Accepted Manuscript

Using The Systems Framework For Postural Control To Analyze The Components Of Balance Evaluated In Standardized Balance Measures: A Scoping Review

Kathryn M. Sibley, PhD Marla K. Beauchamp, PhD, PT Karen Van Ooteghem, PhD Sharon E. Straus, MD, MSc Susan B. Jaglal, PhD

PII: S0003-9993(14)00504-8

DOI: 10.1016/j.apmr.2014.06.021

Reference: YAPMR 55895

To appear in: ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION

Received Date: 7 February 2014

Revised Date: 30 May 2014

Accepted Date: 23 June 2014

Please cite this article as: Sibley KM, Beauchamp MK, Van Ooteghem K, Straus SE, Jaglal SB, Using The Systems Framework For Postural Control To Analyze The Components Of Balance Evaluated In Standardized Balance Measures: A Scoping Review, *ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION* (2014), doi: 10.1016/j.apmr.2014.06.021.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Running head: Components of balance in standardized measures

Title: USING THE SYSTEMS FRAMEWORK FOR POSTURAL CONTROL TO ANALYZE THE COMPONENTS OF BALANCE EVALUATED IN STANDARDIZED BALANCE MEASURES: A SCOPING REVIEW

Authors: Kathryn M Sibley, PhD^{1, 2}, Marla K. Beauchamp, PhD, PT³, Karen Van Ooteghem, PhD⁴, Sharon E Straus, MD, MSc^{5, 6}, Susan B Jaglal, PhD^{1, 2}

Affiliations: ¹Toronto Rehabilitation Institute- University Health Network; ²Department of Physical Therapy, University of Toronto; ³Department of Physical Medicine and Rehabilitation, Spaulding Outpatient Center, Harvard Medical School; ⁴Department of Kinesiology, University of Waterloo; ⁵Li-Ka-Shing Knowledge Institute, St. Michael's Hospital; ⁶Faculty of Medicine, University of Toronto

Corresponding author: Dr SB Jaglal, 500 University Avenue Rm 160, Toronto, Ontario, Canada M5G 1V7, 416 978-0315, <u>susan.jaglal@utoronto.ca</u>

Funding sources: This study was supported by a Student Research Stipend from KT Canada. KM Sibley was supported by a Fellowship from the Canadian Institutes of Health Research and the Toronto Rehabilitation Institute. SE Straus holds a Canada Research Chair in Knowledge Translation and Quality of Care. SB Jaglal holds the Toronto Rehabilitation Institute Chair in Rehabilitation Research at the University of Toronto. We acknowledge the support of the Toronto Rehabilitation Institute who received funding under the Provincial Rehabilitation Research Program from the Ministry of Health and Long Term Care in Ontario.

Conference presentation: Results will be presented at the International Society for Posture and Gait Research (ISPGR) meeting in Vancouver, Canada, June 29- July 3, 2014.

USING THE SYSTEMS FRAMEWORK FOR POSTURAL CONTROL TO ANALYZE THE COMPONENTS OF BALANCE EVALUATED IN STANDARDIZED BALANCE MEASURES: A SCOPING REVIEW

4 ABSTRACT

5 **Objective**: To identify components of postural control included in standardized balance

6 measures for adult populations.

7 Data Sources: Electronic searches of Medline, Embase, and CINAHL databases using key word

8 combinations of postural balance/ equilibrium, psychometrics/ reproducibility of results/

9 predictive value of tests/ validation studies, instrument construction/ instrument validation,

10 geriatric assessment/ disability evaluation, grey literature and hand searches.

11 Study Selection: Inclusion criteria were measures with a stated objective to assess balance, adult

12 populations (aged 18 years and over), at least one psychometric evaluation, one standing task, a

13 standardized protocol and evaluation criteria, and published in English. Two reviewers

14 independently identified studies for inclusion. Sixty-six measures were included.

15 Data extraction: A research assistant extracted descriptive characteristics and two reviewers

16 independently coded components of balance in each measure using the Systems Framework for

17 Postural Control, a widely recognized model of balance.

18 Data synthesis: Components of balance evaluated in these measures were underlying motor

19 systems (100% of measures), anticipatory postural control (71%), dynamic stability (67%), static

20 stability (64%), sensory integration (48%), functional stability limits (27%), reactive postural

21 control (23%), cognitive influences (17%), and verticality (8%). Thirty-four measures evaluated

three or fewer components of balance, and one measure, the Balance Evaluations Systems Test,

evaluated all components of balance.

- 24 Conclusions: Several standardized balance measures provide only partial information on
- 25 postural control and omit important components of balance related to avoiding falls. As such, the
- 26 choice of measure(s) may limit the overall interpretation of an individual's balance ability.
- 27 Continued work is necessary to increase implementation of comprehensive balance assessment
- in research and practice.
- 29 **KEY WORDS:** postural balance, accidental falls, aging, chronic disease, psychometrics

30 ABBREVIATIONS

- **31** BESTest- Balance Evaluation Systems Test
- 32 NIDRR- National Institute of Disability and Rehabilitation Research
- **33** PEDro- Physiotherapy Evidence Database
- 34 PRISMA- Preferred Reporting Items for Systematic Reviews and Meta-Analyses

35 Balance is a critical skill for fall avoidance (1), and balance impairment is common both in 36 older adults and people living with chronic health conditions (2-4). Balance exercise can reduce 37 falls (5-7), and comprehensive assessment is recommended for identifying impairments in 38 postural control and informing the design of optimal balance exercise programs for fall 39 prevention (8). However, a plethora of standardized balance measures exist (9), and extensive 40 variation in their use has limited the ability to synthesize data on the effects of balance 41 interventions. For example, a systematic review on the effectiveness of exercise interventions to 42 improve balance in older adults identified 95 eligible trials (6) but was able to pool less than 50% 43 of included studies because over 25 different standardized balance measures were used across 44 individual trials. Varied use of balance measures is also seen in clinical practice, as illustrated in 45 one survey of balance assessment practices among Canadian physical therapists that reported use 46 of over 20 different measures (10). These issues emphasize the need for consensus on the use of 47 outcome measures to increase understanding of the most effective components of exercise 48 interventions (11). 49 Direction is needed to inform balance measurement recommendations, and given the absence

of a gold standard method for evaluating balance (12), content validity should be a primary 50 51 consideration. However, previous systematic reviews on standardized balance measures are 52 limited by focusing only on clinical utility, task, and environment issues in a restricted subset of 53 measures (13, 14) or narrow population (12). As such, there is a need to systematically examine 54 the theoretical basis underlying existing balance measures (12). Contemporary postural control 55 theory views balance as the product of integrated inputs and the body as a mechanical system 56 that interacts with the nervous system in a continuously changing environment (15-17). Support for this theory has been provided by evidence from multiple laboratories who have demonstrated 57

58 how imposed constraints or deficits in the underlying systems impair balance (18). Based on this 59 view, the Systems Framework for Postural Control was proposed (8). It describes six major 60 components required for the maintenance of postural control: i) constraints on the biomechanical 61 system, ii) movement strategies, iii) sensory strategies, iv) orientation in space, v) dynamic 62 control, and vi) cognitive processing (Table 1, column 1), and highlights that each underlying 63 component and type of control could independently lead to a balance impairment. As such, this 64 framework emphasizes the need for individual assessment of each component and treatment on a 65 case-by-case basis (8).

Given its conceptual basis, comprehensive nature, and support from the physiological and 66 67 biomechanical literature, the Systems Framework for Postural Control can help to clarify the 68 components of balance captured in existing measures and inform decisions when selecting 69 measures for evaluating balance and informing rehabilitative interventions. The objectives of this 70 study were to 1) identify existing validated standardized measures of standing balance in adult 71 populations; and 2) determine the components of postural control captured in each tool, as 72 outlined by the Systems Framework for Postural Control. The review question was "what 73 components of postural control are included in standardized balance measures whose validity 74 and reliability are established in adult populations (18 years and older)?"

75 METHODS

76 Study design

A scoping review – a rigorous approach useful for identifying gaps in the existing literature
(19) – was conducted. We applied Arksey and O'Malley's 5-stage framework for conducting
scoping reviews (19, 20) and incorporated recent recommendations for enhancing this
methodology (20, 21), such as using an iterative approach to develop the research question,

81	defining relevant concepts, and including quality indicators in the eligibility criteria. The steps
82	are outlined below. PRISMA recommendations for systematic review conduct and reporting (22)
83	also informed the methodology, and were adopted where appropriate.
84	1. Develop a research question
85	What components of postural control are included in standardized balance measures whose
86	validity and reliability are established in adult populations (18 years and older)?
87	2. Search for relevant material
88	A professional librarian searched published literature indexed in MEDLINE (1946 to
89	February Week 4 2014), EMBASE (1974 to 2014 March 10), and CINAHL (1981 to October
90	March 11 2013), and the search strategies were reviewed by a second librarian. Combinations of
91	the following terms were used: postural balance/ equilibrium, psychometrics/ reproducibility of
92	results/ predictive value of tests/ validation studies, instrument construction/ instrument
93	validation, geriatric assessment/ disability evaluation. A sample search strategy for MEDLINE is
94	presented in Supplementary Data File 1. A comprehensive grey literature search was also
95	conducted to identify measures not captured by the database searches, including the Canadian
96	Agency for Drugs and Technologies in Health grey literature search checklist (23), as well as a
97	hand search of published narrative review articles describing balance measures identified in the
98	database search, and a search of the Physiotherapy Evidence Database (PEDro), a database of
99	randomised trials, systematic reviews and clinical practice guidelines for physiotherapy, to
100	identify additional measures.
101	3. Define study selection
102	Level one title and abstract screening criteria included: i) descriptive studies focused on

balance measurement; ii) in adult populations (aged 18 years and older); and iii) published in the

104 English language. Screening criteria were piloted on a random 10% sample of abstracts and 105 clarified where necessary. We were specifically searching for the "index" publication – a 106 measure's first publication presenting its development and/ or initial psychometric evaluation – 107 as the definitive reference for the measure. However, in anticipation that not all measures would 108 be published in a way that it would be possible to identify the first publication from the abstract, 109 the names of all balance measures identified in the abstract screen were recorded for manual 110 cross-checking and hand search for the index publication. Two research assistants independently 111 screened the abstracts of studies identified in the database search using the screening criteria. 112 Disagreements were resolved by the primary investigator (*blinded*), who also reviewed the list of 113 all measures identified in the abstract screening and flagged relevant abstracts for a follow-up 114 hand search.

115 Level two full-text screening criteria included: i) index publication; ii) have a stated objective 116 or commonly used to assess balance; iii) include at least one standing task; iv) have both a 117 standardized testing protocol and standardized evaluation criteria; and v) have a minimum of one 118 psychometric property (validity or reliability) evaluated. The last criterion (minimum of one 119 psychometric property evaluated) was included for quality assessment purposes to prevent 120 measures with no empirical support from being considered. Hand searches were triggered at this 121 phase if i) no psychometric data was reported in the index publication (to determine whether 122 companion papers existed that would support inclusion of the measure in the review); or ii) it 123 was not clear from the full-text whether the identified article was the index publication. Full-text 124 screening was performed by two research assistants, with disagreements resolved by blinded 125 (primary investigator). Two co-investigators (blinded and blinded) reviewed and approved the 126 final list of included measures to confirm that all known relevant measures were included.

127 *4. Chart the data*

Descriptive data abstraction was performed by a research assistant and reviewed by *blinded*(*primary investigator*). The research assistant used a standardized template to extract the
measures' stated purpose and development methods, characteristics (evaluation parameters,
number of items), and results of preliminary psychometric testing (reliability and/ or validity
data).

133 The components of balance evaluated in each measure were explored by coding the 134 individual items and tasks according to the Systems Framework for Postural Control. Review of 135 the framework by the research team suggested that in some cases, multiple constructs were 136 captured in the original six domains (e.g. reactive and anticipatory postural control under 137 'movement strategies'). As such, the six domains were adapted by [blinded – primary 138 *investigator*] into nine operational definitions of balance components that may be uniquely 139 evaluated. These operational definitions were reviewed and revised by [blinded - co-140 *investigator*] and [*blinded – co-investigator*] both prior to and iteratively during coding, and 141 validated by one external reviewer with expertise in neurophysiology of postural control. The final operational definitions are presented in Table 1. Two investigators ([blinded - primary 142 *investigator*] and [*blinded – co-investigator*]) independently reviewed the tasks and scoring 143 144 criteria of each measure and identified on a binary scale (yes/ no) which balance components 145 were included in each measure. Individual components were defined as included if they were 146 inherent to task performance, even if not explicitly part of the measure's evaluation criteria. 147 Disagreements were resolved through consensus discussion with a third investigator (blinded 148 [co-investigator]).

149 5. Collate, summarize and report results

- 150 Data abstraction and mapping results were tabulated and descriptive statistics (frequencies,
- 151 percentages) were calculated for all variables using SAS version 9.2.

152 **RESULTS**

153 Data synthesis

154 The study selection process is illustrated in Figure 1. The MEDLINE, CINAHL and

155 EMBASE searches yielded a total of 1213 records. The hand search and grey literature search

156 yielded an additional 18 records, while the PEDro search did not produce any additional results.

157 After duplicates were removed, 974 abstracts were identified for review. Of these, 847 records

158 were excluded after the abstract screening, and 128 papers were selected for full-text review.

159 Following full-text screening, 66 papers representing the index publication of a standardized

160 balance measure for adults were included. Full references for the index publication of all

included measures are provided in Supplementary Data File 2.

162 *Measure characteristics*

163 Supplementary Data File 3 presents selected characteristics of each measure. The 66 included 164 measures were published between 1986 and 2014. Thirty-seven measures (56%) stated at least 165 one component of balance included in the Systems Framework for Postural Control. Reported development methods for each measure ranged from no description (n=33, 50%), to expert or 166 167 clinician consultation (n=12, 18%), to statistical analysis (e.g. Rasch analysis, item response 168 theory, etc. n=13, 20%). The number of items in each measure ranged between 1 and 53, with a 169 median of 9 items. Twelve measures (18%) included some graded progression in which 170 participants must meet specific criteria to complete additional items. Thirty-eight measures 171 (58%) were evaluated on a categorical scale (ranging between 2 and 9 categories), 26 (39%) used

a continuous scale, and 2 (3%) used a combination. Psychometric data published with the index

173 publication is presented in Supplementary Data File 4.

174 *Components of balance evaluated in each measure*

175 Coding agreement by the two independent reviews was 87%, and 100% agreement was

achieved following consensus discussion with the third investigator. Coding results identifying

the components of balance included in each measure are presented in Table 2. Underlying motor

178 systems were evaluated in all 66 measures (100%), anticipatory postural control in 47 measures

179 (71%), dynamic stability in 44 measures (67%), static stability in 42 measures (64%), sensory

180 integration in 32 measures (48%), functional stability limits in 18 measures (27%), reactive

181 postural control in 15 measures (23%), cognitive influences in 11 measures (17%), and

182 verticality in five measures (8%). Figure 2 illustrates the distribution of number of components

- 183 evaluated in each measure. Thirty-four measures (52%) evaluated three or fewer less
- 184 components of balance, 22 measures (33%) evaluated between four and six components of
- balance, nine measures (14%) evaluated seven or eight components of balance, and one measure
- 186 evaluated all nine components of balance (Balance Evaluation Systems Test).

187 DISCUSSION

To our knowledge, this work represents the first attempt to synthesize the literature on standardized balance measures for adult populations and analyze the content of measures with respect to an established theoretical framework for postural control. The primary findings of this review are the large number of independently validated standardized measures available to assess balance in adults, and the high proportion of measures that assess only a few components of balance as identified by the Systems Framework for Postural Control. These findings highlight a

number of issues relevant to selecting standardized balance measures, as well as broader issuesrelated to the theoretical basis of postural control.

196 With respect to the high number of standardized balance measures, although 66 distinct 197 measures were included in the current study, it is important to note that there was significant 198 overlap in the specific balance tasks performed. For example, alternating steps onto a stool or 199 platform were common across multiple measures (e.g. Activity-based Balance Level Evaluation 200 scale, Balance Evaluation Systems Test, Berg Balance Scale, Community Balance and Mobility 201 scale). Moreover, some stand-alone measures were incorporated as tasks in larger tests, such as 202 single leg stance and functional reach (included in Balance Evaluation Systems Test and Berg 203 Balance Scale), and several "new" measures were developed as combinations, adaptations or 204 evolutions of other balance measures (e.g. Equiscale, Postural Assessment for Stroke Scale, 205 Unified Balance Scale). However, recent data on clinical balance assessement practices indicate 206 that refined and/ or newer standardized balance measures have yet to be widely adopted (10), 207 therefore it is difficult to determine whether actual balance assessment is improving with these 208 changes. Rather, the pool of balance measures continues to widen with additional combinations 209 of tasks in a circulutous fashion.

Although several components of balance were included in a high proportion of measures (such as underlying motor systems, anticipatory postural control, static stability and dynamic stability in more than two thirds of measures), certain functionally-relevant components were not included in most measures. For example, reactive postural control – corrective responses follwing instability – was included in only 23% of measures. The lack of measures evaluating reactive control is concerning because the ability to successfully recover from instability is the most critical component of balance for fall avoidance (24). Impaired reactive control is

217 independently associated with falls resulting in as much as a six-fold increase in fall incidence 218 (25). Similarly, cognitive contributions to postural control and fall risk are well-established and 219 only 17% of measures included a secondary cognitive task (1, 26). Finally, vertically was the 220 least-commonly included component (8% of measures). Verticality and appropriate orientation 221 to gravity are important for establishing an efficient stable "starting position" for balance (27), 222 the absence of which may put an individual in an inherently less stable position which could 223 lessen the likelihood of successful balance recovery, and for whom individuals with sensory or 224 neurological conditions may be particularly at risk (18). 225 Half of the measures included in this review evaluated three or fewer components of postural 226 control. Some of these tests are commonly used in clinical practice, such as the single leg stance

they choose a limited-scope measure. These types of tests may be appropriate for screening or

test (10), and as such, users need to be aware of what balance information they are getting when

includes most or all components of balance. Only one measure contained an explicit evaluation

227

231

risk assessment, but not for treatment planning and intervention selection. For a comprehensive

balance assessment, multiple measures can be combined, or users can select a measure that

232 of all nine components of postural control: the Balance Evaluation Systems Test (BESTest).

233 Published in 2009, it was developed with the goal of helping clinicians identify underlying

postural control systems that may be responsible for poor functional balance – the only

identified measure with this specific purpose. However, the BESTest developers also authored
the most comprehensive description of the Systems Framework for Postural Control, so it is not
unexpected that this measure is the closest match. Four measures included eight components of
balance (Clinical Gait and Balance Scale, Fullerton Advanced Balance Scale, Mini-BESTest, and
Unified Balance Scale). From a theoretical perspective, these are the most complete standardized

balance measures available to date. However, none of these measures have yet been widely
adopted in clinical practice (10), highlighting the need to study factors influencing balance
assessment practices and use of standardized measures in more detail.

243 Limitations

244 Although the focus was on balance assessment for treatment planning and intervention 245 selection, theoretical construct is only one characteristic of a measure. Consideration of measure 246 purpose (e.g. risk assessment versus outcome measurement) would be beneficial for evaluating 247 appropriateness of individual measures for their intended function. Examination of evaluation 248 parameters would also be useful, as quantitative measurements may provide more precise 249 information than observed behaviours. Furthermore, this review did not consider the difficulty of 250 individual items related to a particular balance component, such as whether static stability was 251 assessed by normal or narrow stance, tandem stance, or single-leg stance. Nor did we consider 252 how dual task assessments were conducted and whether instructions were to prioritize the 253 postural or cognitive task. These are important functional distinctions not reflected in the current 254 analysis, and attempts to evaluate particular components of balance across the continuum of 255 difficulty likely have contributed to the proliferation of so many measures. Given the 256 complexities of standardized balance measurement, we suggest that readers interpret our findings 257 in conjunction with the previous reviews that address some of these issues (13, 14), and refer to 258 the Rehabilitation Measures Database – a NIDRR-funded, searchable website containing 259 evidence-based summaries of more than 250 rehabilitation measures (28). 260 In conducting this review, we identified a number of gaps in postural control theory that 261 require attention in order to move the field forward. First, while the systems-based nature of

262 postural control is accepted and supported throughout the literature, there is no gold-standard

263 description of all known components and their interactions. Second, the Systems Framework for 264 Postural Control, the model selected for the current review, accounts for all balance components 265 equally, without any hierarchy or order to the individual components. It also only considers 266 standing balance, when sitting balance is an important functional task recognized in a number of 267 the measures included in this review. Indeed, in this review we excluded measures that only 268 included sitting balance (n=8) because they could not be captured in the model. Refinement of 269 the theory to address such issues may more accurately reflect the nature of postural control in 270 vivo, as well as facilitate increased efficiency of balance assessment in time and resource-271 constrained clinical environments. For example, reactive postural control may be considered a 272 more challenging component than anticipatory control, and if an individual cannot effectively 273 engage anticipatory strategies, it may not be appropriate to explicitly assess reactive control. Conversely, appropriate anticipatory actions do not necessarily indicate that reactive control is 274 275 "normal", requiring continued probing. Incorporating such logic to more standardized 276 assessment strategies may preserve the theoretical integrity of balance measures while 277 optimizing efficiency. Two included measures, the Balance Computerized Adaptive Testing 278 system, and Hierarchical Balance Short Forms did incorporate such a system into their approach, 279 but lacked consideration of all components of postural control in their models. Continued 280 refinement of these systems from a comprehensive perspective may be a practical approach 281 moving forward.

282 CONCLUSIONS

The theoretical components of postural control included in standardized balance measures for
adults vary greatly, with some measures omitting important components relevant for avoiding
falls. As such, the choice of measure may limit the overall interpretation of an individual's

- 286 balance ability. Continued work is necessary to increase implementation of comprehensive
- assessment in research and practice, in order to facilitate individualized identification of balance
- 288 deficits and customization of training programs.

289 **REFERENCES**

2901.Tinetti ME, Kumar C. The Patient Who Falls: It's always a tradeoff. JAMA: The291Journal of the American Medical Association. 2010;303(3):258-66. doi:

292 10.1001/jama.2009.2024.

293 2. Tyson SF, Hanley M, Chillala J, Selley A, Tallis RC. Balance Disability After 294 Stroke. Phys Ther. 2006;86(1):30-8.

 Sturnieks DL, Tiedemann A, Chapman K, Munro B, Murray SM, Lord SR.
 Physiological risk factors for falls in older people with lower limb arthritis. The Journal of Rheumatology. 2004;31(11):2272-9.

298 4. Dillon CF, Gu Q, Hoffman HJ, Ko C-W. Vision, Hearing, Balance, and Sensory
299 Impairments in Americans Aged 70 Years and Older: United States, 1999-2006.
300 National Center for Health Statistics Data Brief. 2010(31).

301 5. Gillespie LD, Robertson MC, Gillespie WJ, Sherrington CS, Gates S, Clemson L,
302 et al. Interventions for preventing falls in older people living in the community. Cochrane
303 Database of Systematic Reviews. 2012(9):DOI: 10.1002/14651858.CD007146.pub3.

Howe TE, Rochester L, Neil F, Skelton DA, Ballinger C. Exercise for improving
balance in older people. Cochrane Database of Systematic Reviews. 2011;11:doi:
10.1002/14651858.CD004963.pub3.

307 7. Sherrington C, Tiedemann A, Fairhall N, Close JCT, Lord SR. Exercise to
308 prevent falls in older adults: an updated meta-analysis and best practice
309 recommendations. New South Wales Public Health Bulletin. 2011;22(4):78-83. doi:
310 http://dx.doi.org/10.1071/NB10056.

8. Horak FB. Postural orientation and equilibrium: what do we need to know about
neural control of balance to prevent falls? Age Ageing. 2006;35(suppl_2):ii7-11. doi:
10.1093/ageing/afl077.

9. Orr R, Raymond J, Fiatarone Singh M. Efficacy of Progressive Resistance
Training on Balance Performance in Older Adults: A Systematic Review of Randomized
Controlled Trials. Sports Med. 2008;38(4):317-43.

317 10. Sibley KM, Straus SE, Inness EL, Salbach NM, Jaglal SB. Balance Assessment
318 Practices and Use of Standardized Balance Measures Among Ontario Physical
319 Therapists. Phys Ther. 2011;91(11):1583-91. doi: 10.2522/ptj.20110063.

Howe TE, Skelton DA. Consensus on core outcome measures of function are
needed to progress our knowledge of "best practice" exercise components for older
people. Age Ageing. 2011;40(5):532-3. doi: 10.1093/ageing/afr082.

Tyson SF, Connell LA. How to measure balance in clinical practice. A systematic
 review of the psychometrics and clinical utility of measures of balance activity for
 neurological conditions. Clin Rehabil. 2009;23(9):824-40. doi:

326 10.1177/0269215509335018.

McGinnis PQ, Wainwright SF, Hack LM, Nixon-Cave K, Michlovitz S. Use of a
Delphi panel to establish consensus for recommended uses of selected balance
assessment approaches. Physiotherapy Theory and Practice. 2010;26(6):358-73. doi:

doi:10.3109/09593980903219050.

14. Pardasaney PK, Slavin MD, Wagenaar RC, Latham NK, Ni P, Jette AM.
Conceptual limitations of balance measures for community-dwelling older adults. Phys

333 Ther. 2013;93(10):1351-68. Epub 2013/05/25. doi: 10.2522/ptj.20130028. PubMed 334 PMID: 23704036. 335 Bernstein N. Co-ordination and Regulation of Movements. New York: Pergamon 15. 336 Press Inc.; 1967. 337 Horak FB, Macpherson JM. Postural orientation and equilibrium. In: Rowell LB, 16. 338 Shepherd JT, editors. Handbook of Physiology, Section 12, Exercise: Regulation and 339 Integration of Multiple Systems. New York: American Physiological Society; 1996. p. 340 255-92. 341 17. Woollacott MH, Shumway-Cook A. Changes in postural control across the life 342 span- a systems approach. Phys Ther. 1990;70(12):799-807. Horak FB, Wrisley DM, Frank J. The Balance Evaluation Systems Test 343 18. (BESTest) to Differentiate Balance Deficits. Phys Ther. 2009;89(5):484-98. doi: 344 345 10.2522/ptj.20080071. 346 Arksey H, O'Malley L. Scoping Studies: Towards a Methodological Framework. 19. 347 International Journal of Social Research Methodology. 2005;8(1):19-32. Levac D, Colquhoun H, O'Brien K. Scoping studies: advancing the methodology. 348 20. 349 Implementation Science. 2010;5(1):69. PubMed PMID: doi:10.1186/1748-5908-5-69. 350 21. Daudt HM, van Mossel C, Scott SJ. Enhancing the scoping study methodology: a 351 large, inter-professional team's experience with Arksey and O'Malley's framework. BMC 352 medical research methodology. 2013;13:48. Epub 2013/03/26. doi: 10.1186/1471-2288-353 13-48. PubMed PMID: 23522333; PubMed Central PMCID: PMCPMC3614526. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for 354 22. systematic reviews and meta-analyses: the PRISMA Statement. Open medicine : a 355 356 peer-reviewed, independent, open-access journal. 2009;3(3):e123-30. Epub 357 2009/01/01. PubMed PMID: 21603045; PubMed Central PMCID: PMCPMC3090117. 358 Canadian Agency for Drugs and Technologies in Health. Grey Matters: a 23. practical search tool for evidence-based medicine 2013. Available from: 359 360 http://www.cadth.ca/en/resources/finding-evidence-is/grey-matters. Maki BE, McIlroy WE. Postural control in the older adult. Clin Geriatr Med. 361 24. 362 1996;12(4):637-58. Hilliard MJ, Martinez KM, Janssen I, Edwards B, Mille ML, Zhang Y, et al. Lateral 363 25. 364 balance factors predict future falls in community-living older adults. Arch Phys Med 365 Rehabil. 2008;89(9):1708-13. Epub 2008/09/02. doi: 10.1016/j.apmr.2008.01.023. 366 PubMed PMID: 18760155; PubMed Central PMCID: PMCPMC2953551. 367 Lacour M, Bernard-Demanze L, Dumitrescu M. Posture control, aging, and 26. 368 attention resources: models and posture-analysis methods. Neurophysiol Clin. 2008;38(6):411-21. Epub 2008/11/26. doi: 10.1016/j.neucli.2008.09.005. PubMed 369 370 PMID: 19026961. 371 de Oliveira CB, de Medeiros IR, Frota NA, Greters ME, Conforto AB. Balance 27. 372 control in hemiparetic stroke patients: main tools for evaluation. J Rehabil Res Dev. 373 2008;45(8):1215-26. Epub 2009/02/24. PubMed PMID: 19235121. 374 Rehabilitation Measures Database [May 20, 2014]. Available from: 28. 375 www.rehabmeasures.org. 376 29. Ardolino EM, Hutchinson KJ, Pinto Zipp G, Clark M, Harkema SJ. The ABLE Scale: The Development and Psychometric Properties of an Outcome Measure for the 377 378 Spinal Cord Injury Population. Physical Therapy. 2012;92(8):1046-54. doi:

379 10.2522/ptj.20110257. PubMed PMID: 2011648363. Language: English. Entry Date: 380 20120831. Revision Date: 20120921. Publication Type: journal article. 381 Kairy D, Paquet N, Fung J. A postural adaptation test for stroke patients. 30. Disability & Rehabilitation. 2003;25(3):127-35. PubMed PMID: 2003139769. Language: 382 383 English. Entry Date: 20031031. Revision Date: 20091218. Publication Type: journal 384 article. 385 31. Hsueh I, Chen J, Wang C, Chen C, Sheu C, Wang W, et al. Development of a 386 computerized adaptive test for assessing balance function in patients with stroke. Physical Therapy. 2010;90(9):1336-44. doi: 10.2522/ptj.20090395. PubMed PMID: 387 388 2010824176. Language: English. Entry Date: 20101119. Revision Date: 20120907. 389 Publication Type: journal article. 390 Hou W-H, Chen J-H, Wang Y-H, Wang C-H, Lin J-H, Hsueh IP, et al. 32. 391 Development of a Set of Functional Hierarchical Balance Short Forms for Patients With Stroke. Archives of Physical Medicine & Rehabilitation. 2011;92(7):1119-25. doi: 392 393 10.1016/j.apmr.2011.02.012. PubMed PMID: 2011181892. Language: English. Entry 394 Date: 20110812. Revision Date: 20120907. Publication Type: journal article. 395 Riemann BL, Guskiewicz KM, Shields EW. Relationship between clinical and 33. 396 forceplate measures of postural stability. Journal of Sport Rehabilitation. 1999;8(2):71-397 82. PubMed PMID: 1999055289. Language: English. Entry Date: 19990801. Revision Date: 20091218. Publication Type: journal article. 398 399 Hunt TN, Ferrara MS, Bornstein RA, Baumgartner TA. The reliability of the 34. 400 modified Balance Error Scoring System. Clinical Journal of Sport Medicine. 401 2009;19(6):471-5. doi: 10.1097/JSM.0b013e3181c12c7b. PubMed PMID: 2010485252. 402 Language: English. Entry Date: 20100122. Revision Date: 20110520. Publication Type: 403 journal article. 404 Padgett PK, Jacobs JV, Kasser SL. Is the BESTest at Its Best? A Suggested 35. 405 Brief Version Based on Interrater Reliability, Validity, Internal Consistency, and 406 Theoretical Construct. Physical Therapy. 2012;92(9):1197-207. doi: 10.2522/ptj. 407 20120056. PubMed PMID: 2011686555. Language: English. Entry Date: 20121005. 408 Revision Date: 20121005. Publication Type: journal article. Franchignoni F, Horak F, Godi M, Nardone A, Giordano A. Using psychometric 409 36. 410 techniques to improve the Balance Evaluation Systems Test: the mini-BESTest. Journal 411 of Rehabilitation Medicine (Stiftelsen Rehabiliteringsinformation). 2010;42(4):323-31. 412 doi: 10.2340/16501977-0537. PubMed PMID: 2010750367. Language: English. Entry 413 Date: 20101008. Revision Date: 20110520. Publication Type: journal article. 414 Haines T, Kuys SS, Morrison G, Clarke J, Bew P, McPhail S. Development and 37. 415 validation of the balance outcome measure for elder rehabilitation. Arch Phys Med 416 Rehabil. 2007;88(12):1614-21. Epub 2007/12/01. doi: 10.1016/j.apmr.2007.09.012. 417 PubMed PMID: 18047876. 418 38. Mackintosh S, Datson N, Fryer C. A balance screening tool for older people: 419 reliability and validity. International Journal of Therapy & Rehabilitation. 420 2006;13(12):558-61. PubMed PMID: 2009382118. Language: English. Entry Date: 421 20070413. Revision Date: 20091218. Publication Type: journal article. 422 Lindmark B, Liljenäs Å, Hellström K. Assessment of minor or moderate balance 39. 423 disorders: A reliability study and comparison with healthy subjects. Advances in 424 Physiotherapy. 2012;14(1):3-9. doi: 10.3109/14038196.2011.640350. PubMed PMID:

425 2011459367. Language: English. Entry Date: 20120323. Revision Date: 20120629. 426 Publication Type: journal article. 427 Berg K, Wood-Dauphinee S, Williams JI, Gayton D. Measuring balance in the 40. 428 elderly: preliminary development of an instrument. Physiotherapy Canada. 429 1989;41(6):304-11. PubMed PMID: 1990112681. Language: English. Entry Date: 430 19901001. Revision Date: 20091218. Publication Type: journal article. 431 Chou C, Chien C, Hsueh I, Sheu C, Wang C, Hsieh C. Developing a short form 41. 432 of the Berg Balance Scale for people with stroke. Physical Therapy. 2006;86(2):195-204. PubMed PMID: 2009116683. Language: English. Entry Date: 20060414. Revision 433 434 Date: 20091218. Publication Type: journal article. 435 Hohtari-Kivimaki U, Salminen M, Vahlberg T, Kivela SL. Short Berg Balance 42. 436 Scale - correlation to static and dynamic balance and applicability among the aged. Aging-Clinical & Experimental Research. 2012;24(1):42-6. PubMed PMID: 22643304. 437 438 Tyson SF, DeSouza LH. Development of the Brunel Balance Assessment: a new 43. 439 measure of balance disability post stroke. Clinical Rehabilitation. 2004;18(7):801-10. 440 PubMed PMID: 2005042834. Language: English. Entry Date: 20050225. Revision Date: 441 20091218. Publication Type: journal article. 442 44. Thomas M, Jankovic J, Suteerawattananon M, Wankadia S, Caroline KS, Vuong 443 KD, et al. Clinical gait and balance scale (GABS): validation and utilization. Journal of 444 the Neurological Sciences. 2004;217(1):89-99. doi: 445 http://dx.doi.org/10.1016/j.jns.2003.09.005. 446 Shumway-Cook A, Horak FB. Assessing the influence of sensory interaction of 45. 447 balance. Suggestion from the field. Phys Ther. 1986;66(10):1548-50. Epub 1986/10/01. 448 PubMed PMID: 3763708. 449 46. Howe JA, Inness EL, Venturini A, Williams JI, Verrier MC. The Community 450 Balance and Mobility Scale--a balance measure for individuals with traumatic brain 451 injury. Clin Rehabil. 2006;20:885-95. 452 47. Desai A, Goodman V, Kapadia N, Shay BL, Szturm T. Relationship between 453 dynamic balance measures and functional performance in community-dwelling elderly 454 people. Physical Therapy. 2010;90(5):748-60. doi: 10.2522/ptj.20090100. PubMed 455 PMID: 2010655812. Language: English. Entry Date: 20100625. Revision Date: 456 20100625. Publication Type: journal article. 457 Shumway-Cook A, Baldwin M, Polissar NL, Gruber W. Predicting the probability 48. 458 for falls in community-dwelling older adults. Physical Therapy. 1997;77(8):812-9. 459 PubMed PMID: 9256869. 460 Marchetti GF, Whitney SL. Construction and validation of the 4-item dynamic gait 49. index. Physical Therapy. 2006;86(12):1651-60. doi: 10.2522/ptj.20050402. PubMed 461 462 PMID: 2009373978. Language: English. Entry Date: 20070309. Revision Date: 463 20120302. Publication Type: journal article. 464 Wrisley DMM, G. F.; Kuharsky, D. K.; Whitney, S. L. Reliability, internal 50. 465 consistency, and validity of data obtained with the Functional Gait Assessment. Physical 466 Therapy. 2004;84(10):906-18. PubMed PMID: 2005023099. Language: English. Entry 467 Date: 20050128. Revision Date: 20091218. Publication Type: journal article. 468 Blomqvist S, Rehn B. Validity and reliability of the Dynamic One Leg Stance 51. 469 (DOLS) in people with vision loss. Advances in Physiotherapy. 2007;9(3):129-35.

470 PubMed PMID: 2009666263. Language: English. Entry Date: 20071026. Revision Date:
471 20091218. Publication Type: journal article.

472 52. Tesio L, Perucca L, Franchignoni FP, Battaglia MA. A short measure of balance
473 in multiple sclerosis: validation through Rasch analysis. Funct Neurol. 1997;12(5):255474 65. Epub 1998/01/24. PubMed PMID: 9439943.

475 53. Tinetti ME. Performance-oriented assessment of mobility problems in elderly
476 patients. J Am Geriatr Soc. 1986;34(2):119-26. Epub 1986/02/01. PubMed PMID:
477 3944402.

- 478 54. Di Fabio RP, Seay R. Use of the "fast evaluation of mobility, balance, and fear" in
 479 elderly community dwellers: validity and reliability. Physical Therapy. 1997;77(9):904480 17. PubMed PMID: 9291948.
- 481 55. Whitney SL, Wrisley DM, Marchetti GF, Gee MA, Redfern MS, Furman JM. 482 Clinical measurement of sit-to-stand performance in people with balance disorders:
- 483 validity of data for the Five-Times-Sit-to-Stand Test. Physical Therapy.
- 484 2005;85(10):1034-45. PubMed PMID: 2009049002. Language: English. Entry Date:
 485 20051209. Revision Date: 20091218. Publication Type: journal article.
- 486 56. Dite W, Temple VA. A clinical test of stepping and change of direction to identify 487 multiple falling older adults. Archives of Physical Medicine & Rehabilitation.
- 488 2002;83(11):1566-71. PubMed PMID: 2003043439. Language: English. Entry Date: 20030321. Revision Date: 20091218. Publication Type: journal article.
- 490 57. Rose DJ, Lucchese N, Wiersma LD. Development of a Multidimensional Balance
 491 Scale for Use With Functionally Independent Older Adults. Arch Phys Med Rehabil.
 492 2006;87(11):1478-85.
- 58. Duncan PW, Weiner DK, Chandler J, Studenski S. Functional reach: a new
 clinical measure of balance. J Gerontol. 1990;45(6):M192-7. Epub 1990/11/01. PubMed
 PMID: 2229941.
- 496 59. Newton RA. Validity of the multi-directional reach test: a practical measure for
 497 limits of stability in older adults. J Gerontol A Biol Sci Med Sci. 2001;56(4):M248-52.
 498 Epub 2001/04/03. PubMed PMID: 11283199.
- 499 60. MacKnight C, Rockwood K. A hierarchical assessment of balance and mobility. 500 Age & Ageing. 1995;24(2):126-30. PubMed PMID: 1997012130. Language: English.
- 501 Entry Date: 19970401. Revision Date: 20091218. Publication Type: journal article.
- 501 Entry Date: 19970401. Revision Date: 20091210. Fublication Type. Journal article.
 502 61. Kluding P, Swafford B, Cagle P, Gajewski B. Reliability, responsiveness, and
 503 validity of the Kansas University Standing Balance Scale. Journal of Geriatric Physical
 504 Therapy. 2006;29(3):93-9. PubMed PMID: 2009360185. Language: English. Entry Date:
- 505 20070817. Revision Date: 20091218. Publication Type: journal article.
- 506 62. Clark S, Rose DJ, Fujimoto K. Generalizability of the limits of stability test in the
 507 evaluation of dynamic balance among older adults. Archives of Physical Medicine &
 508 Rehabilitation. 1997;78(10):1078-84. PubMed PMID: 9339156.
- 509 63. Jarnlo G, Nordell E. Reliability of the modified figure of eight -- a balance 510 performance test for elderly women. Physiotherapy Theory & Practice. 2003;19(1):35-511 43. PubMod PMID: 2003104842 Language: English, Entry Date: 20030815, Povision
- 43. PubMed PMID: 2003104842. Language: English. Entry Date: 20030815. Revision
 512 Date: 20091218. Publication Type: journal article.
- 513 64. Johansson G, Jarnlo G. Balance training in 70-year-old women. Physiotherapy 514 Theory & Practice. 1991;7(2):121-5. PubMed PMID: 1999005561. Language: English.
- 515 Entry Date: 19990101. Revision Date: 20091218. Publication Type: journal article.
 - 19

516 65. Lark SD, McCarthy PW, Rowe DA. Reliability of the Parallel Walk Test for the 517 Elderly. Archives of Physical Medicine & Rehabilitation. 2011;92(5):812-7. doi: 10.1016/i.apmr.2010.11.028. PubMed PMID: 2011032107. Language: English. Entry 518 Date: 20110617. Revision Date: 20120907. Publication Type: journal article. 519 520 Fox KM, Felsenthal G, Hebel JR, Zimmerman SI, Magaziner J. A portable 66. 521 neuromuscular function assessment for studying recovery from hip fracture. Archives of 522 Physical Medicine & Rehabilitation. 1996;77(2):171-6. PubMed PMID: 8607742. 523 67. Benaim C, Perennou DA, Villy J, Rousseaux M, Pelissier JY. Validation of a standardized assessment of postural control in stroke patients: the Postural 524 525 Assessment Scale for Stroke Patients (PASS). Stroke (00392499). 1999;30(9):1862-8. 526 PubMed PMID: 1999076870. Language: English. Entry Date: 19991101. Revision Date: 527 20091218. Publication Type: journal article. 528 68. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke 529 hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil 530 Med. 1975;7(1):13-31. Epub 1975/01/01. PubMed PMID: 1135616. 531 Chien CW, Lin JH, Wang CH, Hsueh IP, Sheu CF, Hsieh CL. Developing a Short 69. 532 Form of the Postural Assessment Scale for people with Stroke. Neurorehabilitation & 533 Neural Repair. 2007;21(1):81-90. PubMed PMID: 17172558. 534 70. Pyöriä O, Talvitie U, Villberg J. The reliability, distribution, and responsiveness of 535 the Postural Control and Balance for Stroke Test. Archives of Physical Medicine & 536 Rehabilitation. 2005;86(2):296-302. PubMed PMID: 2005084576. Language: English. Entry Date: 20050513. Revision Date: 20091218. Publication Type: journal article. 537 538 Wolfson LI, Whipple R, Amerman P, Kleinberg A. Stressing the postural 71. 539 response. A quantitative method for testing balance. J Am Geriatr Soc. 540 1986;34(12):845-50. Epub 1986/12/01. PubMed PMID: 3782696. 541 Visser M, Marinus J, Bloem BR, Kisjes H, van den Berg BM, van Hilten JJ. 72. 542 Clinical tests for the evaluation of postural instability in patients with parkinson's 543 disease. Arch Phys Med Rehabil. 2003;84(11):1669-74. Epub 2003/11/26. PubMed 544 PMID: 14639568. 545 73. Jacobs J, Horak F, Van Tran K, Nutt J. An alternative clinical postural stability 546 test for patients with Parkinson's disease. J Neurol. 2006;253(11):1404-13. 547 Medell JL, Alexander NB. A Clinical Measure of Maximal and Rapid Stepping in 74. 548 Older Women. The Journals of Gerontology Series A: Biological Sciences and Medical 549 Sciences. 2000;55(8):M429-M33. doi: 10.1093/gerona/55.8.M429. 550 Ford-Smith CD, Wyman JF, Elswick RK, Jr., Fernandez T, Newton RA. Test-75. 551 retest reliability of the Sensory Organization Test in noninstitutionalized older adults. Archives of Physical Medicine & Rehabilitation. 1995;76(1):77-81. PubMed PMID: 552 553 1995007999. Language: English. Entry Date: 19950401. Revision Date: 20091218. 554 Publication Type: journal article. 555 Pang MY, Lam FM, Wong GH, Au IH, Chow DL. Balance performance in head-76. 556 shake computerized dynamic posturography: aging effects and test-retest reliability.[Erratum appears in Phys Ther. 2011 Apr;91(4):598]. Physical Therapy. 557 558 2011;91(2):246-53. PubMed PMID: 21148260. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. 559 77.

560 A short physical performance battery assessing lower extremity function: association

561 with self-reported disability and prediction of mortality and nursing home admission. J 562 Gerontol. 1994;49(2):M85-94. Epub 1994/03/01. PubMed PMID: 8126356. 563 Fujisawa H, Takeda R. A new clinical test of dynamic standing balance in the 78. frontal plane: the side-step test. Clinical Rehabilitation. 2006;20(4):340-6. PubMed 564 565 PMID: 2009214453. Language: English. Entry Date: 20060811. Revision Date: 20091218. Publication Type: journal article. 566 567 Riemann BL, Caggiano NA, Lephert SM. Examination of a clinical method of 79. 568 assessing postural control during a functional performance task. Journal of Sport Rehabilitation. 1999;8(3):171-83. PubMed PMID: 1999081651. Language: English. 569 570 Entry Date: 19991201. Revision Date: 20091218. Publication Type: journal article. 571 Johnson BL, Nelson JK. Practical measurements for evaluation in physical 80. 572 education. Edina, MN.: Burgess Pub.; 1986. 573 81. Bohannon RW. Single limb stance times: a descriptive meta-analysis of data from individuals at least 60 years of age. Topics in Geriatric Rehabilitation. 574 575 2006;22(1):70-7. PubMed PMID: 2009125239. Language: English. Entry Date: 20060804. Revision Date: 20091218. Publication Type: journal article. 576 DePasquale L, Toscano L. The Spring Scale Test: a reliable and valid tool for 577 82. 578 explaining fall history. Journal of Geriatric Physical Therapy. 2009;32(4):159-67. 579 PubMed PMID: 2010504559. Language: English. Entry Date: 20100205. Revision Date: 580 20100521. Publication Type: journal article. 581 Teranishi T, Kondo I, Sonoda S, Kagaya H, Wada Y, Miyasaka H, et al. A 83. 582 discriminative measure for static postural control ability to prevent in-hospital falls: 583 Reliability and validity of the Standing Test for Imbalance and Disequilibrium (SIDE). 584 Japanese Journal of Comprehensive Rehabilitation Science. 2010;1:11-6. 585 84. Hertel J, Miller SJ, Denegar CR. Intratester and intertester reliability during the 586 Star Excursion Balance Tests. Journal of Sport Rehabilitation. 2000;9(2):104-16. 587 PubMed PMID: 2000050466. Language: English. Entry Date: 20000801. Revision Date: 588 20091218. Publication Type: journal article. Hill KD, Bernhardt J, McGann AM, Maltese D, Berkovits D. A new test of dynamic 589 85. 590 standing balance for stroke patients: reliability, validity and comparison with healthy 591 elderly. Physiotherapy Canada. 1996;48(4):257-62. PubMed PMID: 1998024061. 592 Language: English. Entry Date: 19980401. Revision Date: 20091218. Publication Type: 593 journal article. 594 Hile ES, Brach JS, Perera S, Wert DM, VanSwearingen JM, Studenski SA. 86. 595 Interpreting the need for initial support to perform tandem stance tests of balance. Phys 596 Ther. 2012;92(10):1316-28. Epub 2012/06/30. doi: 10.2522/ptj.20110283. PubMed PMID: 22745198; PubMed Central PMCID: PMCPMC3461133. 597 598 Bruinsma JH, Gebraad MM, Brumels KA. Clinician's corner: reliability of the time-87. 599 on-ball test. Clinical Kinesiology: Journal of the American Kinesiotherapy Association. 600 2008;62(1):1-3. PubMed PMID: 2009899960. Language: English. Entry Date: 601 20080613. Revision Date: 20100730. Publication Type: journal article. 602 Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional 88. 603 mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142-8. 604 Mathias S, Nayak US, Isaacs B. Balance in elderly patients: the "get-up and go" 89. 605 test. Arch Phys Med Rehabil. 1986;67(6):387-9. Epub 1986/06/01. PubMed PMID:

606 3487300.

607 90. Botolfsen P, Helbostad JL, Moe-Nilssen R, Wall JC. Reliability and concurrent 608 validity of the Expanded Timed Up-and-Go test in older people with impaired mobility. 609 Physiotherapy Research International. 2008;13(2):94-106. PubMed PMID: 18288773. Simpson JM, Worsfold C, Reilly E, Nye N. A Standard Procedure for Using 610 91. 611 TURN180: Testing dynamic postural stability among elderly people. Physiotherapy. 612 2002;88(6):342-53. 613 La Porta F. Franceschini M. Caselli S. Cavallini P. Susassi S. Tennant A. Unified 92. 614 Balance Scale: an activity-based, bed to community, and aetiology-independent measure of balance calibrated with Rasch analysis. J Rehabil Med. 2011;43(5):435-44. 615 616 Epub 2011/03/12. doi: 10.2340/16501977-0797. PubMed PMID: 21394420. 617 Clark MS. The Unilateral Forefoot Balance Test: reliability and validity for 93. measuring balance in late midlife women. New Zealand Journal of Physiotherapy. 618 619 2007;35(3):110-8. PubMed PMID: 2009721199. Language: English. Entry Date: 620 20080125. Revision Date: 20091218. Publication Type: journal article. 621 94. Faria CD, Teixeira-Salmela LF, Nadeau S. Clinical testing of an innovative tool for the assessment of biomechanical strategies: the Timed "Up and Go" Assessment of 622 Biomechanical Strategies (TUG-ABS) for individuals with stroke. Journal of 623 624 Rehabilitation Medicine. 2013;45(3):241-7. PubMed PMID: 23462895. 625 95. Rodby-Bousquet E, Ágústsson A, Jónsdóttir G, Czuba T, Johansson A-C, 626 Hägglund G. Interrater reliability and construct validity of the Posture and Postural 627 Ability Scale in adults with cerebral palsy in supine, prone, sitting and standing 628 positions. Clinical Rehabilitation. 2014;28(1):82-90. doi: 10.1177/0269215512465423. 629 PubMed PMID: 2012418169. Language: English. Entry Date: 20140117. Revision Date: 630 20140131. Publication Type: journal article. 631 96. Williams GP, Robertson V, Greenwood KM, Goldie PA, Morris ME. The highlevel mobility assessment tool (HiMAT) for traumatic brain injury. Part 2: content validity 632 633 and discriminability. Brain injury : [BI]. 2005;19(10):833-43. Epub 2005/09/24. PubMed 634 PMID: 16175843. 635 Williams G, Robertson V, Greenwood K, Goldie P, Morris ME. The high-level 97. mobility assessment tool (HiMAT) for traumatic brain injury. Part 1: Item generation. 636 Brain injury : [BI]. 2005;19(11):925-32. Epub 2005/10/26. doi: 637 638 10.1080/02699050500058687. PubMed PMID: 16243748. 639 Yamaji S, Demura S. Reliability and fall experience discrimination of Cross Step 98. 640 Moving on Four Spots Test in the elderly. Archives of Physical Medicine &

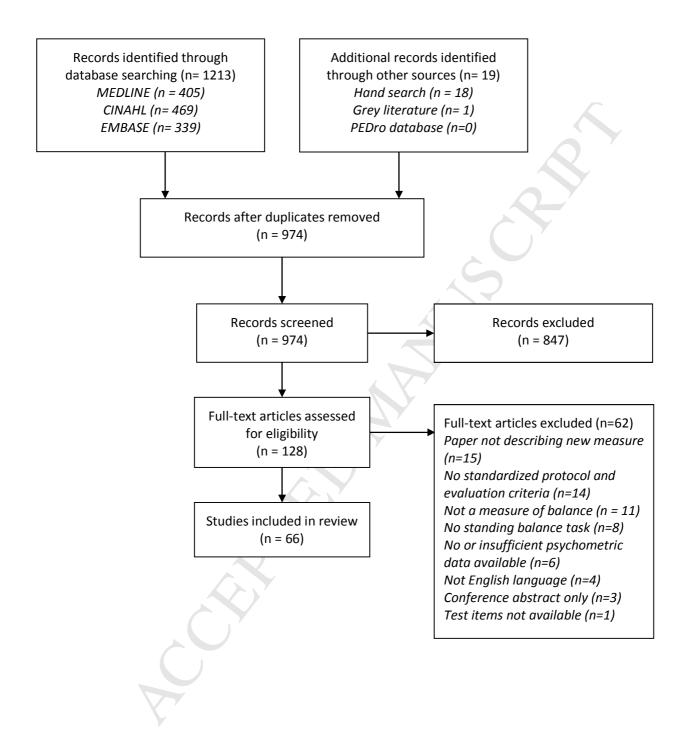
- 641 Rehabilitation. 2013;94(7):1312-9. PubMed PMID: 23318998.
- 642

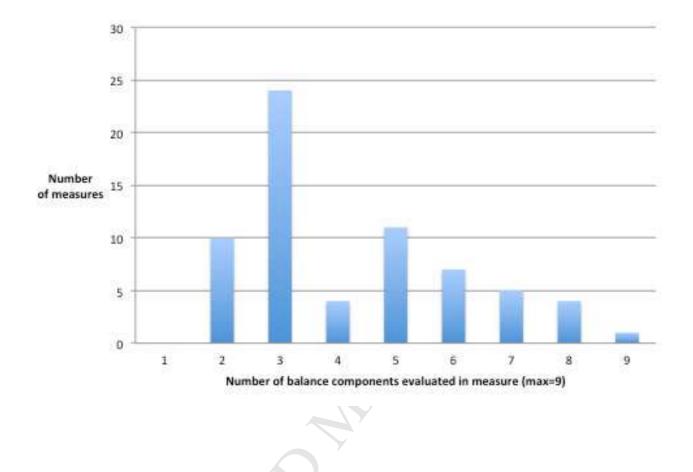
643 FIGURE LEGENDS

- 644 **Figure 1.** Study flow diagram
- 645 Figure 2. Number of balance components evaluated by measure

Domains in Systems Framework for Postur Control (8)	al Scoping review adaptation of component of balance and operational definition
1. Biomechanical Constraints: degrees of freedom, strength, limits of stability	 Functional stability limits: Ability to move the center of mass as far as possible in the anterior-posterior or medio-lateral directions within the base of support
	2. Underlying motor systems: E.g. strength, coordination
	 Static stability: Ability to maintain position of the center of mass in unsupported stance when the base of support does not change (may include wide stance, narrow, one legged stance, tandem- any standing condition)
2. Orientation in space: perception of gravity, verticality	 Verticality: Ability to orient appropriately with respect to gravity (E.g. evaluation of lean)
3. Movement strategies: reactive, anticipatory, voluntary	5. Reactive postural control: Ability to recover stability following an external perturbation to bring the center of mass within the base of support through corrective movements (E.g. ankle, hip, stepping strategies)
	 Anticipatory postural control: Ability to shift the center of mass prior to a discrete voluntary movement (E.g. stepping- lifting leg, arm raise, head turn)
4. Control of dynamics: gait, proactive	 Dynamic stability: Ability to exert ongoing control of center of mass when the base of support is changing (E.g. during gait, postural transitions)
5. Sensory strategies: integration, reweighting	 Sensory integration: Ability to reweight sensory information (vision, vestibular, somatosensory) when input altered
6. Cognitive processing: attention, learning	

Table 1. Components of Balance Operational Definitions


Measure	Static stability	Underlying motor systems	Functional stability limits	Verticality	postural	Anticipatory postural control	Dynamic stability	Sensory integration	Cognitive influences	Other constructs not included in systems framework
Activity-based Balance Level Evaluation (ABLE) Scale (29)	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Sitting balance
Advanced Balance and Mobility Scale (ABMS) (30)	Yes	Yes	No	Yes	No	Yes	Yes	Yes	Yes	
Balance Computerized Adaptive Testing (CAT) system (31)	Yes	Yes	No	No	No	Yes	Yes	Yes	No	Supine to sitting, and sitting
Hierarchical Balance Short Forms (HBSF) (32)	Yes	Yes	No	No	No	Yes	Yes	Yes	No	Sitting balance
Balance Error Scoring System (BESS) (33)	Yes	Yes	No	No	No	No	No	Yes	No	
Modified Balance Error Scoring System (M-BESS) (34)	Yes	Yes	No	No	No	NO	No	Yes	No	
Balance Evaluation Systems Test (BESTest) (18)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Brief Balance Evaluation Systems Test (Brief BESTest) (35)	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No	
Mini Balance Evaluation Systems Test (Mini BESTest) (36)	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	
Balance Outcome Measure for Elder Rehabilitation (BOOMER) (37)	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	
Balance Screening Tool (BST) (38)	Yes	Yes	No	No	No	Yes	Yes	Yes	No	
BDL Balance Scale (39)	Yes	Yes	No	No	No	Yes	Yes	Yes	Yes	
Berg Balance Scale (BBS) (40)	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	Sitting balance
Short Form of the Berg Balance Scale (SFBBS) (41)	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	
Short Berg Balance Scale (42)	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	
Brunel Balance Assessment (BBA) (43)	Yes	Yes	Yes	No	No	Yes	Yes	No	No	Sitting balance
Clinical Gait and Balance Scale (GABS) (44)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	
Clinical Test of Sensory Interaction in Balance (CTSIB) (45)	Yes	Yes	No	No	No	No	No	Yes	No	
Community Balance and Mobility	Yes	Yes	No	No	No	Yes	Yes	Yes	Yes	


 Table 2. Components of balance evaluated by standardized measures

Measure	Static stability	Underlying motor systems	Functional stability limits	Verticality		Anticipatory postural control	Dynamic stability	Sensory integration	Cognitive influences	Other constructs not included in systems framework
Scale (CB&M) (46)										
Dynamic Balance Assessment (DBA) (47)	Yes	Yes	No	No	No	Yes	No	Yes	Yes	
Dynamic Gait Index (48)	No	Yes	No	No	No	Yes	Yes	Yes	Yes	
Four-item Dynamic Gait Index (4-DGI) (49)	No	Yes	No	No	No	Yes	Yes	Yes	Yes	
Functional Gait Assessment (FGA) (50)	No	Yes	No	No	No	Yes	Yes	Yes	Yes	
Dynamic One Leg Stance (DOLS) (51)	Yes	Yes	No	No	No	Yes	No	Yes	No	
Equiscale (52)	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No	
Fast Evaluation of Mobility, Balance and Fitness (FEMBAF) (54)	Yes	Yes	No	No	Yes	Yes	Yes	Yes	No	Sitting balance
Five Times Sit-to-Stand Test (5-STS) (55)	No	Yes	No	No	No	Yes	Yes	No	No	
Four Square Step Test (FSST) (56)	No	Yes	No	No	No	Yes	Yes	No	No	
Fullerton Advanced Balance (FAB) Scale (57)	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
Functional Reach Test (58)	No	Yes	Yes	No	No	Yes	No	No	No	
Multidirectional Reach Test (59)	No	Yes	Yes	No	No	Yes	No	No	No	
Hierarchical Assessment of Balance and Mobility (HABAM) (60)	Yes	Yes	No	No	Yes	Yes	Yes	No	No	
Kansas University Standing Balance Scale (KUSBS) (61)	Yes	Yes	No	No	No	Yes	No	No	No	
Limits of Stability Test (LOS) (62)	No	Yes	Yes	No	No	Yes	No	No	No	
Modified Figure of Eight Test (63)	No	Yes	No	No	No	No	Yes	No	No	
Parallel Walk Test (PWT) (65)	No	Yes	No	No	No	No	Yes	No	No	
Performance Oriented Mobility Assessment (POMA) (53)	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Sitting balance
Modified Performance Oriented Mobility Assessment (66)	Yes	Yes	No	No	No	Yes	Yes	Yes	No	
Postural Assessment Scale for Stroke Patients (PASS) (67)	Yes	Yes	No	No	No	Yes	Yes	No	No	Supine to sitting, and sitting
Short Form of Postural Assessment Scale for Stroke Patients (SFPASS) (69)	Yes	Yes	No	No	No	No	Yes	No	No	

Measure	Static stability	Underlying motor systems	Functional stability limits	Verticality	Reactive postural control	Anticipatory postural control	<u> </u>	integration		Other constructs not included in systems framework
Postural Control and Balance for Stroke Scale (70)	Yes	Yes	Yes	No	No	Yes	Yes	No	No	
Postural Stress Test (PST) (71)	No	Yes	No	No	Yes	No	No	No	No	
Pull/ Retropulsion Test (72)	No	Yes	No	No	Yes	No	No	No	No	
Push and Release Test (73)	No	Yes	No	No	Yes	No	No	No	No	
Rapid Step Test (RST) (74)	No	Yes	No	No	No	Yes	Yes	No	No	
Sensory Organization Test (SOT) (75)	Yes	Yes	No	No	No	No	No	Yes	No	
Head-Shake Sensory Organization Test (HS-SOT) (76)	Yes	Yes	No	No	No	No	No	Yes	No	
Short Physical Performance Battery (SPPB) (77)	Yes	Yes	No	No	No	No	Yes	No	No	
Side-Step Test (78)	No	Yes	No	No	No	Yes	Yes	No	No	
Single Leg Hop Stabilization Test (79)	Yes	Yes	No	No	No	Yes	Yes	No	No	
Single leg Stance Test (81)	Yes	Yes	No	No	No	No	No	No	No	
Spring Scale Test (SST) (82)	No	Yes	No	No	Yes	No	No	No	No	
Standing Test for Imbalance and Disequilibrium (SIDE) (83)	Yes	Yes	No	No	No	Yes	No	No	No	
Star Excursion Balance Test (SEBT) (84)	Yes	Yes	Yes	No	No	Yes	No	No	No	
Step Test (ST) (85)	No	Yes	No	No	No	Yes	Yes	No	No	
Tandem Stance (86)	Yes	Yes	No	No	No	No	No	No	No	
Time on Ball Test (87)	Yes	Yes	No	No	No	No	No	Yes	No	
Timed Up-and-Go Test (TUG) (88)	No	Yes	No	No	No	Yes	Yes	No	No	
Expanded Timed Up-and-Go Test (ETUG) (90)	No	Yes	No	No	No	Yes	Yes	No	No	
TURN180 (91)	No	Yes	No	No	No	No	Yes	No	No	
Unified Balance Scale (92)	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
Unilateral Forefoot Balance Test (93)	Yes	Yes	No	No	No	No	No	No	No	
Timed Up-and-Go Assessment of Biomechanical Strategies (TUG-ABS) (94)	No	Yes	No	No	No	Yes	Yes	No	No	
Posture and Posture Ability Scale (PPAS) (95)	Yes	Yes	No	Yes	No	No	No	No	No	Sitting balance

Measure	Static stability		Functional stability limits	Verticality	postural	Anticipatory postural control	Dynamic stability	Sensory integration	Cognitive influences	Other constructs not included in systems framework
High Level Mobility Assessment Tool (HiMAT) (96, 97)	No	Yes	No	No	No	Yes	Yes	No	No	
Cross Step Moving on Four Spots Test (CSFT) (98)	No	Yes	No	No	No	Yes	Yes	No	No	
			8			55				

Supplementary Data File 1. Sample Search Strategy

Database: Ovid MEDLINE(R), Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid OLDMEDLINE(R) <1946 to February

Week 4 2014>

Search Strategy:

- 1 Postural Balance/ (11988)
- 2 Psychometrics/ (47676)
- 3 1 and 2 (75)
- 4 Disability Evaluation/ (31007)
- 5 Geriatric Assessment/ (15901)
- 6 "reproducibility of results"/ (230959)
- 7 5 or 6 (245565)
- 8 1 and 4 and 7 (98)
- 9 3 or 8 (162)
- 10 limit 9 to english language (156)

Supplementary Data File 2.

References for Studies included in Review

1. Tinetti ME, Kumar C. The Patient Who Falls: It's always a tradeoff. JAMA: The Journal of the American Medical Association. 2010;303(3):258-66. doi: 10.1001/jama.2009.2024.

2. Tyson SF, Hanley M, Chillala J, Selley A, Tallis RC. Balance Disability After Stroke. Phys Ther. 2006;86(1):30-8.

3. Sturnieks DL, Tiedemann A, Chapman K, Munro B, Murray SM, Lord SR. Physiological risk factors for falls in older people with lower limb arthritis. The Journal of Rheumatology. 2004;31(11):2272-9.

4. Dillon CF, Gu Q, Hoffman HJ, Ko C-W. Vision, Hearing, Balance, and Sensory Impairments in Americans Aged 70 Years and Older: United States, 1999-2006. National Center for Health Statistics Data Brief. 2010(31).

5. Gillespie LD, Robertson MC, Gillespie WJ, Sherrington CS, Gates S, Clemson L, et al. Interventions for preventing falls in older people living in the community. Cochrane Database of Systematic Reviews. 2012(9):DOI: 10.1002/14651858.CD007146.pub3.

6. Howe TE, Rochester L, Neil F, Skelton DA, Ballinger C. Exercise for improving balance in older people. Cochrane Database of Systematic Reviews. 2011;11:doi: 10.1002/14651858.CD004963.pub3.

7. Sherrington C, Tiedemann A, Fairhall N, Close JCT, Lord SR. Exercise to prevent falls in older adults: an updated meta-analysis and best practice recommendations. New South Wales Public Health Bulletin. 2011;22(4):78-83. doi: <u>http://dx.doi.org/10.1071/NB10056</u>.

8. Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing. 2006;35(suppl_2):ii7-11. doi: 10.1093/ageing/afl077.

9. Orr R, Raymond J, Fiatarone Singh M. Efficacy of Progressive Resistance Training on Balance Performance in Older Adults: A Systematic Review of Randomized Controlled Trials. Sports Med. 2008;38(4):317-43.

10. Sibley KM, Straus SE, Inness EL, Salbach NM, Jaglal SB. Balance Assessment Practices and Use of Standardized Balance Measures Among Ontario Physical Therapists. Phys Ther. 2011;91(11):1583-91. doi: 10.2522/ptj.20110063.

11. Howe TE, Skelton DA. Consensus on core outcome measures of function are needed to progress our knowledge of "best practice" exercise components for older people. Age Ageing. 2011;40(5):532-3. doi: 10.1093/ageing/afr082.

12. Tyson SF, Connell LA. How to measure balance in clinical practice. A systematic review of the psychometrics and clinical utility of measures of balance activity for neurological conditions. Clin Rehabil. 2009;23(9):824-40. doi: 10.1177/0269215509335018.

13. McGinnis PQ, Wainwright SF, Hack LM, Nixon-Cave K, Michlovitz S. Use of a Delphi panel to establish consensus for recommended uses of selected balance assessment approaches. Physiotherapy Theory and Practice. 2010;26(6):358-73. doi: doi:10.3109/09593980903219050.

14. Pardasaney PK, Slavin MD, Wagenaar RC, Latham NK, Ni P, Jette AM. Conceptual limitations of balance measures for community-dwelling older adults. Phys Ther. 2013;93(10):1351-68. Epub 2013/05/25. doi: 10.2522/ptj.20130028. PubMed PMID: 23704036.

15. Bernstein N. Co-ordination and Regulation of Movements. New York: Pergamon Press Inc.; 1967.

16. Horak FB, Macpherson JM. Postural orientation and equilibrium. In: Rowell LB, Shepherd JT, editors. Handbook of Physiology, Section 12, Exercise: Regulation and Integration of Multiple Systems. New York: American Physiological Society; 1996. p. 255-92.

17. Woollacott MH, Shumway-Cook A. Changes in postural control across the life span- a systems approach. Phys Ther. 1990;70(12):799-807.

18. Horak FB, Wrisley DM, Frank J. The Balance Evaluation Systems Test (BESTest) to Differentiate Balance Deficits. Phys Ther. 2009;89(5):484-98. doi: 10.2522/ptj.20080071.

19. Arksey H, O'Malley L. Scoping Studies: Towards a Methodological Framework. International Journal of Social Research Methodology. 2005;8(1):19-32.

20. Levac D, Colquhoun H, O'Brien K. Scoping studies: advancing the methodology. Implementation Science. 2010;5(1):69. PubMed PMID: doi:10.1186/1748-5908-5-69.

21. Daudt HM, van Mossel C, Scott SJ. Enhancing the scoping study methodology: a large, inter-professional team's experience with Arksey and O'Malley's framework. BMC medical research methodology. 2013;13:48. Epub 2013/03/26. doi: 10.1186/1471-2288-13-48. PubMed PMID: 23522333; PubMed Central PMCID: PMCPMC3614526.

22. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Open medicine : a peer-reviewed, independent, open-access journal. 2009;3(3):e123-30. Epub 2009/01/01. PubMed PMID: 21603045; PubMed Central PMCID: PMCPMC3090117.

23. Canadian Agency for Drugs and Technologies in Health. Grey Matters: a practical search tool for evidence-based medicine 2013. Available from: <u>http://www.cadth.ca/en/resources/finding-evidence-is/grey-matters</u>.

24. Maki BE, McIlroy WE. Postural control in the older adult. Clin Geriatr Med. 1996;12(4):637-58.

25. Hilliard MJ, Martinez KM, Janssen I, Edwards B, Mille ML, Zhang Y, et al. Lateral balance factors predict future falls in community-living older adults. Arch Phys Med Rehabil. 2008;89(9):1708-13. Epub 2008/09/02. doi: 10.1016/j.apmr.2008.01.023. PubMed PMID: 18760155; PubMed Central PMCID: PMCPMC2953551.

26. Lacour M, Bernard-Demanze L, Dumitrescu M. Posture control, aging, and attention resources: models and posture-analysis methods. Neurophysiol Clin. 2008;38(6):411-21. Epub 2008/11/26. doi: 10.1016/j.neucli.2008.09.005. PubMed PMID: 19026961.

27. de Oliveira CB, de Medeiros IR, Frota NA, Greters ME, Conforto AB. Balance control in hemiparetic stroke patients: main tools for evaluation. J Rehabil Res Dev. 2008;45(8):1215-26. Epub 2009/02/24. PubMed PMID: 19235121.

28. Rehabilitation Measures Database [May 20, 2014]. Available from: <u>www.rehabmeasures.org</u>.

29. Ardolino EM, Hutchinson KJ, Pinto Zipp G, Clark M, Harkema SJ. The ABLE Scale: The Development and Psychometric Properties of an Outcome Measure for the Spinal Cord Injury Population. Physical Therapy. 2012;92(8):1046-54. doi: 10.2522/ptj.20110257. PubMed PMID: 2011648363. Language: English. Entry Date: 20120831. Revision Date: 20120921. Publication Type: journal article.

30. Kairy D, Paquet N, Fung J. A postural adaptation test for stroke patients. Disability & Rehabilitation. 2003;25(3):127-35. PubMed PMID: 2003139769. Language: English. Entry Date: 20031031. Revision Date: 20091218. Publication Type: journal article.

31. Hsueh I, Chen J, Wang C, Chen C, Sheu C, Wang W, et al. Development of a computerized adaptive test for assessing balance function in patients with stroke. Physical Therapy. 2010;90(9):1336-44. doi: 10.2522/ptj.20090395. PubMed PMID: 2010824176. Language: English. Entry Date: 20101119. Revision Date: 20120907. Publication Type: journal article.

32. Hou W-H, Chen J-H, Wang Y-H, Wang C-H, Lin J-H, Hsueh IP, et al. Development of a Set of Functional Hierarchical Balance Short Forms for Patients With Stroke. Archives of Physical Medicine & Rehabilitation. 2011;92(7):1119-25. doi: 10.1016/j.apmr.2011.02.012. PubMed PMID: 2011181892. Language: English. Entry Date: 20110812. Revision Date: 20120907. Publication Type: journal article.

33. Riemann BL, Guskiewicz KM, Shields EW. Relationship between clinical and forceplate measures of postural stability. Journal of Sport Rehabilitation. 1999;8(2):71-82. PubMed PMID: 1999055289. Language: English. Entry Date: 19990801. Revision Date: 20091218. Publication Type: journal article.

34. Hunt TN, Ferrara MS, Bornstein RA, Baumgartner TA. The reliability of the modified Balance Error Scoring System. Clinical Journal of Sport Medicine. 2009;19(6):471-5. doi: 10.1097/JSM.0b013e3181c12c7b. PubMed PMID: 2010485252. Language: English. Entry Date: 20100122. Revision Date: 20110520. Publication Type: journal article.

35. Padgett PK, Jacobs JV, Kasser SL. Is the BESTest at Its Best? A Suggested Brief Version Based on Interrater Reliability, Validity, Internal Consistency, and Theoretical Construct. Physical Therapy. 2012;92(9):1197-207. doi: 10.2522/ptj. 20120056. PubMed PMID: 2011686555. Language: English. Entry Date: 20121005. Revision Date: 20121005. Publication Type: journal article. 36. Franchignoni F, Horak F, Godi M, Nardone A, Giordano A. Using psychometric techniques to improve the Balance Evaluation Systems Test: the mini-BESTest. Journal of Rehabilitation Medicine (Stiftelsen Rehabiliteringsinformation). 2010;42(4):323-31. doi: 10.2340/16501977-0537. PubMed PMID: 2010750367. Language: English. Entry Date: 20101008. Revision Date: 20110520. Publication Type: journal article.

37. Haines T, Kuys SS, Morrison G, Clarke J, Bew P, McPhail S. Development and validation of the balance outcome measure for elder rehabilitation. Arch Phys Med Rehabil. 2007;88(12):1614-21. Epub 2007/12/01. doi: 10.1016/j.apmr.2007.09.012. PubMed PMID: 18047876.

38. Mackintosh S, Datson N, Fryer C. A balance screening tool for older people: reliability and validity. International Journal of Therapy & Rehabilitation.
2006;13(12):558-61. PubMed PMID: 2009382118. Language: English. Entry Date: 20070413. Revision Date: 20091218. Publication Type: journal article.

39. Lindmark B, Liljenäs Å, Hellström K. Assessment of minor or moderate balance disorders: A reliability study and comparison with healthy subjects. Advances in Physiotherapy. 2012;14(1):3-9. doi: 10.3109/14038196.2011.640350. PubMed PMID: 2011459367. Language: English. Entry Date: 20120323. Revision Date: 20120629. Publication Type: journal article.

40. Berg K, Wood-Dauphinee S, Williams JI, Gayton D. Measuring balance in the elderly: preliminary development of an instrument. Physiotherapy Canada. 1989;41(6):304-11. PubMed PMID: 1990112681. Language: English. Entry Date: 19901001. Revision Date: 20091218. Publication Type: journal article.

41. Chou C, Chien C, Hsueh I, Sheu C, Wang C, Hsieh C. Developing a short form of the Berg Balance Scale for people with stroke. Physical Therapy. 2006;86(2):195-204. PubMed PMID: 2009116683. Language: English. Entry Date: 20060414. Revision Date: 20091218. Publication Type: journal article.

42. Hohtari-Kivimaki U, Salminen M, Vahlberg T, Kivela SL. Short Berg Balance Scale - correlation to static and dynamic balance and applicability among the aged. Aging-Clinical & Experimental Research. 2012;24(1):42-6. PubMed PMID: 22643304.

43. Tyson SF, DeSouza LH. Development of the Brunel Balance Assessment: a new measure of balance disability post stroke. Clinical Rehabilitation. 2004;18(7):801-10. PubMed PMID: 2005042834. Language: English. Entry Date: 20050225. Revision Date: 20091218. Publication Type: journal article.

44. Thomas M, Jankovic J, Suteerawattananon M, Wankadia S, Caroline KS, Vuong KD, et al. Clinical gait and balance scale (GABS): validation and utilization. Journal of the Neurological Sciences. 2004;217(1):89-99. doi: <u>http://dx.doi.org/10.1016/j.jns.2003.09.005</u>.

45. Shumway-Cook A, Horak FB. Assessing the influence of sensory interaction of balance. Suggestion from the field. Phys Ther. 1986;66(10):1548-50. Epub 1986/10/01. PubMed PMID: 3763708.

46. Howe JA, Inness EL, Venturini A, Williams JI, Verrier MC. The Community Balance and Mobility Scale--a balance measure for individuals with traumatic brain injury. Clin Rehabil. 2006;20:885-95.

47. Desai A, Goodman V, Kapadia N, Shay BL, Szturm T. Relationship between dynamic balance measures and functional performance in community-dwelling elderly people. Physical Therapy. 2010;90(5):748-60. doi: 10.2522/ptj.20090100. PubMed PMID: 2010655812. Language: English. Entry Date: 20100625. Revision Date: 20100625. Publication Type: journal article.

48. Shumway-Cook A, Baldwin M, Polissar NL, Gruber W. Predicting the probability for falls in community-dwelling older adults. Physical Therapy. 1997;77(8):812-9. PubMed PMID: 9256869.

49. Marchetti GF, Whitney SL. Construction and validation of the 4-item dynamic gait index. Physical Therapy. 2006;86(12):1651-60. doi: 10.2522/ptj.20050402. PubMed PMID: 2009373978. Language: English. Entry Date: 20070309. Revision Date: 20120302. Publication Type: journal article.

50. Wrisley DMM, G. F.;Kuharsky, D. K.;Whitney, S. L. Reliability, internal consistency, and validity of data obtained with the Functional Gait Assessment. Physical Therapy. 2004;84(10):906-18. PubMed PMID: 2005023099. Language: English. Entry Date: 20050128. Revision Date: 20091218. Publication Type: journal article.

51. Blomqvist S, Rehn B. Validity and reliability of the Dynamic One Leg Stance (DOLS) in people with vision loss. Advances in Physiotherapy. 2007;9(3):129-35. PubMed PMID: 2009666263. Language: English. Entry Date: 20071026. Revision Date: 20091218. Publication Type: journal article.

52. Tesio L, Perucca L, Franchignoni FP, Battaglia MA. A short measure of balance in multiple sclerosis: validation through Rasch analysis. Funct Neurol. 1997;12(5):255-65. Epub 1998/01/24. PubMed PMID: 9439943.

53. Tinetti ME. Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc. 1986;34(2):119-26. Epub 1986/02/01. PubMed PMID: 3944402.

54. Di Fabio RP, Seay R. Use of the "fast evaluation of mobility, balance, and fear" in elderly community dwellers: validity and reliability. Physical Therapy. 1997;77(9):904-17. PubMed PMID: 9291948.

55. Whitney SL, Wrisley DM, Marchetti GF, Gee MA, Redfern MS, Furman JM. Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the Five-Times-Sit-to-Stand Test. Physical Therapy. 2005;85(10):1034-45. PubMed PMID: 2009049002. Language: English. Entry Date: 20051209. Revision Date: 20091218. Publication Type: journal article.

56. Dite W, Temple VA. A clinical test of stepping and change of direction to identify multiple falling older adults. Archives of Physical Medicine & Rehabilitation. 2002;83(11):1566-71. PubMed PMID: 2003043439. Language: English. Entry Date: 20030321. Revision Date: 20091218. Publication Type: journal article.

57. Rose DJ, Lucchese N, Wiersma LD. Development of a Multidimensional Balance Scale for Use With Functionally Independent Older Adults. Arch Phys Med Rehabil. 2006;87(11):1478-85.

58. Duncan PW, Weiner DK, Chandler J, Studenski S. Functional reach: a new clinical measure of balance. J Gerontol. 1990;45(6):M192-7. Epub 1990/11/01. PubMed PMID: 2229941.

59. Newton RA. Validity of the multi-directional reach test: a practical measure for limits of stability in older adults. J Gerontol A Biol Sci Med Sci. 2001;56(4):M248-52. Epub 2001/04/03. PubMed PMID: 11283199.

60. MacKnight C, Rockwood K. A hierarchical assessment of balance and mobility. Age & Ageing. 1995;24(2):126-30. PubMed PMID: 1997012130. Language: English. Entry Date: 19970401. Revision Date: 20091218. Publication Type: journal article.

61. Kluding P, Swafford B, Cagle P, Gajewski B. Reliability, responsiveness, and validity of the Kansas University Standing Balance Scale. Journal of Geriatric Physical Therapy. 2006;29(3):93-9. PubMed PMID: 2009360185. Language: English. Entry Date: 20070817. Revision Date: 20091218. Publication Type: journal article.

62. Clark S, Rose DJ, Fujimoto K. Generalizability of the limits of stability test in the evaluation of dynamic balance among older adults. Archives of Physical Medicine & Rehabilitation. 1997;78(10):1078-84. PubMed PMID: 9339156.

63. Jarnlo G, Nordell E. Reliability of the modified figure of eight -- a balance performance test for elderly women. Physiotherapy Theory & Practice. 2003;19(1):35-43. PubMed PMID: 2003104842. Language: English. Entry Date: 20030815. Revision Date: 20091218. Publication Type: journal article.

64. Johansson G, Jarnlo G. Balance training in 70-year-old women. Physiotherapy Theory & Practice. 1991;7(2):121-5. PubMed PMID: 1999005561. Language: English. Entry Date: 19990101. Revision Date: 20091218. Publication Type: journal article.

65. Lark SD, McCarthy PW, Rowe DA. Reliability of the Parallel Walk Test for the Elderly. Archives of Physical Medicine & Rehabilitation. 2011;92(5):812-7. doi: 10.1016/j.apmr.2010.11.028. PubMed PMID: 2011032107. Language: English. Entry Date: 20110617. Revision Date: 20120907. Publication Type: journal article.

66. Fox KM, Felsenthal G, Hebel JR, Zimmerman SI, Magaziner J. A portable neuromuscular function assessment for studying recovery from hip fracture. Archives of Physical Medicine & Rehabilitation. 1996;77(2):171-6. PubMed PMID: 8607742.

67. Benaim C, Perennou DA, Villy J, Rousseaux M, Pelissier JY. Validation of a standardized assessment of postural control in stroke patients: the Postural Assessment Scale for Stroke Patients (PASS). Stroke (00392499). 1999;30(9):1862-8. PubMed PMID: 1999076870. Language: English. Entry Date: 19991101. Revision Date: 20091218. Publication Type: journal article.

68. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13-31. Epub 1975/01/01. PubMed PMID: 1135616.

69. Chien CW, Lin JH, Wang CH, Hsueh IP, Sheu CF, Hsieh CL. Developing a Short Form of the Postural Assessment Scale for people with Stroke. Neurorehabilitation & Neural Repair. 2007;21(1):81-90. PubMed PMID: 17172558.

70. Pyöriä O, Talvitie U, Villberg J. The reliability, distribution, and responsiveness of the Postural Control and Balance for Stroke Test. Archives of Physical Medicine & Rehabilitation. 2005;86(2):296-302. PubMed PMID: 2005084576. Language: English. Entry Date: 20050513. Revision Date: 20091218. Publication Type: journal article.

71. Wolfson LI, Whipple R, Amerman P, Kleinberg A. Stressing the postural response. A quantitative method for testing balance. J Am Geriatr Soc. 1986;34(12):845-50. Epub 1986/12/01. PubMed PMID: 3782696.

72. Visser M, Marinus J, Bloem BR, Kisjes H, van den Berg BM, van Hilten JJ. Clinical tests for the evaluation of postural instability in patients with parkinson's disease. Arch Phys Med Rehabil. 2003;84(11):1669-74. Epub 2003/11/26. PubMed PMID: 14639568.

73. Jacobs J, Horak F, Van Tran K, Nutt J. An alternative clinical postural stability test for patients with Parkinson's disease. J Neurol. 2006;253(11):1404-13.

74. Medell JL, Alexander NB. A Clinical Measure of Maximal and Rapid Stepping in Older Women. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2000;55(8):M429-M33. doi: 10.1093/gerona/55.8.M429.

75. Ford-Smith CD, Wyman JF, Elswick RK, Jr., Fernandez T, Newton RA. Testretest reliability of the Sensory Organization Test in noninstitutionalized older adults. Archives of Physical Medicine & Rehabilitation. 1995;76(1):77-81. PubMed PMID: 1995007999. Language: English. Entry Date: 19950401. Revision Date: 20091218. Publication Type: journal article.

76. Pang MY, Lam FM, Wong GH, Au IH, Chow DL. Balance performance in headshake computerized dynamic posturography: aging effects and test-retest reliability.[Erratum appears in Phys Ther. 2011 Apr;91(4):598]. Physical Therapy. 2011;91(2):246-53. PubMed PMID: 21148260.

77. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85-94. Epub 1994/03/01. PubMed PMID: 8126356.

78. Fujisawa H, Takeda R. A new clinical test of dynamic standing balance in the frontal plane: the side-step test. Clinical Rehabilitation. 2006;20(4):340-6. PubMed PMID: 2009214453. Language: English. Entry Date: 20060811. Revision Date: 20091218. Publication Type: journal article.

79. Riemann BL, Caggiano NA, Lephert SM. Examination of a clinical method of assessing postural control during a functional performance task. Journal of Sport Rehabilitation. 1999;8(3):171-83. PubMed PMID: 1999081651. Language: English. Entry Date: 19991201. Revision Date: 20091218. Publication Type: journal article.

80. Johnson BL, Nelson JK. Practical measurements for evaluation in physical education. Edina, MN.: Burgess Pub.; 1986.

81. Bohannon RW. Single limb stance times: a descriptive meta-analysis of data from individuals at least 60 years of age. Topics in Geriatric Rehabilitation. 2006;22(1):70-7. PubMed PMID: 2009125239. Language: English. Entry Date: 20060804. Revision Date: 20091218. Publication Type: journal article.

82. DePasquale L, Toscano L. The Spring Scale Test: a reliable and valid tool for explaining fall history. Journal of Geriatric Physical Therapy. 2009;32(4):159-67. PubMed PMID: 2010504559. Language: English. Entry Date: 20100205. Revision Date: 20100521. Publication Type: journal article.

83. Teranishi T, Kondo I, Sonoda S, Kagaya H, Wada Y, Miyasaka H, et al. A discriminative measure for static postural control ability to prevent in-hospital falls: Reliability and validity of the Standing Test for Imbalance and Disequilibrium (SIDE). Japanese Journal of Comprehensive Rehabilitation Science. 2010;1:11-6.

84. Hertel J, Miller SJ, Denegar CR. Intratester and intertester reliability during the Star Excursion Balance Tests. Journal of Sport Rehabilitation. 2000;9(2):104-16. PubMed PMID: 2000050466. Language: English. Entry Date: 20000801. Revision Date: 20091218. Publication Type: journal article.

85. Hill KD, Bernhardt J, McGann AM, Maltese D, Berkovits D. A new test of dynamic standing balance for stroke patients: reliability, validity and comparison with healthy elderly. Physiotherapy Canada. 1996;48(4):257-62. PubMed PMID: 1998024061. Language: English. Entry Date: 19980401. Revision Date: 20091218. Publication Type: journal article.

86. Hile ES, Brach JS, Perera S, Wert DM, VanSwearingen JM, Studenski SA. Interpreting the need for initial support to perform tandem stance tests of balance. Phys Ther. 2012;92(10):1316-28. Epub 2012/06/30. doi: 10.2522/ptj.20110283. PubMed PMID: 22745198; PubMed Central PMCID: PMCPMC3461133.

87. Bruinsma JH, Gebraad MM, Brumels KA. Clinician's corner: reliability of the timeon-ball test. Clinical Kinesiology: Journal of the American Kinesiotherapy Association. 2008;62(1):1-3. PubMed PMID: 2009899960. Language: English. Entry Date: 20080613. Revision Date: 20100730. Publication Type: journal article.

88. Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142-8.

89. Mathias S, Nayak US, Isaacs B. Balance in elderly patients: the "get-up and go" test. Arch Phys Med Rehabil. 1986;67(6):387-9. Epub 1986/06/01. PubMed PMID: 3487300.

90. Botolfsen P, Helbostad JL, Moe-Nilssen R, Wall JC. Reliability and concurrent validity of the Expanded Timed Up-and-Go test in older people with impaired mobility. Physiotherapy Research International. 2008;13(2):94-106. PubMed PMID: 18288773.

91. Simpson JM, Worsfold C, Reilly E, Nye N. A Standard Procedure for Using TURN180: Testing dynamic postural stability among elderly people. Physiotherapy. 2002;88(6):342-53.

92. La Porta F, Franceschini M, Caselli S, Cavallini P, Susassi S, Tennant A. Unified Balance Scale: an activity-based, bed to community, and aetiology-independent

measure of balance calibrated with Rasch analysis. J Rehabil Med. 2011;43(5):435-44. Epub 2011/03/12. doi: 10.2340/16501977-0797. PubMed PMID: 21394420.

93. Clark MS. The Unilateral Forefoot Balance Test: reliability and validity for measuring balance in late midlife women. New Zealand Journal of Physiotherapy. 2007;35(3):110-8. PubMed PMID: 2009721199. Language: English. Entry Date: 20080125. Revision Date: 20091218. Publication Type: journal article.

94. Faria CD, Teixeira-Salmela LF, Nadeau S. Clinical testing of an innovative tool for the assessment of biomechanical strategies: the Timed "Up and Go" Assessment of Biomechanical Strategies (TUG-ABS) for individuals with stroke. Journal of Rehabilitation Medicine. 2013;45(3):241-7. PubMed PMID: 23462895.

95. Rodby-Bousquet E, Ágústsson A, Jónsdóttir G, Czuba T, Johansson A-C, Hägglund G. Interrater reliability and construct validity of the Posture and Postural Ability Scale in adults with cerebral palsy in supine, prone, sitting and standing positions. Clinical Rehabilitation. 2014;28(1):82-90. doi: 10.1177/0269215512465423. PubMed PMID: 2012418169. Language: English. Entry Date: 20140117. Revision Date: 20140131. Publication Type: journal article.

96. Williams GP, Robertson V, Greenwood KM, Goldie PA, Morris ME. The highlevel mobility assessment tool (HiMAT) for traumatic brain injury. Part 2: content validity and discriminability. Brain injury : [BI]. 2005;19(10):833-43. Epub 2005/09/24. PubMed PMID: 16175843.

97. Williams G, Robertson V, Greenwood K, Goldie P, Morris ME. The high-level mobility assessment tool (HiMAT) for traumatic brain injury. Part 1: Item generation. Brain injury : [BI]. 2005;19(11):925-32. Epub 2005/10/26. doi: 10.1080/02699050500058687. PubMed PMID: 16243748.

98. Yamaji S, Demura S. Reliability and fall experience discrimination of Cross Step Moving on Four Spots Test in the elderly. Archives of Physical Medicine & Rehabilitation. 2013;94(7):1312-9. PubMed PMID: 23318998.

99. Powell LE, Myers AM. The Activities-specific Balance Confidence (ABC) Scale. J Gerontol A Biol Sci Med Sci. 1995;50A(1):M28-34. Epub 1995/01/01. PubMed PMID: 7814786.

100. Linacre JM, Heinemann AW, Wright BD, Granger CV, Hamilton BB. The structure and stability of the Functional Independence Measure. Arch Phys Med Rehabil. 1994;75(2):127-32. Epub 1994/02/01. PubMed PMID: 8311667.

101. Kuys SS, Brauer SG. Validation and reliability of the Modified Elderly Mobility Scale. Australasian Journal on Ageing. 2006;25(3):140-4. doi: 10.1111/j.1741-6612.2006.00169.x.

102. Mahoney FI, Barthel DW. Functional evaluation: the Barthel index. Md State Med J. 1965;14:61-5. Epub 1965/02/01. PubMed PMID: 14258950.

103. Carr JH, Shepherd RB, Nordholm L, Lynne D. Investigation of a new motor assessment scale for stroke patients. Phys Ther. 1985;65(2):175-80. Epub 1985/02/01. PubMed PMID: 3969398.

104. Collen FM, Wade DT, Robb GF, Bradshaw CM. The Rivermead Mobility Index: a further development of the Rivermead Motor Assessment. Int Disabil Stud. 1991;13(2):50-4. Epub 1991/04/01. PubMed PMID: 1836787.

105. Cohen HB, C. A.; Gombash, L. L. A study of the clinical test of sensory interaction and balance. Phys Ther. 1993;73(6):346-51; discussion 51-4. Epub 1993/06/01. PubMed PMID: 8497509.

106. American Thoracic Society. ATS statement: guidelines for the Six-Minute Walk test. Am J Respir Crit Care Med. 2002;166:111-7.

107. Jacobson GP, Newman CW. The development of the Dizziness Handicap Inventory. Arch Otolaryngol Head Neck Surg. 1990;116(4):424-7. Epub 1990/04/01. PubMed PMID: 2317323.

108. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189-98. Epub 1975/11/01. PubMed PMID: 1202204.

109. Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179-86. Epub 1969/01/01. PubMed PMID: 5349366.

110. Spitzer WO, Dobson AJ, Hall J, Chesterman E, Levi J, Shepherd R, et al. Measuring the quality of life of cancer patients: a concise QL-index for use by physicians. J Chronic Dis. 1981;34(12):585-97. Epub 1981/01/01. PubMed PMID: 7309824.

111. Cipriany-Dacko LM, Innerst D, Johannsen J, Rude V. Interrater reliability of the Tinetti Balance Scores in novice and experienced physical therapy clinicians. Arch Phys Med Rehabil. 1997;78(10):1160-4. Epub 1997/10/27. PubMed PMID: 9339170.

112. Suni JH, Oja P, Laukkanen RT, Miilunpalo SI, Pasanen ME, Vuori IM, et al. Health-related fitness test battery for adults: aspects of reliability. Arch Phys Med Rehabil. 1996;77(4):399-405. Epub 1996/04/01. PubMed PMID: 8607767.

113. Franchignoni F, Tesio L, Martino MT, Ricupero C. Reliability of four simple, quantitative tests of balance and mobility in healthy elderly females. Aging (Milano). 1998;10(1):26-31. Epub 1998/05/20. PubMed PMID: 9589748.

Supplementary Data File 3. Measure Characteristics

Measure	Reference	Stated purpose of measure	Components of balance purportedly assessed	Target adult population	Development methods	Number of items in test	Evaluation parameters	Number of scoring categories	Graded progression
Evaluation	al. Phys Ther. 2012; 92(8): 1046-54	Ŭ	Balance in the domains of sitting, standing, walking	Spinal cord injury	Literature review and clinical expertise, Delphi process, Rasch analysis	28	Categorical	5	No
Advanced Balance and Mobility Scale (ABMS) (30)	Rehabil. 2003; 25(3): 127-35		Postural control in standing and walking	Not specified	Not specified	12	Categorical	4	No
Balance Computerized Adaptive Testing (CAT) system (31)		function in people	Entire range of balance function (items with wide range and even distribution of difficulty)	Stroke	Pool of 41 items identified on basis of predefined balance concepts, clinical expert consultation and field testing to finalize item description and scoring, items administered by 5 raters to 764 patients and item response theory model fit to data and item	34	Categorical	26 items have 2 scoring categories and 8 items have 3 scoring categories	No

ACCEPTED MANUSCRIPT

					parameters estimated				
Balance Short Forms (HBSF) (32)	Med Rehabil.		Sitting, standing and stepping balance		34 items of the Balance CAT system (31) divided into 3 hierarchical function-related balance levels (sitting, standing, stepping); simulation program used to make an item selection algorithm proposing 6 candidates (each with 6 items) for each balance level, simulation data used to select candidates with highest reliability, adopted opinions of stroke-related clinicians and psychometricians to determine final set of 6-item balance short form for each sitting, standing and stepping level		Continuous (binary counts transformed into continuous measure)	N/A	Yes, within each of three categories
Scoring System (BESS) (33)	al. J Sport	To assess postural stability	Not specified	Not specified	Not specified		Continuous (number of errors)	N/A	No
Modified	Hunt et al.	To easily administer	Postural stability	Concussion	Modified BESS (33)	4	Continuous	N/A	No

Balance Error Scoring System (M- BESS) (34)		an objective assessment tool in a cost effective way			by eliminating double-leg stance and increasing number of trials per condition	K	(number of errors)		
Balance Evaluation Systems Test (BESTest) (18)	Phys Ther. 2009 May 1, 2009; 89(5): 484-98	therapists identify underlying postural control systems that may be responsible for poor functional balance	Biomechanical constraints, stability limits/verticality, anticipatory postural adjustments, postural responses, sensory integration and stability of gait	specified	Initial test proposed by Horak and Frank, then clinicians provided feedback on clarity, sensitivity and practicality at 38 workshops over 4 years, inter-rater reliability evaluated, then test revised	36	Categorical	4	No
Brief Balance Evaluation Systems Test (Brief BESTest) (35)	al. Phys Ther 2012; 92(9): 1197-207	specific contexts of postural control to allow for identification of	Mechanical constraints, limits of stability, anticipatory postural adjustments, postural responses to induced loss of balance, sensory orientation and gait	Not specified	Evaluated internal consistency of items in each section of the BESTest (18) and used item-total correlations to identify each section's most representative item	8	Categorical	4	No
Mini Balance Evaluation Systems Test (Mini BESTest) (36)	et al. J Rehabil Med	assess balance in a short time period	Dynamic balance	specified	Expert review and Rasch analysis of BESTest (18) to remove redundant items	14	Categorical	3	No
Balance Outcome Measure for Elder Rehabilitation	Arch Phys Med Rehabil.	To be a global standing balance outcome measure for elder rehabilitation	Global standing balance (static, dynamic and function)		Cross-sectional survey with expert panel, selection of four stand alone tests, multicenter	4	Categorical	5	No

(BOOMER) (37)	88(12): 1614-21				prospective cohort randomly divided into development and validation datasets to perform item scaling	~			
Balance Screening Tool (BST) (38)	Mackintosh et al. Int J Ther Rehabil 2006; 13(12): 558-61	To screen balance in older adults to identify impairments requiring further investigation & intervention	Static and dynamic standing balance		Developed by expert physiotherapists based on published evidence and clinical experience	6	Categorical	2	No
BDL Balance Scale (39)	Lindmark et al. Advances in Physiothera py. 2012; 14(1): 3-9	To quantitatively measure balance at a relatively high level	Not specified	People of working age with neurologic al impairmen t and mild- moderate balance disturbanc e	Not specified	10	Categorical	5	No
Berg Balance Scale (BBS) (40)	Berg et al. Physiotherap y Canada. 1989; 41(6): 304-11	To measure balance in healthy individuals	Not specified	Geriatric (60 years and over)	Interviews with clinicians and participants, literature review, ranking of items (modified Delphi process)	14	Categorical	5	No
Short Form of the Berg Balance Scale (SFBBS) (41)	Chou et al. Phys Ther. 2006; 86(2): 195-204	To evaluate balance performance in people with stroke	Not specified	Not specified (validated in stroke)	Selected items from BBS (40)with highest internal consistency and greatest responsiveness in	7	Categorical	3	No

					development cohort of patients, and compared 4, 5, 6, and 7-item versions of the SFBBS with 3 and 5 assessment levels				
Short Berg Balance Scale (42)	Hohtari- Kivimaki et al. Aging- Clinical & Experimental Research. 2012 Feb; 24(1): 42-6		Static and dynamic balance	y-dwelling	Factor analysis of BBS (40), removing 5 items	9	Categorical	5	No
Brunel Balance Assessment (BBA) (43)		To assess the effects of specific stroke physiotherapy interventions for balance disability post stroke	Not specified	Stroke	14-point hierarchical prototype test proposed with progressively difficult tasks, validated by decreasing pass rates for each item, acceptable coefficients of stability and reproducibility	12	Categorical	2	Yes
Clinical Gait and Balance Scale (GABS) (44)	Thomas et al. J Neurol Sci. 2004 1/15/; 217(1): 89- 99	To comprehensively measure all essential elements of gait and balance	Balance and posture	Not specified	Not specified	18	Categorical	10 items have 5 levels, 4 items have 3 levels, 2 items have 2 levels, 2 items have subgroups	No

								with multiple categories	
Clinical Test of Sensory Interaction in Balance (CTSIB) (45)	Cook and Horak. Phys Ther. 1986	To assess the influence of sensory interaction on postural stability in the standing patient with neurologic problems	Sensory interactions while standing	People with neurologic problems	Not specified	6	Suggests continuous (time) or categorical (subjective numeric ranking system for sway)	N/A	No
Community Balance and Mobility Scale (CB&M) (46)		instability, evaluate change following		y people with traumatic brain injury	Literature review, interviews with physical and occupational therapists, ambulatory people with brain injury living in community over multiple phases	19	Categorical	6	No
Dynamic Balance Assessment (DBA) (47)	Desai et al. Phys Ther. 2010; 90(5): 748-60	Not specified	Dynamic balance	Communit y-dwelling older adults	Not specified, but notes it incorporates features of modified CTSIB (45)	12	Categorical (continuous data collapsed into categories)	5	No
Dynamic Gait Index (48)	Shumway- Cook et al. Phys Ther. 1997 Aug; 77(8): 812-9	To evaluate and document a patient's ability to modify gait in response to changing task demands	Not specified	Not specified	Not specified	8	Categorical	4	No

Four-item Dynamic Gait Index (4-DGI) (49)	al. Phys	To measure walking function in people with balance and vestibular disorders	Not specified	People with balance and vestibular disorders	Rasch analysis of DGI (48)	4	Categorical	4	No
Functional Gait Assessment (FGA) (50)	Phys Ther. 2004;	To assess postural stability during gait with higher-level tasks	Not specified	Not specified	Revised DGI (48) and added three new items	10	Categorical	4	No
Dynamic One Leg Stance (DOLS) (51)	Blomqvist and Rehn. Advances in Physiotherap y. 2007; 9(3): 129-35	balance	Dynamic body actions during one-legged stance, sensory subsystems	Not specified	Not specified	5	Categorical	2	Yes
Equiscale (52)	Funct Neurol. 1997 Sep-Oct ;12(5): 255- 65	in people with multiple sclerosis		with unilateral motor or sensory impairmen ts	Preliminary 10-item instrument derived from POMA (53) and BBS (40); trial- and-error procedure: administered to 55 patients 1-3 times and Rasch analysis used to explore psychometric validity; 2 items deleted because too easy and uninformative		Categorical		No
Fast Evaluation of Mobility, Balance and Fitness	Di Fabio and Seay. Phys Ther. 1997 Sep; 77(9): 904-17	To assess risk of falling, ability to complete functional tasks and assess reports of fear, pain,	Not specified	Not specified	Not specified	18	Categorical	3	No

(FEMBAF) (54)		mobility, difficulty and perception of strength deficits							
		To measure balance dysfunction	Not specified	Not specified	Not specified	1	Continuous (time)	N/A	No
Four Square Step Test (FSST) (56)	Dite and Temple. Arch Phys Med Rehabil. 2002; 83(11): 1566-71	Not specified	Dynamic standing balance, rapid stepping, obstacle avoidance	Older adults	Not specified	1	Continuous (time)	N/A	No
Advanced Balance (FAB) Scale (57)	87(11): 1478-85	To identify balance problems of varying severity in functionally independent older adults and evaluate system(s) that might be contributing to balance problems	Sensory systems and strategies, internal representations, musculoskeletal components, anticipatory and adaptive mechanisms	independe nt older adults	Review of conceptual frameworks, scientific literature and previously published tests; developed test items and evaluated appropriateness of items, clarity of instructions, and scoring by clinical experts; pilot test of preliminary scale with older adults to establish appropriate test protocols, scoring procedures and better instructions	10	Categorical	5	No
Functional	Duncan et al.	To assess anterior	Dynamic stability	Not	Not specified	1	Continuous	N/A	No

Reach Test (58)	J Gerontol. 1990 Nov; 45(6): M192- 7	and posterior dynamic stability		specified			(distance)		
Multidirection al Reach Test (59)		To measure limits of stability in four reaching directions	Limits of stability	Not specified	Not specified	4	Continuous (distance)	N/A	No
Assessment of Balance and Mobility	-	Not specified	Static and dynamic balance	Not specified	Not specified	24	Categorical	2	Yes
Kansas University Standing Balance Scale (KUSBS) (61)	J Geri Phys Ther. 2006;	To measure balance in lower levels of function in more severely impaired people	Standing balance	specified	Developed over 2 years by physical therapists; scale developed for lower-functioning patients, to document progress in an objective and quantifiable way, quick to use, no math, no equipment; during development therapists were encouraged to talk to each other about experiences with scale, script of therapist instruction to	4	Categorical	10	Yes

					patients subsequently developed				
Limits of Stability Test (LOS) (62)	Arch Phys Med Rehabil. 1997 Oct; 78(10):	To assess multiple indices of dynamic balance performance by evaluating individual's ability to volitionally move the center of gravity to 8 predetermined positions	Dynamic balance	Not specified	Not specified	8	Continuous (center of gravity velocity, excursion, endpoint, directional control)	N/A	No
Modified Figure of Eight Test (63)	Theor Pract.	To measure the ability to walk slightly in lateral direction to both sides in an eight in combination with a narrow step width	Not specified	Not specified	Modification of Figure of Eight Test (64)	1	Continuous (time and number of "oversteps")	N/A	No
Parallel Walk Test (PWT) (65)	al. Physi Theor Pract. 1991; 7(2): 121-5.	balance during gait	Dynamic balance during gait	Older adults	Not specified		Continuous [time and "footfall score" (+1 when part of foot placed on line, +2 when foot falls outside line or reached for something to maintain balance)]		No
Performance Oriented Mobility Assessment (POMA) (53)	Geriatr Soc. 1986 Feb; 34(2): 119-	To practically assess performance- oriented mobility tasks that incorporates useful	Not specified	Not specified	•	Balance- 13, Gait- 9	Categorical	3 for balance item and 2 for gait items	No

		feature of both disease-oriented and gait analytic approaches			rheumatologists and physical therapists to identify what observations should be included and how they should be made; adapted this work to make instrument with 8 position changes for balance and 8 gait observations; 90% agreement between raters when tested in 15 ambulatory people; added 5 balance maneuvers	12	Continuos		Verformer
Modified Performance Oriented Mobility Assessment (66)		recovery in physical	Not specified	People aged 65 and over with a hip fracture	Not specified	13	Continuous (time, angle, distance, contact between thigh and	N/A	Yes for some tasks
(00)		inp fracture	N				abdomen)		
Postural Assessment Scale for Stroke Patients (PASS) (67)	Stroke.	monitor postural control after stroke; to assess subject	Maintenance of a given posture and to ensure equilibrium in changing postures (lying, sitting, standing)	Stroke	Adapted items from Fugl-Meyer assessment (68)		Categorical only	4	No
Short Form of Postural Assessment Scale for Stroke		function in people	Balance in lying, sitting or standing position	Stroke	Selected items from PASS (67) with highest internal consistency and greatest	5	Categorical	3	No

Patients (SFPASS) (69)	81-90				responsiveness in development cohort of patients, and compared 5, 6, and 7-item versions of SFPASS with 3 and 5 assessment levels				
Postural Control and Balance for Stroke Scale (70)			Sitting balance, static standing balance, and postural change tasks		Developed and refined by physical therapists	23	Categorical	on question	Yes (independen t static sitting and standing as inclusion criteria for additional tasks)
Postural Stress Test (PST) (71)	Wolfson et al. J Am Geriatr Soc. 1986 Dec; 34(12): 845- 50	To safely, quantitatively assess the postural response	Postural responses	Older adults	Not specified	3	Categorical	trials with effective balance (4 levels) and balance	Yes when using the number of trials effective balance approach
Pull/ Retropulsion Test (72)	Visser et al. Arch Phys Med Rehabil. 2003 Nov; 84(11): 1669-74	to maintain balance	Balance reactions	Not specified	Not specified	1	Categorical	4	No
Push and Release Test (73)	Jacobs et al. J Neurol. 2006;	To reliably assess postural stability with sensitivity to fall	Postural response to a sudden release of a subject pressing	Not specified; developed	Not specified	1	Categorical	5	No

	253(11): 1404-13	balance confidence in	backward on examiner's hands placed on the subject's back	so that it is sensitive enough for people with Parkinson's Disease					
Rapid Step Test (RST) (74)	J Geron A Biol Sci Med	To assess maximal and rapid stepping for balance and fall risk	Not specified	Not specified	Not specified		Continuous (step length, distance and time)	N/A	No
Sensory Organization Test (SOT) (75)	Rehabil.	To assess ability to make effective use of visual, vestibular, and proprioceptive inputs separately and the ability to suppress inaccurate sensory information	Postural control	Not specified	Not specified	6	Continuous (2 outcomes per condition)	N/A	No
Head-Shake Sensory Organization Test (HS-SOT) (76)		(75) to improve	Sensory interactions in standing balance with additional vestibular input and dual tasks	Not specified	Not specified		Continuous (equilibrium score as percentage from 0 - 100%)	N/A	No
Short Physical Performance Battery (SPPB) (77)	al. J	To assess lower extremity function	Not specified	Not specified	Adapted from previously used measures	6	Categorical for standing and walking items but continuous (time) for rise from sitting item	Timed standing: side-by- side stand = 2, semi- tandem = 5, tandem = 3. Walking	Standing and rise from sitting items were graded

								item: 5 categories depending on time	
Side-Step Test (78)	al. Clin	standing balance in	Dynamic standing balance ability in the frontal plane	Stroke	Not specified	1	Continuous (distance)	N/A	No
Single Leg Hop Stabilization Test (79)	al. J Sport	To assess postural control during a functional performance task	Postural control	Not specified	Adapted the modified Bass test described by Johnson and Nelson (80)	20	Categorical	2	Yes
Single leg Stance Test (81)	Bohannon. Topics Geri Rehabil. 2006 Jan- Mar; 22(1):70-7	To quantify standing balance	Standing balance	Not specified	Not specified	•	Continuous (time)	N/A	No
	and Toscano. J Geri Phys Ther. 2009; 32(4): 159-		Reactive and proactive balance	Communit y dwelling older adults	Not specified	2	Continuous (% body weight)	N/A	Yes
and Disequilibriu	al. Jap J Comp	standing balance ability for fall prevention	Static standing balance	Not specified	Not specified	4	Categorical	task 1: 2, task 2: 2, task 3: 3, task 4: 2	Yes
	Sport	To challenge the postural control systems of well- conditioned, physically active individuals recovering	Dynamic balance	Well- conditione d, physically active individuals	Not specified	8	Continuous (distance)	N/A	No

		from lower extremity injuries							
Step Test (ST) (85)	y Canada.	To meet the need for a clinically useful test of balance that incorporates dynamic single limb stance		Stroke	Not specified	6	Continuous (number of steps up to 7.5 cm in 15 and 30 s and 15 cm in 15 s on each leg)	N/A	No
Tandem Stance (86)	Hlle et al. Phys Ther. 2012 Oct; 92(10): 1316-28	To assess postural stability by narrowing the base of support	Not specified	Not specified	Not specified	2	Continuous (time)	N/A	No
Time on Ball Test (87)	Bruinsma et al. Clin Kin. 2008; 62(1): 1-3	Not specified	Dynamic balance	Not specified	Not specified	1	Continuous (time)	N/A	No
Timed Up- and-Go Test (TUG) (88)	Podsiadlo et al. J Am Geriatr Soc. 1991; 39(2): 142-8	To quickly assess basic mobility skills	Not specified	Not specified	Modified the Get- Up and Go Test (89) by timing person rather than scoring them on scale from 1-5	1	Continuous (time)	N/A	No
Expanded Timed Up- and-Go Test (ETUG) (90)	Botolfsen et al. Phys Res Int. 2008 Jun; 13(2):9 4-106	shortcomings of the Get-up-and-Go (89) and TUG (88) tests	Not specified	Not specified	Not specified	5	Continuous (time)	N/A	No
TURN180 (91)	Simpson et al. Physiotherap y. 2002; 88(6): 342- 53	To be a simple, clinically useful test of dynamic postural control in frail elderly people	Dynamic postural stability	Frail older adults	Not specified	2	Continuous (counting number of steps)	N/A	No
Unified Balance Scale	La Porta et al. J Rehabil	To be a single tool with proven	Quiet stance, anticipatory postural	People with a	Literature review identifying BBS (40),	27	Categorical	2-5, depending	No

	Med. 2011 Apr; 43(5): 435-44	balance "from bed to	adjustments/transitions, responses to external perturbations, sensory orientation, stability during gait	al lesion	POMA (53), and FAB Scale (57), classical psychometric methods, Rasch analysis			on question	
Unilateral Forefoot Balance Test (93)	Clark et al. New Zealand J Phys. 2007; 35(3): 110-8	Not specified	High level balance	Post menopaus al women	Unpublished pilot study with 31 health volunteers (16 female, mean age = 35 years) assessing inter- rater and test- retest reliability. Pilot inter-rater ICC=0.99 and test- retest ICC = 0.95		Continuous (time)	N/A	No
Timed Up- and-Go Assessment of Biomechanica I Strategies (TUG-ABS) (94) Desture and	Rehabil Med. 2013. 45: 232-240	biomechanical strategies used during performance of the TUG test	Not specified	Stroke	Literature review, opinions of PTs, observations of TUG performance, expert panel content validation		Categorical		No
Posture and Posture Ability Scale (PPAS) (95) High Level	Rodby- Bousquet et al. Clin Rehab. 2014. 28: 82-90 Williams et	and postural ability in people with severe	and standing	Cerebral Palsy Brain	Adaptation of pediatric Physical Ability Scale Item generation	-	Categorical scale	categories for postural ability, 2 categories for quality of posture	No

Mobility Assessment Tool (HiMAT) (96, 97)	2005. 19:	high level mobility and balance problems		proposed by expert clinicians, internal consistency and Rasch analysis determined final set	items assessed		categories	
Cross Step Moving on Four Spots Test (CSFT) (98)	,	To evaluate crossover steps in older adults				Continuous (time to complete 9 steps	N/A	No

Supplementary Data File 4. Preliminary psychometric characteristics evaluated in standardized balance measures with index publication

Measure	Reliability tested	Reliability type	Reliability sample size	Reliability score	Validity tested	Validity type	Validity Method	Validity sample size	Validity score
Activity-based Balance Level Evaluation Scale (ABLE) (29)	No	N/A		N/A	Yes	1. Content validity 2. Discriminant validity	1. 3-round Delphi process. 2. Compare scores across 3 functional groups (walker, stander, wheel-chair user)	104	2. F (2, 101) = 258.37, P< 0.0001
Advanced Balance and Mobility Scale (ABMS) (30)	Yes	Inter-rater reliability	12 people with recent stroke (mean age= 65 years), 6 healthy community- dwelling people (mean age= 71 years), 5 physiotherapist raters	ICC=0.97	Yes	Construct validity	Compared scores between high and low functioning people with stroke (based on gait speed cutoff of 0.7 m/s), and healthy older adults	diagnosed with recent stroke (mean age= 65	Significant differences in scores across groups (p< 0.05)
Balance Computerized Adaptive Testing (CAT) system (31)	Yes	1. Inter-rater reliability 2. Item reliability	administered 41 items 2. 764 patients with stroke and	1. Raw sum score of initial 41 items ICC=0.95 2. Item simulation study average reliability = 0.94	Yes	Concurrent validity	Correlated to Berg Balance Scale (40)		Pearson r=0.88
Hierarchical Balance Short Forms (HBSF) (32)	Yes	ltem reliability	Simulation of data from 764 people with stroke	Average reliability >= 0.93	Yes	Concurrent validity	Correlated to Berg Balance Scale (40)		Spearman p=0.97
Balance Error Scoring System	Yes			l1. ICC range = 0.78 - 0.93 2.	Yes	Concurrent validity	Correlated to forceplate target sway	111 NCAA Division I varsity male	Pearson r range = 0.31 -

(BESS) (33)		reliability	athletes (mean age= 10 years); 2. 12 NCAA Division I varsity male athletes (mean age= 20 years)	Significant difference between repeated sessions for double-leg stance-foam target sway				athletes (mean age= 20 years)	0.79
Modified Balance Error Scoring System (M-BESS) (34)	Yes	consistency	144 high school football athletes (mean age= 16 years)	Reliability=0.88	No	N/A	N/A	N/A	N/A
Balance Evaluation Systems Test (BESTest) (18)		reliability (evaluated once, then test revised and evaluated again)	1: 12 ambulatory adults with a range of balance	Total score ICC=0.91; sub- section ICC range = 0.79 - 0.96	Yes		Correlated score of most experienced rater to Activity-Specific Balance Confidence Scale (99)	12	Total score r=0.685, sub- section r range = 0.41 - 0.78
Brief Balance Evaluation Systems Test (Brief BESTest) (35)	Yes	reliability	3 raters, 20	Total score ICC=0.99	Yes	validity	Compared scores between people with and without neurological diagnosis and multiple sclerosis	20 participants with and without neurological diagnosis or injuries	Scores were significantly different between people with and without neurological diagnosis (p< 0.01)
Mini Balance Evaluation Systems Test (Mini BESTest) (36)		separation index 2.	balance disorders (mean age = 63 years)	1. Item separation index=7.35, r=0.98; 2. Person	Yes		Outlier-sensitive mean- square statistic	115 people with balance disorders (mean age= 63 years)	Mean square statistic scores for all items ranged between 0.7-

		index		separation index=2.5, r=0.86					1.3
Balance Outcome Measure for Elder Rehabilitation (BOOMER) (37)	No	Internal consistency	784 people (mean age= 74 years)	Internal consistency range= 0.87 - 0.89	Yes	Construct validity	Correlated to Functional Independence Measure (FIM) (100), Modified Elderly Mobility Scale (MEMS) (101)	272 people (mean age= 75 years)	Admission FIM rho= 0.73, discharge FIM rho= 0.72, MEMS admission rho = 0.88 and discharge rho =0.83
Balance Screening Tool (BST) (38)	Yes	reliability 2. Inter-rater reliability	1. 16 community dwelling older adults (mean age= 70 years) 2. 14 falls risk assessment community care clients (mean age= 77 years)	1. Spearman rank r= 0.90, kappa coefficients range= 0.64 - 1.00 for individual items 2. r= 0.89, kappa coefficients range = 0.58- 0.71 for individual items	Yes	Concurrent validity		16 community dwelling older adults and 14 falls risk assessment community care clients	Spearman r range= 0.87 - 0.92
BDL Balance Scale (39)	Yes	reliability 2. Test-retest	1. 2 raters 2 & 3. 30 people with mild- moderate balance problems (mean age= 53 years), 35 people with no balance problems	1. Kappa coefficient range = 0.56 - 1.0, total score ICC= 0.99 2. Kappa coefficient range = 0.39 - 0.73, total score ICC= 0.96 3. Cronbach's alpha= 0.87	No	N/A	N/A	N/A	N/A
Berg Balance Scale (BBS) (40)	Yes	1. Inter-rater reliability 2.	1. 5 experienced physical	1. Inter-rater total score	Yes	1. Content validity	1. Panel of 32 geriatric patients and health	23	2. Significant association

			therapists 2 & 3. 14 people aged 65+ years	ICC=0.98 2. Cronbach's alpha= 0.96. 3. Intra-rater total score ICC=0.99		2.Criterion validity	professionals; 2. Correlated scores with 3 global ratings of balance (good, fair, poor)		between global rating and BBS score (P< 0.0001)
Short Form of the Berg Balance Scale (SFBBS) (41)	Yes	Internal consistency	113 people with stroke	Cronbach's alpha=0.96	Yes	1. Concurrent validity 2. Convergent validity 3. Predictive validity	1. Compared to PASS (67) at 14 days post stoke 2. Correlated to Fugl-Meyer motor test (68) and Barthel Index (102) 3. Correlated to Barthel Index (102) 90 days post-stroke	113 people with stroke (81 at 90 days post-stroke)	1. ICC= 0.99 2.Barthel index r=0.86 & Fugl Meyer r=0.68 3. r=0.60
Short Berg Balance Scale (42)	Yes	Internal consistency	519 people (mean age= 72 years)	Cronbach's alpha=0.69	Yes	Concurrent validity	Correlated to static and dynamic balance outcomes assessed on a force platform	519 people (mean age = 72 years)	Correlation range with static outcomes = - 0.320.45 (all p< 0.0001), correlation range with dynamic outcomes= - 0.250.41 (all p< 0.0001)
Brunel Balance Assessment (BBA) (43)	Yes		37 people post	1. Cronbach's alpha= 0.93. 2. Kappa coefficient= 1. 3. Kappa coefficient= 1	Yes	Criterion- related validity	Correlated to Motor Assessment Scale (103), BBS (40), Rivermead Mobility Index (104)	55 people post stroke (mean age = 68 years)	Motor Assessment Scale ICC= 0.83, BBS ICC=0.97; Rivermead Mobility Index ICC=0.95
Clinical Gait and Balance Scale (GABS) (44)	Yes	Intra-rater reliability	10 people with Parkinson's Disease	Kappa coefficient range= 0.315- 0.839	Yes	Concurrent validity		35 people with Parkinson's Disease (age range= 50 - 75 years)	Correlation range= 0.43 - 0.66

Clinical Test of Sensory Interaction in Balance (CTSIB) (45)	Yes (105)	retest	1. 22 people (mean age= 21 years) 2. 2 raters	1. Pearson r= 0.99 2. Pearson r= 0.99	No	N/A	N/A	N/A	N/A
Community Balance and Mobility Scale (CB&M) (46)	Yes	reliability 2. Intra-rater reliability 3. Test-retest reliability	therapists 2 & 3. 32 people with traumatic brain injury attending	1. ICC= 0.98 2. ICC=0.98, 3. immediate ICC=0.98 and test-retest 5 days apart ICC=0.90		Construct validity	1. Physical therapists' ratings of importance of scale items on 5- point scale from "not at all important" to "extremely important", correlation to global balance rating. 2. Compared to gait velocity	36 people with traumatic brain injury attending neuro- rehabilitation (mean age = 31 years)	1. Physical therapist global balance scale r=0.62; 2. Self-paced gait velocity r=0.53, maximal gait velocity r=0.64
Dynamic Balance Assessment (DBA) (47)	No	N/A	N/A	N/A	Yes	Convergent validity	Correlated to gait speed, Six-Minute Walk Test (106), TUG Test (88), and BBS (40)	72 community- dwelling adults aged 65+ years	Correlation range= 0.1- 0.31
Dynamic Gait Index (48)	No	N/A	N/A	N/A		validity 2. Discriminant validity	1. Correlated to BBS (40), assistive device use, history of imbalance, self- perceived balance. 2. Compared scores between fallers and non-fallers	44 community- dwelling people (mean age= 76 years)	1. Correlation range= 0.44 - 0.76. 2. Significant difference in score between groups (p< 0.001)
Four-item Dynamic Gait Index (4-DGI) (49)	Yes	separation 2. Item difficulty		1. r= 0.79. 2. r= 0.99; 3. Internal consistency correlation range= 0.75- 0.82	Yes	Discriminant validity	Compared scores between fallers and non-fallers	in the past 6 months and 89 subjects who had	Scores were significantly different between fallers and non-fallers (p< 0.01)
Functional Gait Assessment (FGA) (50)	Yes	reliability 2.	& 3. 6 people with	1. ICC= 0.83. 2. ICC=0.84. 3. Cronbach	Yes	validity	Correlated to DGI (48), Activities-Specific Balance Confidence	6 people with vestibular disorders (mean	Correlation range = 0.1- 0.8

		reliability 3. Internal consistency	disorders (mean age = 59 years)	alpha= 0.79			(ABC) Scale (99), Dizziness Handicap inventory (107), perception of dizziness symptoms, number of falls, TUG test (88)	age = 59 years)	
Dynamic One Leg Stance (DOLS) (51)	Yes	Test-retest reliability	12 blind people aged 19-61 years and 12 sighted people aged 26- 60 years	Weighted Kappa=0.47 - 0.88 for blind people and 0.47 - 0.72 for sighted people	Yes	Concurrent validity	Correlated scores with single leg stance test (81) and force plate assessment	12 blind people aged 19-61 and 12 sighted people aged 26-60	Correlation with force plate assessment and single leg stance test for blind subjects: -0.13 and 0.77 for left leg and, -0.78 and 0.89 for the right leg, sighted people: correlation was -0.56 (n.s.) and 0.93 for the left leg and - 0.61 and 0.71 for the right leg
Equiscale (52)	Yes	Item separation reliability	24 people with multiple sclerosis	r= 0.98	No	N/A	N/A	N/A	N/A
Fast Evaluation of Mobility, Balance and Fitness (FEMBAF) (54)	Yes	Inter-rater reliability	5 older adults, 2 raters	Mean risk factors kappa=0.95, task completion kappa=0.96	Yes	Concurrent validity	Correlated to POMA (53), CTSIB (45) and TUG (88) tests	35 older adults without cognitive impairment	POMA Spearman Rank-Order r range = -0.1 - 0.91, CTSIB range = -0.18 - -0.56, TUG= - 0.2 - 0.6

Five Times Sit- to-Stand Test (5-STS) (55)	No	N/A	N/A	N/A	Yes	1. Concurrent validity 2. Discriminant validity	1. Compared scores between people with and without diagnosed balance disorders; 2. Compared scores to DGI (48) and ABC scale (99)	people with	1: DGI Spearman rho = -0.68 (P<0.001) and ABC Spearman rho = -0.58 (P<0.001). 2. FTSST correctly identified 65% of subjects with balance dysfunction
Four Square Step Test (FSST) (56)	Yes	reliability 2. Test-retest reliability		1. ICC=0.99; 2. ICC=0.98	Yes	Convergent validity	Correlated to Step Test (85), TUG test (88), and Functional Reach Test (58)		Step Test r= 0.83, TUG test r=0.88; Functional Reach Test r= 0.47
Fullerton Advanced Balance (FAB) Scale (57)	Yes	retest reliability 2. Intra-rater reliability 3. Inter-rater reliability	(mean age= 75 years) with identified balance problems of varying severity. 2 & 3. 10 older	1. Spearman rank r=0.96. 2. correlation range = 0.51- 1.0. 3. correlation range = 0.22- 1.0	Yes	Convergent validity	Correlated to BBS(40) scores	31 older adults (mean age= 75 years) with identified balance problems of varying severity	Spearman rank r= 0.75 (P<0.01)
Functional Reach Test (58)	Yes	reliability	14 people (age range= 20-79 years)	ICC= 0.92	Yes	Concurrent validity	Correlated with COP excursion	128 people (age rang = 20-79 years)	Pearson r=0.71
Multidirectional Reach Test (59)	Yes	 Internal consistency Test- 	254 community- dwelling older adults (mean age=	1. Cronbach's alpha= 0.842. 2. ICC range = 0.93- 0.94	Yes	Concurrent validity	Correlated to BBS (40) and TUG (88)	254 community- dwelling older adults (mean age = 74 years)	Correlation with BBS total score: forward reach r=0.476, backward reach r=0.356, right reach

									r=0.389 and left reach r=0.39. Correlation with TUG: forward reach r= -0.442, backward reach r= - 0.333, right reach r= -0.26 and left reach r= -0.31
Hierarchical Assessment of Balance and Mobility (HABAM) (60)	Yes	Inter-rater reliability	2 raters, 30 people admitted to a general medicine service or geriatric assessment unit (mean age= 80 years)	ICC= 0.94	Yes	construct validity 2. Discriminant construct validity	Index (102), Folstein Mini Mental Status Exam (MMSE) (108), Lawton-Brody	admitted to a general medicine service or geriatric assessment unit (mean age= 80 years)	1. Barthel Index r= 0.76. 2. Folstein MMSE r=0.15, Lawton-Brody ADL r= 0.30, Spitzer Quality of Life Index r=0.39
Kansas University Standing Balance Scale (KUSBS) (61)	Yes		23 people admitted to inpatient rehabilitation (mean age= 58 years)	1. ICC= 0.89 for novice raters, ICC= 0.76 for experienced raters. 2. ICC= 0.73	Yes	validity	Correlated to FIM(100) transfer and walking scores	admitted to	FIM transfer r= 0.49, FIM walking r=0.38
Limits of Stability Test (LOS) (62)	Yes		38 community- dwelling healthy older adults (mean age= 68 years)	Generalizability coefficient range= 0.69 - 0.89	No				N/A
Modified Figure of Eight Test (63)	Yes	reliability 2.	1. 2 raters. 2.30 community- dwelling women over 70 years (mean age= 76	1. ICC=0.94 - 1.0 at first session and 0.99-1.00 at second session, 0.79-0.93 for	Yes	validity	legged stance test (81),	dwelling women	Correlation range = 0.05 - 0.52

			, ,	number of oversteps. 2. ICC=0.93 and ICC=0.73 for oversteps value			velocity		
Parallel Walk Test (PWT) (65)	Yes	1. Inter-rater reliability 2. Test-retest reliability	'	1. ICC range = 0.71 - 0.99. 2. ICC range = 0.70 - 0.90	Yes	1. Concurrent validity 2. Discriminative validity	 Correlated to tandem (86) and parallel stance tests, and tandem walk tests. Compared scores between fallers and non-fallers 	61 older adult fallers and non- fallers	Correlation range = 0.28- 0.49, significant differences in scores between fallers and non-fallers (p< 0.05)
Performance Oriented Mobility Assessment (POMA) (53)	Yes (111)	reliability	skilled nursing home (mean age= 80 years), 3	range = 0.4 -	No	N/A	N/A	N/A	N/A
Modified Performance Oriented Mobility Assessment (66)	Yes	Inter-rater reliability	hip fracture (mean age=81	Kappa range = 0.1 - 0.4. ICC range = 0.08 - 0.92	No	N/A	N/A	N/A	N/A
Postural Assessment Scale for Stroke Patients (PASS) (67)	Yes	reliability 2.	1. 2 unique raters; 2. 12 people with stroke	1. Average k- coefficient= 0.72 (range= 0.45 -	Yes	1. Construct validity 2. Predictive validity	1. Correlated scores with motricity, somatosensory	70	"Strong correlations with the transferring and locomotion sections of FIM, with

				1), Pearson r= 0.99. 2. Average k-coefficient= 0.88 (range= 0.64 - 1), Pearson r= 0.98			threshold, spatial inattention, spasticity, and functional status and instrumental measures of sitting balance, when available. 2. Correlated with FIM score (100) at 3 months		motricity, sensibility, and spatial neglect scores, negative correlations with postural stabilization (r=0.48; P< 0.0001) and postural orientation with respect to gravity (r=0.36; P=0.05); strong correlation to total FIM score (r=0.75; P< 0.0001)
Short Form of Postural Assessment Scale for Stroke Patients (SFPASS) (69)			stroke (mean age= 65.5 years)	Cronbach's alpha=0.93		1. Concurrent validity 2. Convergent validity 3. Predictive validity	1. Compared to PASS (67) at 14 days post stoke. 2. Correlated to Fugl-Meyer motor test (68) and Barthel Index (102); 3. Correlated to Barthel Index (102) 90 days post-stroke	287 people with stroke (mean age = 65.5 years)	Index r=0.86 and Fugl Meyer r= 0.75. 3. r=0.48
Postural Control and Balance for Stroke Scale (70)		consistency		1. Cronbach alpha = 0.96. 2. total score ICC=0.95. 3. total score ICC=0.96	No	N/A	N/A	N/A	N/A
Postural Stress Test (PST) (71)	Yes	Inter-rater reliability	· · ·	Cronbach's alpha= 0.99		Discriminant validity	Compared scores between three groups	51 (22 nursing home residents with 2 or more	Significant difference in scores

Pull/ Retropulsion Test (72)	Yes	Inter-rater reliability	people with	Weighted Kappa mean range= 0.57 - 0.98	validity 2. Predictive validity	1. Compared scores between unstable Parkinson's, stable Parkinson's, and health control groups; 2. Sensitivity and specificity	in prior year, 18 age and gender- matched, non- falling control group, 21 young controls) 42 people with Parkinson's Disease (mean age= 64 years) and 15 healthy	between groups (p< 0.05) 1. Significant differences for all but two conditions (p< 0.05). 2. Predictive: sensitivity= 0.63, specificity= 0.88, positive predictive value= 0.86, negative predictive value= 0.69 and overall
Push and Release Test (73)	Yes	Inter-rater reliability	3 examiners, 3 healthy people (mean age 62 years), 8 people with Parkinson's disease (mean age= 62 years)	ICC range = 0.83-0.84	Discriminant validity	Compared scores between people with and without Parkinson's Disease	68 people with Parkinson's Disease (mean age= 67 years), 69 healthy people (mean ag = 67 years)	predictive accuracy= 0.75 Significant differences in scores between people with and without Parkinson's
Rapid Step Test (74)	Yes	1. Test- retest reliability 2. Inter-rater	· ·	1. ICC range= 0.71-0.97. 2. ICC= 0.98 for	Convergent validity	Correlated to balance and fall risk measures		Disease (p< 0.001) Correlation range= 0.60 - 0.84

		reliability	impaired older adults)	primary session and 0.95 for follow-up				impaired older adults)	
Sensory Organization Test (SOT) (75)	Yes	Test-retest reliability (completed for each condition for first trial and average of three trials)	40 community- dwelling adults aged 65+ years	First-trial ICC range= 0.15 - 0.70. 3-trial average ICC range= 0.26 - 0.68	No	N/A	N/A	N/A	N/A
Head-Shake Sensory Organization Test (HS-SOT) (76)	Yes	Test-retest reliability	77 people [56 young adults (mean age= 24 years) and 21 older adults (mean age= 58 years)]	Overall HS-SOT condition 2 ICC= 0.82, overall HS- SOT condition 5 ICC= 0.77	No	Discriminant validity	Compared scores between young and older adults	165 people [92 young adults (mean age= 28 years), 73 older adults (mean age= 60 years)]	HS-SOT scores significantly lower in older adults (p< 0.01)
Short Physical Performance Battery (SPPB) (77)	Yes	Internal consistency	5104 community- dwelling people from 3 population studies (aged 65 and over)	Cronbach's alpha= 0.76	Yes	Concurrent validity	Correlated scores to performance of self- reported disability	5104 community- dwelling people from 3 population studies (aged 65 and over)	Summary performance score showed a very strong association with measures of self- reported disability
Side-Step Test (78)	Yes	Test-retest reliability	28 people with hemiplegia (mean age = 67 years)	ICC = 0.97 (for both affected and unaffected legs)	Yes		Correlated to one- footed standing duration, walking speed, stride length, and cadence	28 people with hemiplegia (mean age= 67 years)	Correlation range= 0.84- 0.89
Single Leg Hop Stabilization Test (79)	Yes	Inter-rater reliability	3 testers, 15 people (mean age= 21 years)	Landing score: ICC= 0.92 Balance scale: ICC= 0.70	No	N/A	N/A	N/A	N/A
Single leg Stance Test (81)	Yes (112)	Inter-rater reliability	42 people (mean age= 42 years)	ICC= 0.76	No	N/A	N/A	N/A	N/A

Spring Scale	Yes	Test-retest	58 community-	ICC=0.94	Yes	1. Convergent	1. Correlated to gait	58 community-	1. Gait speed
Test (SST) (82)		reliability	dwelling adults			construct	speed, TUG (88), Single	,	r=0.53, TUG
. , , , ,			aged 65+ years			validity 2.	Leg Stance Test (81),	aged 65+ years	r=-0.67, Single
			(29 fallers and 29			Known groups	and Tandem Stance		limb stance
			non-fallers)			validity	(86); 2. Known groups:	non-fallers)	r=0.54 and
			,				Compared to gait	,	Tandem
							speed, TUG (88), Single		stance r=0.55.
							Leg Stance Test (81),		2. Significant
							and Tandem Stance		difference
							(86)		between
									fallers and
						Ċ			non-fallers (T=
									11.6, p=0.001)
Standing Test	Yes	Inter-rater	30 rehabilitation	Cohen's k= 0.76	Yes	Criterion-	Correlated with	30 rehabilitation	Spearman
for Imbalance		reliability	in-patients with			related validity	BBS(40)	in-patients with	rank r= 0.93
and			neurological or					neurological or	(p<0.01)
Disequilibrium			musculoskeletal					musculoskeletal	
(SIDE) (83)			impairment					impairment	
			(mean age= 57.4					(mean age = 57.4	
			years), 2					years)	
			physiotherapists						
Star Excursion	Yes		16 recreationally	1. ICC range=	No	N/A	N/A	N/A	N/A
Balance Test		reliability 2.	active, healthy	0.78 to 0.96. 2.					
(SEBT) (84)			young adults	ICC range= 0.35					
		reliability	(mean age= 21	- 0.84 on day 1					
			years)	and 0.81 - 0.93					
			/	on day 2					
Step Test (ST)	Yes			Healthy elderly	Yes	Concurrent	Correlated to	49 people (20	Correlation
(85)		reliability	adults (mean age=	-		validity		stroke and 29	range = 0.68 -
			72 years) and 21	- 0.94; Stroke			(58), gait velocity and		0.83
				ICC range= 0.88			stride length	mean age= 71	
			stroke (mean	- 0.97				years)	
			age= 76 years)						
	Yes (113)			1. ICC= 0.99. 2.	Yes	Discriminant	Compared test	N/A	N/A
(86)				ICC range= 0.76-		validity	performance by fall		
		Test-retest	observers	0.91			history		
		reliability							
Time on Ball	Yes	1. Intra-	10 college-aged	1. ICC= 0.374. 2.	No	N/A	N/A	N/A	N/A

Test (87)		session reliability 2. Inter-session reliability 3. Inter-rater reliability	20 years); 3. 2	ICC= 0.203. 3. ICC= > 0.98					
Timed Up-and- Go Test (TUG) (88)	Yes	1. Inter-rater reliability 2. Intra-rater reliability	22 medically stable people attending Day Hospital over a 2- month period	1. ICC= 0.99; 2. ICC =0.99	Yes			volunteer subjects (mean age= 80	BBS r= -0.72, gait speed r= - 0.55, Barthel Index r= -0.51
Expanded Timed Up-and- Go Test (ETUG) (90)	Yes	reliability 2. Inter-rater reliability 3.		ICC range = 0.86 - 0.96. 3. ICC range = 0.54 -	Yes	Concurrent validity	Compared to TUG (88) score	28 home-dwelling people (mean age = 80 years) with impaired mobility	
TURN180 (91)	No	N/A	N/A	N/A	Yes		and fear of falling	admitted to an acute geriatric ward (mean age= 81 years)	Spearman's r with fall history= 0.35, gait speed= 0.71, perceived steadiness= 0.35
Unified Balance Scale (92)	Yes	Internal consistency	neurological	Cronbach's alpha value=0.98	No	N/A	N/A	N/A	N/A
Unilateral Forefoot Balance Test (93)	Yes	Test-retest reliability	28 women (age range 58-69 years)	ICC=0.96	Yes	validity	Compared to Single Leg Stance Test (81) with eyes closed	142 women (mean age= 61.6 years)	r=0.63
Timed Up-and- Go Assessment of Biomechanical Strategies	Yes	reliability 2.		Kappa coefficient ranges 0.36-1.0	Yes	validity 2.	1. Ranking by experts 2. Compared to Sit-to- Stand task	stroke (mean age=63.4 years)	1. Final set of items reached kappa values >0.72 2. Kappa ranges 0.29-

(TUG-ABS) (94)									1.0
Posture and	Yes	1. Inter-rater	30 adults with	1. Карра	Yes	Construct	Compared to Gross	30 adults with	Significant
Posture Ability		reliability 2.	cerebral palsy	coefficient		validity	Motor Function	cerebral palsy	differences
Scale (PPAS)		Internal	(age range 19-22	ranges 0.85-0.99			Classification System	(age range 19-22	between
(95)		consistency	years)	2. Cronbach's				years)	known groups
				alpha ranges					represented
				0.96-0.97					by gross
							O Y		motor
									function levels
									(p< 0.02)
0	Yes	Internal	103 people with		No	N/A	N/A	N/A	N/A
Mobility		,		alpha=0.99					
Assessment			injury (median						
Tool (HiMAT)			age=27 years)						
(96, 97)									
Cross Step	Yes	Test-retest	533 older adults	ICC= 0.833 in	No	N/A	N/A	N/A	N/A
Moving on Four		reliability	(age range 65-94	men, ICC=0.825					
Spots Test			years)	in women		1			
(CSFT) (98)				/					

ICC= Intra-class correlation coefficient

- CERTER