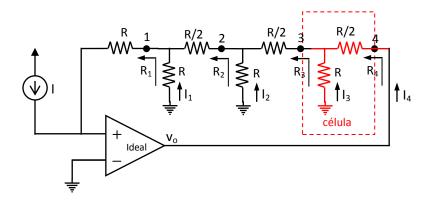

Assunto : Amplificadores Operacionais → amp. op. ideal, ganho de tensão em configuração inversora e análise de circuitos com amp. op. ideais.

Exercício 1 – No circuito da figura a seguir o amplificador operacional é suposto ideal, determine as correntes em todos os ramos e as tensões v_i e v_o .

Respostas:
$$I_{+}=0$$
, $I_{-}=0$, $I_{1}=-1mA$, $I_{2}=-1mA$, $I_{L}=5mA$, $I_{O}=6mA$, $v_{i}=0V$, $v_{O}=10V$


Exercício 2 – Um amplificador operacional ideal em configuração inversora é implementado com resistores com uma tolerância expressa na forma literal como \underline{x} (%). Pede-se:

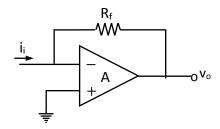
- a) Qual a faixa de valores que o módulo do ganho em malha fechada pode operar?
- b) Quais esses valores para x = 5% e x=10%?

Respostas: a)
$$\frac{1-0.01x}{1+0.01x} \cdot |G_{nom.}| \le |G| \le \frac{1+0.01x}{1-0.01x} \cdot |G_{nom.}|$$
, onde $|G_{nom.}| = \frac{R_2}{R_1}$
b1) $0.9 \cdot |G_{nom.}| \le |G| \le 1.1 \cdot |G_{nom.}|$ b2) $0.82 \cdot |G_{nom.}| \le |G| \le 1.22 \cdot |G_{nom.}|$

Exercício 3 – Considere o circuito da figura abaixo.

- a) Determine as resistências vistas do nó 1, (R_1) ; do nó 2, (R_2) ; do nó 3, (R_3) e do nó 4, (R_4) .
- b) Obtenha as correntes I_1 , I_2 , I_3 e I_4 em função de entrada I.
- c) Calcule as tensões nos nós 1, 2, 3 e 4, isto é, V₁, V₂, V₃ e V₄ em termos do produto (IR).
- d) Obtenha uma expressão geral que relacione a tensão de saída v_o com o número de células (n) utilizadas e com o produto (IR).

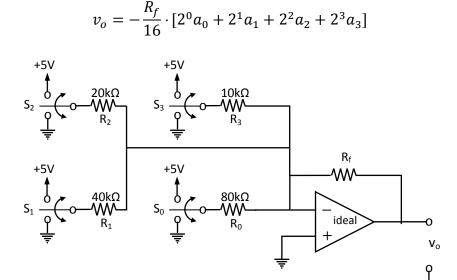
Respostas: a) $R_1 = R_2 = R_3 = R_4 = R$


b)
$$I_1 = I$$
, $I_2 = 2I$, $I_3 = 4I$, $I_4 = -8I$

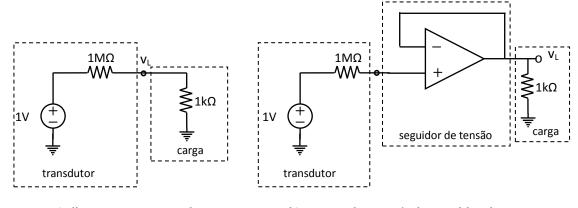
c)
$$V_1 = -RI$$
, $V_2 = -2RI$, $V_3 = -4RI$, $V_4 = -8RI$

d)
$$v_0 = -2^n . RI$$

Exercício 4 – O circuito a seguir é frequentemente utilizado para fornecer uma tensão de saída v_o proporcional a um sinal de corrente de entrada i_i . Determinar as expressões para a transrresistência $R_m \equiv v_o/i_i$ (fator de conversão da corrente de entrada para a tensão de saída) e para a resistência de entrada $R_{in} \equiv v_i/i_i$ para os dois casos a seguir:


- a) com A infinito e
- b) com A finito

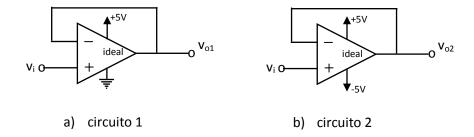
Respostas: a) $R_m = -R_f$, $R_{in} = 0$ a) $R_m = \frac{-R_f}{1 + \frac{1}{4}}$, $R_{in} = \frac{R_f}{1 + A}$


Exercício 5 – A figura abaixo mostra o circuito de um conversor digital analógico (CDA). O circuito tem como entrada uma palavra binária de 4 bits $a_3 a_2 a_1 a_0$ na qual

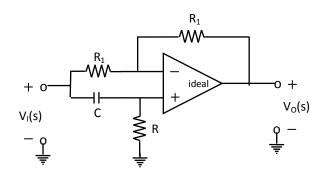
 a_0 , a_1 , a_2 e a_3 podem assumir os valores 0 ou 1, fornecendo uma tensão de saída analógica v_0 proporcional ao valor da entrada digital. Cada um dos bits da palavra de entrada controla as chaves correspondentes numeradas. Por exemplo se a_2 é 0, então a chave S_2 conecta o resistor R_2 ao terra, ao passo que se a_2 é 1, então a chave S_2 conecta o resistor R_2 ao terminal +5V da fonte de alimentação. Deduza a expressão abaixo, em que R_f é dada em $k\Omega$. Calcule o valor de R_f de modo que v_0 varie na faixa de 0 a -12V.

Respostas: $R_f = 12.8k\Omega$

Exercício 6 – Necessita-se conectar um transdutor que tem uma tensão em circuito aberto igual a 1V e uma resistência de saída de $1M\Omega$ a uma resistência de carga de $1k\Omega$. Ache a tensão na carga se a conexão for feita: a) diretamente e b) por meio de um seguidor de tensão com ganho unitário.



a) diretamente conectado


b) conectado através do seguidor de tensão

Respostas: a) $v_L \cong 1mV$ b) $v_L = 1V$

Exercício 7 – Considere os dois seguidores de tensão com ganho unitário polarizados de forma distinta como na figura abaixo. Considere que a forma de onda de entrada seja uma rampa com início em -6V e término em +6V, com uma inclinação de 1V/ms. Esboce as formas de onda de saída dos dois circuitos em sincronia com a entrada.

Exercício 8 — Dado circuito da figura abaixo, deduza uma expressão para a função de $V_o(s)/V_I(s)$. Encontre as expressões para o módulo e a fase da resposta. Observação: Esse circuito trabalha como um deslocador de fase. Ele também é conhecido como um filtro passa-todas (" frangueiro") de primeira ordem.

Respostas:
$$\frac{V_O(s)}{V_I(s)} = -\frac{(1-sRC)}{(1+sRC)}$$
; $\left|\frac{V_O}{V_I}\right| = 1$; $\phi = 180^o - 2arctg(wRC)$