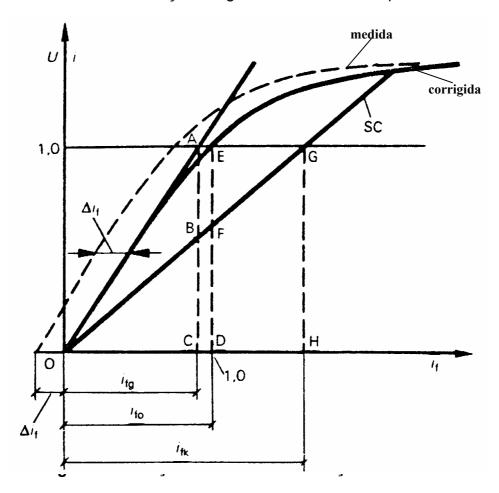
X_Q: Reatância síncrona segundo o eixo em quadratura

Máquina Síncrona a ser ensaiada: 2 KVA, 230 V, 5 A, 1800 rpm, 60 Hz

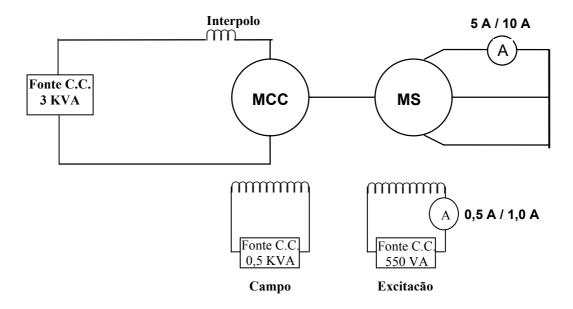
I. Ensaio de Saturação em Vazio

Esquema

Medir as grandezas V_0 e I_{exc} em 1800 rpm.

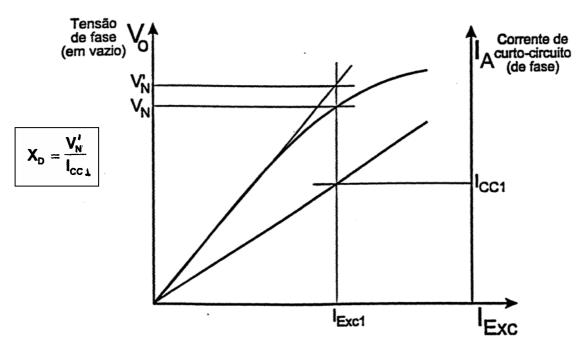

Observações Importantes:

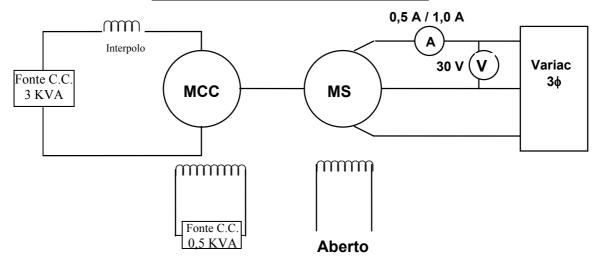
- A fonte de <u>campo</u> da máquina C.C. deverá estar no <u>máximo</u> antes de se alimentar a armadura;
- Levantar a curva V₀ x I_{exc} até o valor de V₀ = 260 V.


Correção da Curva de Saturação em Vazio

Se, em razão de uma tensão residual elevada, a curva de saturação em vazio não iniciar na origem do sistema de coordenadas, uma correção deverá ser introduzida, como descrita a seguir.

- Prolongar a parte retilínea da curva até a sua intersecção com o eixo das abcissas;
- A distância entre esta intersecção e a origem (Δi_f) é a correção a ser somada a todos os valores de corrente de excitação. A figura 1 abaixo ilustra o procedimento exposto.

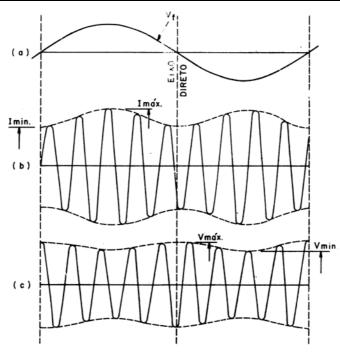

II. Ensaio de Curto-Circuito Trifásico Permanente


Observações Importantes:

- Realizar o curto-circuito <u>antes</u> de acionar o motor CC e <u>sem</u> corrente de excitação na M.S.
- Levantar a curva I_{cc} x I_{exc} até o valor de I_{cc} = 5 A

Determinação de X_D

III. Ensaio de Baixo Escorregamento


Observações Importantes

- Enrolamento de campo da MS em aberto
- Tensão do variac 3φ em torno de 20 V
- Rotação do motor CC em torno de 1790 rpm
- Garantir que o campo girante da M.S. e o rotor girem no mesmo sentido.
- Minimizar o efeito da inércia dos ponteiros dos instrumentos.
- Inverta o sentido de rotação do rotor e verifique o que acontece. Justifique.

Determinação de X_D e X_Q

$$X_{D} = \frac{V_{\text{max.fase}}}{I_{\text{min}}}$$
 $X_{Q} = \frac{V_{\text{min.fase}}}{I_{\text{max}}}$

Formas de Onda de Tensão e Corrente Resultantes do Ensaio

