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Clinical research of kidney diseases II: problems of study design

Pietro Ravani1,2, Patrick S. Parfrey1, Elizabeth Dicks1 and Brendan J. Barrett1

1Clinical Epidemiology Unit, Faculty of Medicine, Memorial University of Newfoundland, Canada and
2Divisione di Nefrologia, Azienda Istituti Ospitalieri di Cremona, Italy

Introduction

The aim of study design in any field of clinical inquiry
is to limit bias and maximize reliability [1]. The present
article introduces the types of study design currently
recommended for assessing prognosis, therapy and
diagnostic tests with nephrology examples. The con-
cept of clinical relevance as opposed to statistical
significance of study results is also briefly discussed.

Study design

Hierarchy of evidence

Fundamental to evidence-based health care is the
concept of ‘hierarchy of evidence’, deriving from
different study designs addressing a given research
question (Figure 1). Evidence grading is based on the
idea that different designs vary in their susceptibility to
bias and, therefore, in their ability to predict the true
effectiveness of health care practices. For assessment of
interventions, randomized controlled trials (RCTs) or
systematic review of good quality, RCTs are at the top
of the evidence pyramid, followed by longitudinal
cohort, case-control and cross-sectional studies [2,3].
However, the choice of the study design depends on the
question at hand, the nature of the exposure and the
frequency of the disease.

Intervention questions are ideally addressed with
experiments (RCTs), since observational data are prone
to unpredictable bias and confounding that only the
randomization process will control [1]. Appropriately
designed RCTs allow also stronger causal inference for
disease mechanisms. However, ideal RCTs cannot be
implemented in the same way to answer all intervention
questions. Some therapies can even not be masked or
randomly assigned (e.g. dialysis modalities). In circum-
stances where the ‘intervention’ is clearly identified and

easily applied, such as the use of a new oral medication
to reduce proteinuria, both internal and external
validity can be reasonably maximized using standard
approaches (limited exclusion criteria, multiple blind-
ing, minimization of missing data and dropouts).
In contrast, when the intervention is aimed at achieving
a clinical target, such as haemoglobin or blood pressure
levels, many treatment adjustment decisions are often
left to the discretion of the treatment team during
the trial, blinding may be difficult to maintain and
patients are often exposed to multiple strategies (e.g.
iron supplementation, erythropoietic agents, anti-
hypertensive medications in studies of haemoglobin
targets). In such cases, practitioners may be left with
uncertainty as to what aspect of the intervention led to
the observed trial results. For example, if higher
cardiovascular event rates were associated with
aiming for higher haemoglobin targets, it might be
unclear whether this was due to the dose of erythro-
poietic agents employed, the amount of iron given or
indeed the interaction between these factors and
characteristics of the trial subjects. Those at higher
baseline cardiovascular risk might be more difficult to
get to target and particularly susceptible to the adverse
effects associated with higher doses of iron and
erythropoietic agents given in an effort to achieve
those targets. However, understanding these relation-
ships as a result of a trial, particularly if confirmed in
further research helps inform practitioners on how to
best individualize the application of therapy.

Prognostic and aetiologic questions are best
addressed with longitudinal cohort studies, in which
exposure is measured first and participants are followed
forward in time. At least two (and possibly more) waves
of measurements over time are undertaken. Initial
assessment of an input–output relationship may derive
from case-control studies, where the direction of the
study is reversed. Participants are identified by the
presence or absence of disease and exposure is assessed
retrospectively. Cross-sectional studies may be appro-
priate for an initial evaluation of the accuracy of new
diagnostic tests as compared to a gold standard.
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Further assessments of diagnostic programmes are
performed with longitudinal studies (observational
and experimental). Common biases afflicting observa-
tional designs are summarized in Table 1.

Additional biases in longitudinal designs

In prognostic studies, as well as in most RCTs, the
outcome measure is usually time to an event of interest
that can be death, a better or worse disease stage, or a
complication or recovery from an illness condition.
Among the possible threats to internal validity of a
study [1], loss to follow-up, drop-outs and attrition
bias can induce important errors in the measurements
of this outcome variable and, consequently, in the
derived risk estimates (Figure 2).

The risk of any event is a probability (thus with no
dimension andwith possible values ranging from 0 to 1),
and cannot be directly measured in any single person,
since an individual either does or does not develop
that event. Rather, the risk is estimated as the

proportion of subjects developing the event of interest
(D) among a larger group of people (N) who are
disease-free at the beginning of the study, and thus at
risk over a certain period of time. The resulting
incidence proportion (D/N) estimates the individual
risk of getting the disease in that period. For example,
an observed risk of End-Stage Renal Disease (ESRD)
of 0.1 in 10 years in a group of subjects means that
each subject of that group has a probability of 10%
of developing ESRD in 10 years. It is clear that the
definition of the time interval over which the risk
applies is fundamental to the interpretation of risk
and to proper planning of a prognostic study. In fact,
a risk can be thought of as the speed with which
the phenomenon can occur in the population. If the
risk of ESRD is 0.1 in 10 years in one group and 0.1
in 20 years in another, the speed is twice as high in
the first group.

The speed of the disease process has implications for
the study design. In fact the faster the evolution of the
disease, the shorter the study can be, and the likelihood

Fig. 1. Examples of study designs. In cross-sectional studies inputs and output are measured simultaneously and their relationship is assessed
at a particular point in time. In case-control studies participants are identified based on presence or absence of the disease and the temporal
direction of the inquiry is reversed (retrospective). Temporal sequences are better assessed in longitudinal cohort studies where exposure levels
are measured first and participants are followed forward in time. The same occurs in randomized controlled trials (RCTs) where the
assignment of the exposure is under the control of the researcher. P: Probability (or risk).
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that any individual leaves the study before the end of
the observation period without experiencing the event
of interest is lower. Studies of acute illnesses such as
pyelonephritis or complications such as contrast media
nephropathy, are usually of short duration. In these
studies, strategies to reduce the risk of losing patients
during follow-up are likely to be successful. When the
probability of leaving the study earlier without event
is low, the outcome measure is a valid estimate of the

true risk, because the denominator of the ratio is not
substantially affected (Figure 2, left panel). When the
study is longer (e.g. time to ESRD or cardiovascular
complications), incidence rates are estimated rather
than incidence proportions, because more people can
be lost to follow-up for several reasons (unknown,
competing risks, moving), and new people are often
enrolled to maintain the size of the cohort. These
incidence rates have as numerator the number of

Table 1. Bias categories in observational (non-experimental) designs

Design Sampling bias Measurement bias

Longitudinal
cohort

Patient selection related to their exposure status
where exposed and unexposed come from
different populations

Wrong outcome classification can be non-differential i.e. unrelated
to the exposure level (associations are underestimated);
differential misclassification occurs when information on outcome
is measured with different accuracy by exposure level (the effect
can be over or under-estimated)

Case-control Patient selection related to their case/control
status where cases and controls come from
different populations

Wrong exposure classification can be non-differential i.e. unrelated
to the disease status (associations are underestimated);
differential misclassification occurs when information on
exposure is measured with different accuracy by disease status
(the effect can be over or underestimated)

Cross-sectional Preferential patient enrolment based on some
characteristics; e.g. volunteerism;
non-responsiveness

Both misclassification of exposure and outcome can occur

Fig. 2. Closed vs open cohorts and risk measures. In closed cohort studies risk estimates are assessed in a short time interval as the ratio of
cases over those at risk at the beginning of the study (incident proportion or risk in a given interval). In open cohorts persons per unit time are
the denominator of the ratio estimating the risk. The dimension of the resulting incidence rate is 1/time (unit time�1).
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events (D) and person-time as denominator (Figure 2,
right panel). Incidence rates have a range of values
from 0 to 1 (depending on the unit of time chosen)
and the dimension of 1/time.

The risk can be estimated from the incidence rate
using special techniques called survival analyses.
However, these techniques do not provide valid
estimates of the true risk if the reasons for leaving
the study prematurely are related to the exposure (side
effects of treatments for example), or the event (earlier
manifestations of the final outcome, such as mild
symptoms of cardiovascular events). This phenomenon
is called ‘informative censoring’ in survival analysis
terminology. Attrition bias may result not only from
differential drop-out rates, but also from differential
distribution of the reasons for withdrawal. Strategies
should be considered for limiting loss to follow-up
during the study implementation and careful data
reporting once the study is completed [4]. This is
problematic in prognostic studies, but may occur also
in RCTs. For example, the CHOIR trial compared
normalization of haemoglobin with erythropoietin in
patients with chronic kidney disease with partial
correction of anaemia. Limitations of this study were
the extremely high overall drop-out rate and failure
to report the reasons for participant withdrawal
by exposure level [5]. Biased estimates may also
occur if the characteristics of the participants
entering the study or the study conditions change
over time. For example, a recent study of factors
impacting outcomes in atheroembolic renal disease
analysed data collected over 20 years [6]. It is possible
that milder forms of the disease were more likely to be
recognized late in the study as a result of the awareness
and experience of the investigators (Will Rogers
phenomenon).

Lead-time bias and length-time bias are errors
related to the natural history of the disease and
timing of diagnosis (Figure 3). Lead-time bias occurs
when diagnosis is made earlier than usual in a group
of patients, independently of disease progression, such
as in early referrals [7]. Measuring survival from
dialysis initiation makes prognosis appear better in
those who started dialysis with better renal function
[8]. Length-time bias occurs when there is a differential
distribution of subgroups by level of exposure to a risk
factor, where the subgroups have the same disease, but
different rates of progression (from biologic onset to
death). A higher speed of progression may reduce the
likelihood of timely diagnosis with consequent under-
representation of faster progressors and overestimation
of the survival times depending on the study design.
For example, those with persistent heavy proteinuria
would be expected to have a shorter length of time
between disease onset and ESRD than those with
lesser degrees of proteinuria. In a prognostic study of
a proteinuric disease, length time bias might occur
if prevalent cases were recruited. Prognosis would
appear more benign than in reality, since such
prevalent case samples contain a smaller proportion
of subjects with heavy proteinuria than samples of

incident patients. Similarly, screening programmes
for chronic diseases tend to detect more subjects
with slowly progressive forms and longer pre-
clinical phases. Length time bias may partly explain
the apparent survival advantage observed in non-
experimental studies comparing screening programmes
to routine clinical care [9].

This may also be problematic in RCTs of prevalent
rather than incident patients, because the prevalent
group would have lower overall basal risk of the event
of interest, and consequently lower study power,
increasing the risk of false negative results [1]. For
example, in the CREATE trial of different haemoglo-
bin targets in chronic kidney disease, the annual event
rate was lower than expected (6% vs 15%). Volunteer
bias and Hawthorne effect (whereby the control group
performs better than expected) may have played a role.
However, the study enrolled also prevalent subjects,
whereas the sample size was estimated from event rates
in incident studies [10].

Fig. 3. Natural course of a disease and possible biases related to
the timing of diagnosis. The course of a disease is represented as a
sequence of stages, from biologic onset to a final outcome such as
death. Disease diagnosis can be made as soon as pathologic lesions
are detectable (stage #2); when initial signs and symptoms occur
(stage #3); or later on (stage #4). Lead-time bias occurs when subjects
are diagnosed earlier (A) than usual (B) independent of the speed of
progression of the disease. If group A, for example, contains more
subjects diagnosed in stage #2 (e.g. early nephrology referrals who
start dialysis with higher renal function) the apparent observed
benefit (e.g. 10% higher 5-year survival probability) is due to a
zero-time shift backward from the time of usual diagnosis leading to
a longer observed duration of illness. Length-time bias occurs when
more severe forms of the disease (C), characterized by shorter
induction and/or latent periods and lower likelihood of early or
usual diagnosis, are unbalanced by group. The apparent difference in
prognosis (e.g. 15% 5-year survival probability) is due not only to
differences in disease progression (slope) but also to differences in
timing of diagnosis.
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Experimental designs for intervention questions

The RCT design is appropriate for assessment of
clinical effects of drugs, procedures, or care processes,
definition of target levels in risk factor modification
(e.g. blood pressure, lipid levels and proteinuria), and
assessment of the impact of screening programmes [1].
Comparison to a placebo may be appropriate if no
current standard therapy exists. When accepted
therapies exist (e.g. statins as lipid lowering agents,
ACE-I for chronic kidney disease progression, etc), the
comparison is an ‘active’ control group that receives
usual or recommended therapy.

Figure 1 shows an example of the most common
type of RCT, the two group parallel-arm trial.
However, trials can compare any number of groups.
In factorial trials at least two active therapies (A; B)
and their combination (AB) are compared with a
control (C). Factorial designs can be efficient since
more therapies are simultaneously tested in the same
study. However, the efficiency and the appropriate
sample size are affected by the impact of multiple testing
on both type I and type II error, and whether there is
an interaction between the effects of the therapies. In
the absence of interaction, the effect of A, for example,
can be determined by comparing AþAB to BþC.
Interactions where use of A enhances the effectiveness
of B, for example, do not reduce the power of the study.
However, if there is antagonism between treatments,
the sample size can be inadequate [1].

The HEMO study used a two-by-two factorial
design, and tested two interventions, with no interac-
tion assumption [11]. The trial failed to show the
existence of a 25% reduction in the risk of death for
either intervention: higher vs standard dialysis dose or
use of high vs low flux membranes [11]. The AASK
trial had a two-by-three factorial design (six groups)
testing the effect on renal function decline (primary
outcome) and on composite end-points (time to renal
function halving, ESRD, or death) of two blood
pressure levels by three anti-hypertensive treatments
(Ramipril, Metoprolol, Amlodipine) with no inter-
action assumption [12]. Since there were multiple
possible comparisons, three primary treatment com-
parisons were pre-specified: lower vs usual blood
pressure goals, Ramipril vs Metoprolol and
Amlodipine vs Metoprolol. The only significant find-
ings reported in this study should be considered with
caution since (i) they were effects on the secondary
outcome and the study power is estimated on the
primary outcome measure; (ii) the level of significance
of one of these effect (Ramipril vs Metoprolol) was
only P¼ 0.04 (non-significant after considering multi-
ple testing) and (iii) Ramipril vs Amplodipine had not
been pre-specified [12].

The cross-over design is an alternative solution
when the outcome is reversible. In this design, each
participant serves as their own control by receiving
each treatment in a randomly specified sequence.
A washout period is used between treatments, to
prevent carryover of the effect of the first treatment to

the subsequent periods. The design is efficient in that
treatments are compared within individuals, reducing
the variation or noise due to subject differences.
However, limitations include possible differential
carryover (one of the treatments tends to have a
longer effect once stopped); period effects (different
response of disease to early versus later therapy), and
a greater impact of missing data because they com-
promise within subject comparison and therefore
variance reduction [3]. For example, Schjoedt et al.
[13] used a cross-over design, to test whether spirono-
lactone reduces proteinuria in diabetic subjects with
nephrotic syndrome. Patients were treated in random
order with spironolactone 25mg once daily and
matched placebo for 2 months, in addition to ongoing
antihypertensive treatment, including an angiotensin-
converting enzyme inhibitor or an angiotensin II
receptor blocker. No washout period was planned
between the two treatment periods, although the
hypothesis of no carryover does not seem to be
biologically tenable, considering the mechanism of
action of the drug. Instead, the investigators searched
for evidence of carryover. This was excluded based on
statistical testing. However, the assumption underlying
this approach (no carryover in absence of statistical
support) is questionable, since such tests have limited
power [1,14].

Finally, RCTs may attempt to show that one
treatment is not-inferior (sometimes incorrectly called
equivalence) rather than to establish its superiority to a
comparable intervention [15]. These studies are often
done when new agents are being added to a class
(e.g. another ACE inhibitor), or when a new therapy is
already known to be cheaper or safer than an existing
standard. In such RCTs, the study size is estimated
based on a pre-specified maximum difference that
would still be considered irrelevant. For example, the
claim might be made that a new ACE inhibitor is non-
inferior to Enalapril, if the mean 24 h blood pressure
difference between them was no more than 3mmHg.
Non-inferiority trials have been criticized, as imperfec-
tions in study execution, which tend to prevent
detection of a difference between treatments, actually
work in favour of a conclusion of non-inferiority.
Thus, in distinction to the usual superiority trial,
poorly done studies may lead to the desired outcome
for the study sponsor.

Designs for diagnostic questions

When assessing a diagnostic test the reference or ‘gold
standard’ tests for the suspected target disorders are
often either inaccessible to clinicians or avoided for
reasons of cost or risk. Therefore the relationship
between more easily measured phenomena (patient
history, physical and instrumental examination, and
levels of constituents of body fluids and tissues) and
the final diagnosis is an important subject of clinical
research. Unfortunately, even the most promising
diagnostic tests are never completely accurate.
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For tests with continuous outcome values, such as
serum sodium concentration, clinicians need to know
reference (normal) values to identify disease. From an
epidemiological perspective, these reference values
are best defined based on the diagnostic relevance
rather than distributional assumptions (Gaussian for
example). In other words, by chance, a fraction of a
population without disease will have a test result that
differs from the mean by some amount. However,
the test becomes useful to clinicians when unusually
high or low values are generally associated with
some clinical condition of importance. For example,
reference values of troponin T and I have been
established in outcome studies of subject with sus-
pected myocardial infarction, rather than assessing
their distribution in the general population.

Clinical implications of test results should ideally
be assessed in four types of diagnostic studies. Table 2
shows examples from troponin studies in coronary
syndromes. As a first step, one might compare test
results among those known to have established disease,
to results from those disease-free [16]. Cross-sectional
studies can address this question (Figure 1). However,
since the direction of interpretation is from
diagnosis back to the test, the results do not assess

test performance. To examine test performance
(Table 3) requires data on whether those with positive
test results are more likely to have the disease than
those with normal results [17]. When the test variable is
not binary (i.e. when it can assume more than two
values) it is possible to assess the trade-off between
sensitivity and specificity at different test result cut-off
points. In such instances, classification into just two
groups is wasteful of information. Distinction of at
least three classes is more useful. For example, a Dutch
study identified three levels of serum creatinine in
hypertensive subjects (�70, 71–110, >110 mmol/l) asso-
ciated with likelihood ratios of renal artery stenosis of
0.31, 0.77 and 4, respectively [18]. This means that the
third category gives reasonable evidence for stenosis,
the first against stenosis and the intermediate is
uninformative, as likelihood ratios between 0.5 and 2
are considered uninformative. The Receiver Operating
Characteristics (ROC) plot is one way to investigate
to what extent the test results differ among people who
do or do not have the diagnosis of interest without
requiring any data grouping [19]. The ROC curve
is a plot obtained computing sensitivity and specificity
for every distinct observed test value and plotting
sensitivity against 1—specificity. Diagnostic test

Table 2. Level of evidence in diagnostic studies using troponin as test (T) and acute myocardial infarction (AMI) as target disorder (D)

Diagnostic question Direction Design Problems Example Ref

Do Dþ patients have
different levels of T?

From D
back to T

Cross-sectional Reverse association
Sampling bias

Difference in Troponin
levels by AMI þ/�

[16]

Are patients Tþ more
likely to be Dþ?

From T to D Cross-sectional Effectiveness not assessed
Sampling bias

Troponin performance
in distinguishing AMI þ/�

[16,17]

Does the level of T
predict Dþ/�?

From T to D Longitudinal Missing data
Sampling bias

Outcome study in subject
at risk for AMI

[17]

Do tested patients have
better final outcomes
than similar patients
who do not?

From T to D Experiment Missing data Outcome (randomized)
comparison in subject
at risk for AMI

[19]

Positive (þ); Negative (�). Missing data are possible in longitudinal or experimental designs: e.g. subjects lost before assessment or with data
not interpretable. Strategies should be set up to (i) minimize the likelihood of missing information and (ii) plan how subjects with missing
information can be treated avoiding their exclusion (e.g. sensitivity analysis, propensity analysis, etc.).

Table 3. Measures of association in diagnostic studies

Diagnosis (D)

Positive (Dþ) Negative (D�)

Test (T) Positive (Tþ) Trueþ False� PPV¼ [Dþ]/[Tþ]
Negative (T�) Falseþ True� NPV¼ [D�]/[T�]

SN¼ [Tþ]/[Dþ] SP¼ [T�]/[D�] Pr¼D�/Totals

Test (T) sensitivity (SN) and specificity (SP) are the probabilities of Tþ among Dþ (Tþ|Dþ) and T� among D� (T�|D�), where ‘|’ means
‘given’ or ‘conditional on’. Positive predictive value (PPV; Dþ|Tþ) and negative predictive value (NPV; D�|T�) are posterior or post-test
probabilities. Sensitivity and specificity are relatively stable test characteristics since they depend on the mechanism of detection/action and
the population characteristics. Conversely, PPV and NPV vary depending on disease prevalence. The likelihood ratio of a positive test (LRþ)
is the ratio of true positive and false negative rates, SN/[1–SP]. The likelihood ratio of a negative test (LR�) is the ratio of true negative
and false positive rates, SP/[1–SN]. Likelihood ratios estimate how much more likely the presence and absence of the disease are when the
results of the test are positive and negative respectively. Of note, the Falseþ rate and False� rate correspond to the type I (alpha) and type II
(beta) error rates of an outcome study.

2790 P. Ravani et al.

 at F
rancis A

 C
ountw

ay Library of M
edicine on A

pril 1, 2010 
http://ndt.oxfordjournals.org

D
ow

nloaded from
 

http://ndt.oxfordjournals.org


accuracy is assessed estimating the area under the ROC
curve (AUC), which corresponds to the probability that
a random person with the disease has a higher test value
than a random person without disease. In other words,
if the test has an AUC of 0.8 and results are used to
distinguish which of the two persons has the disease, the
test will be right 80% of the times. The area is 1 for
perfect tests and 0.5 for uninformative tests.

In all these diagnostic studies, it is crucial to ensure
independent blind assessment of results of the test
being assessed and the gold standard to which it is
compared, without the completion of either being
contingent on results of the other.

Longitudinal studies are required to assess diagnos-
tic tests aimed at predicting future prognosis or
development of established disease [17]. The most
stringent evaluation of a diagnostic test is to determine
whether those tested have more rapid and accurate
diagnosis, and as a result better health outcomes, than
those not tested. The RCT design is the proper tool
to answer this type of question [10,20].

A final issue of great interest for nephrologists is the
applicability of findings from different settings to
the renal population. The performance of cardiac

markers such as troponin, for diagnosis of acute
coronary syndromes, is less accurate in patients with
kidney disease than in those with more normal
kidney function [21], although their prognostic value
is generally maintained [22].

Maximizing the validity of non-experimental

studies

When randomization is not feasible, the knowledge of
the most important sources of bias is important, to
increase the validity of any study. This may happen
for a variety of reasons: when study participants
cannot be assigned to intervention groups by chance
either for ethical reasons (e.g. in a study of smoking),
or participant willingness (e.g. comparing haemo- to
peritoneal dialysis), the exposure is fixed (e.g. gender),
or the disease is rare and participants cannot be
enrolled in a timely manner. When strategies are in
place to prevent bias, non-experimental studies have
been shown to yield similar results to rigorous RCTs
[23]. These strategies are summarized in Table 4.
However, also in non-experimental studies, strategies

Table 4. Strategies to maximize validity in non-experimental studies

Phase Error type Problem/contamination Strategy Example HD vs PDa

Definition Question not
reflecting
the idea

Problem of construct validity:
ideal sample 6¼ target
population

Specify the question explicitly
and verify consistency
with the idea

Define Patients, HD, PD, and
outcomes

Sampling Wrong sample Generalizability issue:
actual 6¼ ideal sample

Referral patterns definition;
no late referral

Patient suitability for both PD
and HD options; training

Survivor bias Generalizability issue: actual
sample 6¼ ideal sample

Definition of inception cohort,
common entry stage;
no prevalent pts

Chronic patients commencing
dialysis for the first time

Selection,
confounding,
length-time bias

Differences in known and
unknown prognostic
factors, including disease
severity

Inclusion/exclusion criteria
definition; good quality of
care & available resources
for both options in all centres

Define renal function level when
access is inserted; exclude
severe comorbidity (cancer,
severe cardiac disease) &
centres where PD/HD not
equally offered

Measurement Lead-time bias Outcome measured differently
by group or inconsistently
with the definitions

Pre-specified outcome definition;
define zero time for survival
analysis accordingly in
both groups

Time from enrolment to death
for any (primary) and
cardiac/infectious (secondary)
causes

Confounding bias Factors known to impact
outcomes not included in
the data collection

Pre-specified potential prognostic
factors (baseline and updated)
for adjustment

Social status, familial support,
diabetes, age, gender,
compliance, etc)

Follow-up Attrition bias Drop out rates differ
by group

Maximize completeness of
follow-up; intention to
treat analysis

Plan contacts; decide whether
transplant is a reason for
censoring or a time varying
covariate

Dilution bias Drop-in (treatment change) Consider dilution in the sample
size estimation

Increase sample size to detect
a smaller effect

Assessment
of the data

Detection bias Differential outcome
assessment

Assessor blinding Necessary for cause specific
not for overall mortality

Analysis Increase type I
error rate
(multiple testing)

Primary model not specified;
use of unplanned analyses

Pre-specified hypothesis & primary
model (which stratifying &/or
time-varying variables to use);
secondary analyses

Specify the role of previous
cardiac events, diabetes,
transplant, death before vs
after dialysis starts, etc

Selection and
confounding

Reasons for drop-in -out
related to the exposure

Intention to treat analysis Maintain subjects in the
original exposure group

aExample question: ‘In patients receiving pre-dialysis care, which dialysis option is associated with longer survival, haemodialysis (HD)
or peritoneal dialysis (PD)?’
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that maximize internal validity tend to reduce general-
izability of the results, and vice versa [1]. For example,
among the most common confounding factors in hard
outcome studies, age, gender and race can be more
easily defined and more consistently and accurately
measured than other cardiovascular risk factors
(hypertension, dyslipidaemia, smoking, physical exer-
cise, body mass index) and important comorbid
conditions (diabetes, cardiovascular disease, malignan-
cies). This has implications for the cost and complexity
of efforts to increase internal validity by controlling for
confounders (e.g. collection of detailed information
about smoking and multiple measurements of choles-
terol levels over time might be required). Furthermore
reducing confounding, by participant selection based
on strict eligibility criteria, limits applicability of the
results (e.g. exclusion of some ethnic groups, patients
with systemic diseases or worse prognosis).

Research questions in genetic epidemiology

Genetic disorders often present additional challenges
to those who design clinical studies and may require
adaptation of methods or specific solutions. Definition
of the start time in longitudinal studies, and identifica-
tion of patient and controls to compare outcomes are
three key issues. The first is usually addressed using
the birth date as time zero for survival analysis.
The second can be solved by enrolling incident patients
to prevent survivor bias. For example, diagnostic
and prognostic questions were addressed in a study
comparing time to ESRD in the two main genetic
forms of adult (autosomal dominant) polycystic kidney
disease, ADPKD1 and ADPKD2 [24]. The two main
challenges of that study were the definition of the
families representative of the population at risk and the
identification of carriers. Probands were identified by
all nephrologists in the community and pedigrees were
constructed to identify all individuals at 50% risk
of having autosomal-dominant polycystic kidney dis-
ease (ADPKD). Genetic testing was considered the
gold standard to identify cases, and when genetic
testing was not possible, renal ultrasound using
Ravine’s criteria was adopted [25]. This test was a
reliable indicator of inherited ADPKD in adults who
were 30 years or older [24]. Depending on pedigree
position, obligate carrier status was demonstrated in
some individuals. Thus it was possible to identify most
families with ADPKD in the community and to enrol
incident family members who carried the ADPKD
mutation, and make a reliable prediction of outcome.

Recruitment of participants when the disorder is rare
is a problem, because the low frequency of genetic
diseases often requires the use of case control designs
(retrospective) or longitudinal historical cohort studies
[26]. An obvious limitation of this type of studies is
that changes in diagnostic criteria and health care over
time can influence apparent prognosis.

A final issue is the identification of the appropriate
controls to compare outcomes. For some genetic

diseases that are not immediately lethal, such as
ADPKD, outcomes can be assessed by randomized
trials or prospective studies [24]. In rare disorders,
matching techniques are often used in choosing
appropriate comparison groups when patients cannot
be randomly assigned to therapy. For example, a
cohort study was conducted to assess the benefits of
an implantable cardioverter defibrillator (ICD) in
Arrhythmogenic Right Ventricular Cardiomyopathy
(ARVC), an autosomal dominant condition that
causes sudden cardiac death [27]. The survival of
patients with the disorder who received the ICD (cases)
was compared with a non-randomly assigned control
group, both for practical (low frequency of the disease)
and ethical reasons (absence of alternative treatments
to prolong survival of affected individuals). To prove
that the intervention improved survival, a control
group was assembled from family members who
carried the ARVD mutation, who did not have an
ICD implant matched for age, gender and family. To
increase comparability, the controls had to be first or
second degree relatives of the cases receiving ICD
implantation to reduce genetic variation; had to be of
the same gender because survival was worse in males
and had to have survived up to the age that the ICD
was implanted in the cases. This strategy demonstrated
that the survival benefit of ICD was such as to make
it a dominant strategy, despite the bias associated
with the enrolment of some historical controls.

Clinical relevance vs statistical significance

The concepts of clinical relevance and statistical
significance are often confused. Clinical relevance
refers to the amount of benefit or harm resulting
from an exposure or intervention sufficient to change
clinical practice or health policy. In planning study
sample size, the researcher has to determine the
minimum level of effect that would have clinical
relevance [1]. The level of statistical significance
chosen is the probability that the observed results
are due to chance alone. This will correspond to the
probability of making a type I error, i.e. claiming an
effect when in fact there is none. By convention,
this probability is usually 0.05 (but can be as low as
0.01). The P-value or the limits of the appropriate
confidence interval (a 95% interval is equivalent to
a significance level of 0.05 for example) is examined,
to see if the results of the study might be explained by
chance. If P< 0.05, the null hypothesis of no effect
is rejected in favour of the study hypothesis, despite
it still being possible that the observed results are
simply due to chance. However, since statistical
significance depends on both the magnitude of effect
and the sample size, trials with very large sample sizes
can theoretically detect statistically significant but very
small effects, that are of no clinical relevance.

Figure 4 summarizes the two problems related to
the confusion surrounding clinical relevance and
statistical significance. Two aspects must be
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considered: the effect measure chosen to demonstrate
the importance of the effect (Figure 4, left panel) and
the distinction between the chosen level of clinical
relevance and statistical significance (Figure 4, right
panel). This is important, since results may be
statistically positive (do not support the null hypoth-
esis) but clinically ambiguous (do not support the
clinical hypothesis).

Reporting

Adequate reporting is critical to the proper inter-
pretation and evaluation of any study results.
Guidelines for reporting primary (CONSORT,
STROBE and STARD for example) and secondary
studies (QUORUM) are in place to help both
investigators and consumers of clinical research
[29–32]. Scientific reports may not fully reflect how
the investigators conducted their studies, but the
quality of the scientific report is a reasonable marker
for how the overall project was conducted. The
interested reader is referred to the above-referenced
citations, for more details of what to look for in reports
from prognostic, diagnostic and intervention studies.
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Table 3. Measures of association in diagnostic studies

Diagnosis (D)

Positive (D+) Negative (D−)

Test (T) Positive (T+) True+ False+ PPV = [D+]/[T+]
Negative (T−) False− True− NPV = [D−]/[T−]

SN = [T+]/[D+] SP = [T−]/[D−] Pr = D+/Totals

Test (T) sensitivity (SN) and specificity (SP) are the probabilities of T+ among D+ (T+ |D+) and T− among D− (T− |D−), where ‘|’ means ‘given’ or
‘conditional on’. Positive predictive value (PPV; D+ |T+) and negative predictive value (NPV; D− |T−) are posterior or post-test probabilities. Sensitivity
and specificity are relatively stable test characteristics since they depend on the mechanism of detection/action and the population characteristics.
Conversely, PPV and NPV vary depending on disease prevalence (Pr = D+/Totals). The likelihood ratio of a positive test (LR+) is the ratio of true
positive and false positive rates, SN/[1−SP]. The likelihood ratio of a negative test (LR−) is the ratio of false negative and true negative rates, (1−SN)/SP.
Likelihood ratios estimate how much more likely the presence and absence of the disease are when the results of the test are positive and negative
respectively. Of note, the False+ rate and False− rate correspond to the type I (alpha) and type II (beta) error rates of an outcome study.

This table was previously published with errors. The authors would like to apologize for this mistake and any inconvenience.
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