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In 2004 and 2005, Coca-Cola Enterprises (CCE)—the world’s largest bottler and distributor of Coca-Cola prod-
ucts—implemented ORTEC’s vehicle-routing software. Today, over 300 CCE dispatchers use this software daily
to plan the routes of approximately 10,000 trucks. In addition to handling nonstandard constraints, the imple-
mentation is notable for its progressive transition from the prior business practice. CCE has realized an annual
cost saving of $45 million and major improvements in customer service. This approach has been so successful
that Coca-Cola has extended it beyond CCE to other Coca-Cola bottling companies and beer distributors.
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Coca-Cola Enterprises (CCE) is the world’s largest
marketer, producer, and distributor of Coca-Cola

Company products. These products extend beyond
traditional carbonated soft drinks to beverages, e.g.,
still and sparkling waters, juices, isotonics, teas, and
energy, milk-based, and coffee-based drinks. CCE dis-
tributes Coca-Cola brands, e.g., Coke, Dasani, Sprite,
Barq’s, Fresca, Hi-C, Nestea, Powerade, and Minute
Maid, and also beverage brands of several other com-
panies. In 2005, CCE distributed two billion phys-
ical cases (containing 42 billion bottles and cans),
representing 20 percent of the Coca-Cola Company’s
worldwide volume. While CCE is a publicly traded
company, the Coca-Cola Company owns 36 percent
of its stock.

Coca-Cola has outsourced its production and dis-
tribution to its bottling and distribution companies,
of which CCE is the largest. CCE distributes syrup
from the Coca-Cola plants to 64 bottling plants; it
distributes bottled and canned beverages from the

bottling plants to the distribution centers, and from
the distribution centers (depots) to the final retail out-
lets (i.e., stores and vending machines) where cus-
tomers buy the products. The operations research
(OR) application we discuss plans the distribution of
products from over 430 distribution centers to 2.4 mil-
lion final retail outlets.

Figure 1 shows the current CCE territory in North
America; it also operates in parts of Europe. CCE
franchise territories encompass a population of 400
million people. This represents 80 percent of the
population in the United States and Canada and all
of the populations of Belgium, continental France,
Great Britain, Luxembourg, Monaco, and the Nether-
lands. It employs approximately 74,000 people, 54,000
vehicles, and 2.4 million vending machines, beverage
dispensers, and coolers.

The CCE fleet is the second largest in the United
States after that of the US Postal Service. It has grown
from 13,000 vehicles in 1986 to 54,000 today. Because
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Figure 1: CCE operates in 46 states in the United States and all 10
provinces in Canada.

of this enormous growth and the competitive nature
of the beverage industry, the need to optimize prod-
uct delivery became apparent. Therefore, CCE’s objec-
tives were to:

• Provide world-class customer service;
• Optimize its labor and assets;
• Reduce natural resource consumption; and
• Provide its employees with a productive but real-

istic working day.
It has achieved these goals by implementing a

route-optimization model through a cooperative ar-
rangement with the ORTEC software company and
Tilburg University. ORTEC provided the software
and handled the implementation; Tilburg University
developed the optimization algorithms and adjusted
the model to CCE’s specific needs. The project began
in 2004; by the end of 2005, more than 300 CCE dis-
patchers were using the route-optimization model.
CCE met the objectives of the project including annual
cost savings of $45 million and improved customer
service.

Product Delivery at CCE
CCE’s challenge is the daily construction of optimal
routes of orders from each distribution center (depot)
to the retail outlets. In the literature, this is known
as the vehicle-routing problem (VRP). CCE must deal
with standard constraints, e.g., vehicle capacity and

maximum route duration, and also with some non-
standard constraints that we list below:

• Requirements for a specific vehicle type and
equipment per order and/or outlet (e.g., lift gate,
military base, qualifications, certifications, technical
equipment, or license). Because serving some loca-
tions requires a truck with specific equipment, the
number of truck types has increased from 2 to 15;
these truck types vary considerably in size, capacity,
base location, cost structure, and available equipment.
Because of these restrictions, some vehicle types are
“scarce,” i.e., the number of vehicle types that can
service a specific delivery order may be limited. As
an example, centers in large cities require the use of
small truck types.

• Retail outlet time windows and appointments (i.e.,
tight time windows). Retail outlets continuously com-
press time windows, and many stores require CCE to
deliver products either before they open or after they
close.

• Driver’s working hours and start time that must
conform to the Department of Transportation (DOT)
hours of service rules. Drivers are also required to
carry a commercial driver’s license that identifies the
type of vehicle that DOT allows them to drive and
includes any endorsements (e.g., permission to haul
hazardous materials, drive vehicles with air brakes,
or drive an articulated tractor-trailer vehicle).

• Traffic patterns to avoid certain areas, such as city
centers during rush hours, at specific times of day.

In addition, CCE must address these “beverage-
specific” constraints:

• Very specific and accurate unloading and merchan-
dizing times. These vary by outlet types and vehicle
types, e.g., modified sideload (a delivery vehicle con-
sisting of multiple customer-specific pallets), normal
sideload (a traditional beverage-body vehicle with
individual pull-up side doors), and order fulfillment
system (OFS—a type of delivery vehicle that uses a
racking system to hold individual customer orders
organized in delivery sequence).

• Specific loading rules for certain vehicles and
vehicle types, such as pocket loading (used to orga-
nize customer-specific orders onto one or multiple
pallets), OFS, containers for chilled products, and
multiple trailers.
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• Minimum order-size requirement for certain vehicle
types.

The overall objective is to assign all the deliv-
ery orders in the correct trip sequence, such that
they are carried out by available vehicles and at a
minimum cost, while respecting all constraints and
providing excellent customer service. To some cus-
tomers, excellent customer service means, “give me
the same driver.” While this is not always possible to
accommodate, we try to limit the number of drivers
a particular customer sees to three or four. The units
of measurements of the cost function in this objective
are expressed in various forms: per day, per route, per
stop, per mile, per hour, per overtime hour, per cube,
and per case.

CCE organized a team of stakeholders and consul-
tants to evaluate route-planning software packages.
It sought a solution that could fulfill its needs and
a supplier who could act as a partner. In 2003, after
a thorough selection process, it selected ORTEC and
contracted with the company to implement a compre-
hensive route-planning system based on the follow-
ing criteria: (1) proven relationship with the enterprise
software company, SAP, (2) an 80 percent match with
the business requirements, (3) commercially available
solutions for some of the additional requirements,
(4) proven development capability (as illustrated in
other projects), (5) demonstrated willingness to mod-
ify its software, (6) competitive value proposition and
pricing, and (7) strong relationships with universities
for delivering state-of-the-art algorithms for optimiza-
tion purposes.

CCE Optimization Algorithms
Since Dantzig and Ramser (1959) first studied VRP,
researchers have spent much time and effort devel-
oping solutions because it plays a central role in
distribution management. We refer the reader to
two websites (http://www.sintef.no/static/am/opti/
projects/top/vrp and http://neo.lcc.uma.es/radi-aeb/
WebVRP) that provide excellent VRP overviews and
include many variants and algorithms. In its sim-
plest form, VRP entails constructing planned routes
for vehicles that service retail outlets with known
demand, starting from a central depot.

The objective is to assign all retail outlets to trips,
including their sequence of visiting, and to assign all

trips to the existing truck fleet and available drivers,
such that we minimize the overall cost and satisfy all
the constraints mentioned above. The cost function
consists of a fixed cost per truck, per day, and a vari-
able cost per mile, per type of truck. Each driver type
has a fixed cost per hour and a fixed cost per hour
of overtime. Theoretically, we can express this prob-
lem as a mixed-linear integer programming problem.
However, as the literature shows, a MIP-formulation
is intractable, even for a small number of locations.
Therefore, the VRP algorithms in the ORTEC soft-
ware (SHORTREC) are heuristic. They consist of the
following:

(1) Construction algorithms to construct initial
routes;

(2) Local-search improvement algorithms to im-
prove routes;

(3) Clustering functions to optimize the visual
attractiveness of a plan;

(4) Assignment of drivers to routes to optimize the
driver’s region-based knowledge.

Construction Algorithm
We began the construction algorithm by considering
the savings-based construction algorithm (Clarke and
Wright 1964). The algorithm begins by considering
each retail outlet as a separate route and then tries
to find improvements on this solution (“savings”)
by adding the outlets of one route to another route
without changing the order in which drivers visit
the outlets. We adapted the algorithm to address
the CCE-specific constraints, e.g., truck types, loading
profiles, and strict time windows. Poot et al. (2002)
provide details.

Although our results were promising, we were not
satisfied. Therefore, we considered the sequential inser-
tion algorithm (Solomon 1987). We start with a set of
routes and a set of nonserved outlets. For a particu-
lar route, we then add nonserved retail outlets to the
current plan by inserting them at the “best” position.
When it becomes impossible to insert a retail outlet
into the current route, the algorithm begins a new
route. It constructs one route at a time as follows:

Step 1: Select a vehicle. Select the largest vehicle not
assigned to a route and not tried in an earlier
iteration.
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Step 2: Select a first retail outlet �i.e., seed retail outlet�
for this vehicle. Select the retail outlet that is the most
difficult and which is feasible using the vehicle
selected. A difficult outlet is one that can only be
served by a very limited number of truck types, and
requires a long distance to its depot and a strict time
window. If no retail outlet meets these criteria, go
to Step 1; otherwise assign this retail outlet to the
current vehicle.

Step 3: Add retail outlets to the new route. Build a list
of candidates to insert into the route. A candidate
is a nonserved retail outlet that is feasible based on
vehicle type, capacity, and region constraints, and is
not too distant from the current seed retail outlet. If
fixed and variable unload and merchandising time is
allowed, insert the outlet at the best feasible sequence
position, i.e., the position that satisfies all constraints
and has the lowest additional insertion cost. This is
the extra cost that is caused by the extra distance,
driving, unloading, and waiting time needed to serve
this retail outlet. If no retail outlets can be inserted,
go to Step 4.

Step 4: Move the route to a smaller vehicle. When the
route is full with respect to the total working time,
check if the route can be assigned to a smaller (and
cheaper) truck type. If the route is at capacity after
a truck has been assigned, check if another route is
necessary.

Local Search Improvement Algorithm
The methods for improving the routes consist of the
following improvement algorithms:

• Improve the sequence of outlets in a route by
attempting to move the outlets on this route. If the
number of outlets is very limited, we evaluate all
possibilities.

• Exchange or move outlets between two routes.
We consider whether moving a set of outlets from
one route to the other would help, and if exchanging
outlets between routes would be an improvement.

• Exchange or move outlets between more than
two routes. (This is a generalization of the exchange
between two routes mentioned above.)

The following criteria apply:
(1) The set of outlets to be exchanged should be

logical, e.g., the outlets in a village may comprise a
logical group that should not be divided into separate
routes.

(2) The truck types of the two routes should be
such that exchanging the outlets is feasible, and that
the capacity and other overall constraints remain
satisfied.

(3) If we consider the change of driving times and
mileages to these sets of exchanged outlets, then driv-
ing times and mileages should not increase by much;
ideally, they should improve. An increase in driving
time should be compensated by lower cost (because
the truck is cheaper) or an equal decrease in wait-
ing time.

(4) Similarly, this holds for the change from the sets
of outlets. Based on total change in driving times and
stop times to and from these sets of outlets, it is easy
to check if the new working times are allowed.

We generalized the concepts to address multiple
route improvements, but also to accept steps that
are not improvements, e.g., using tabu-search tech-
niques. Applying this technology and filtering out
unpromising possibilities, the local-search improve-
ment method becomes extremely fast. Overall, we
achieved a calculation time of approximately 8 to 10
minutes of computation time on a typical run.

Clustering Function for Visual Attractiveness
CCE dispatchers prefer visually attractive routes, i.e.,
only a few overlapping routes (Solomon 1987), retail
outlets that are clustered together on a route, and
routes that are compatible with the results of the pre-
vious business practice and dispatch system. “Visual
attractiveness” is important in deciding to accept the
plan results even though it can increase the cost of
a plan. To avoid visually nonattractive results, we
added a “clustering function” into the algorithm and
defined it as follows:

(1) If a route consists of n stops, then the n/2 stop
is the “center stop,” which we call C. For each stop
in this route, we compute the distance (or driving
time) to C. We total these distances (or times) over
all stops on the route and multiply by a “clustering
penalty parameter” (CP) to create a total penalty cost
(Figure 2).

(2) Tuning CP is necessary to achieve the correct
results. A route consisting of only one stop has a CP
of zero. If we set CP too high, then the algorithm
would prefer a larger number of routes and most
routes would consist of only one stop. A high CP
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Cluster penalty:
AC + BC + DC + EC
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Figure 2: We incorporated this clustering function into the overall cost
function and used it to evaluate the improvement algorithms.

means that the cluster cost from other stops to the
center stop in a route is very high—so high that it
might become cheaper to move these stops into a sep-
arate route, thereby increasing the number of routes.
A route with only one stop (the center stop) has no
other stops and thus no clustering cost.

(3) To mitigate the effects explained in Step 2, we
added additional constraints, exceptions, and special
rules for minimizing the number of routes while opti-
mizing the costs into the algorithm.

Figure 2 shows an example of the effect of the clus-
tering function.

Dispatchers can tune the CP parameter; they can
run several scenarios with different CPs, compare the
differences in mileage and working hours, and esti-
mate the driver acceptance. In practice, the dispatch-
ers set a high CP initially, possibly leading to more
routes than necessary and nonoptimal transportation
costs. Thus, the created routes are reasonably close to
the routes in the prior practice. Once the dispatchers
and drivers become accustomed to the new routes,
we reduce the CP; as a result, we lower the costs. In
this way, we accommodate change at a tolerable place,
while still optimizing the costs eventually.

Assignment of Drivers to Routes
Drivers have regional knowledge and relationships
with the employees at the retail outlets. Therefore, the
final OR element is ensuring that, as much as possible,
drivers visit the outlets with which they are familiar.
Thus, we defined an anchor point—the center of the

working area of each driver. After calculating the opti-
mal routes, we compute the cost of each route from
each anchor point (with its corresponding driver) pro-
vided the driver is qualified to drive on this route
(otherwise, the cost is infinity). The cost of a route
from a driver’s anchor point is the sum of the “dis-
tances” (driving times) from all outlets in the route to
this anchor point. We then apply a linear assignment
method, i.e., assign each route to the driver who is
allowed to execute this route, including the assigned
truck (not all drivers are allowed to drive all vehi-
cles) to minimize the total anchor point cost. As Fig-
ure 3 shows, the driver with anchor point B will be
assigned to the solid black line route. In this way,
every driver serves his or her own regions as much as
possible, without incurring additional operating cost
because this does not change the optimization of the
routes.

When assigning the driver to a trip, we check se-
veral constraints: vehicle availability, capacity, and
vehicle types (Figure 3). Tilburg University pro-
posed these algorithmic changes and ORTEC devel-
oped them in SHORTREC. ORTEC has incorporated
most of the changes in its beverage-industry solu-
tion to make them applicable to other users. It devel-
oped the interfaces specifically for CCE. Figure 4
shows an overview of SHORTREC, including the

Anchor
point B

Anchor point A

Depot B

A

Figure 3: We assign routes to anchor points based on the sum of the dotted
lines; anchor point B is preferable to anchor point A.
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standard graphical user interface (GUI) and compo-
nents used.

The SHORTREC-Enabled
Dispatch Process
Each day, each dispatcher receives the orders that
must be delivered on the following day, reviews them
for accuracy and completeness, and transfers the
orders into SHORTREC for route optimization. Dur-
ing this process, the dispatcher creates a new SHORT-
REC session for each depot or central warehouse.
A depot may include between a dozen and 50 routes
to schedule daily, and a dispatcher may be responsible
for dispatching more than one depot. If so, the dis-
patcher repeats these steps for each depot. The route-
optimization process involves assigning orders to the
proper vehicle. The dispatcher typically runs sev-
eral what-if scenarios to find the “best” solution.
For example, the dispatcher might experiment with
changes to time windows and discuss the possible
monetary benefit with the customer, and might also
run scenarios on driver requirements or entertain spe-
cial customer requests. After examining the what-if
analysis to determine if any inputs should change,
the dispatcher reviews the solution from a vehicle
perspective.

If any input data is erroneous, the dispatcher may
not realize that there is a problem until he/she sees
the output. This typically means that the relevant
input must be corrected and the optimizer rerun. The
dispatcher has the ability to split the screen to review
all the impacted routes. This view shows the orders,
the trucks used, and a map with a Gantt chart for the
task associated with the routes. The dispatcher can
view a single route or multiple routes simultaneously
(Figure 4).

When the routes are satisfactory, the dispatcher
finalizes them and initiates the process of placing
beverages on pallets and onto the trucks. When the
drivers arrive each morning, the trucks are loaded
and ready for them; a handheld device that includes
that driver’s delivery schedule for the day is also
available.

Implementation at CCE
CCE is organized into divisions; a division covers a
European country or one or more states in the United

States. In early 2004, CCE and ORTEC developed a
plan to implement SHORTREC for product delivery
across all divisions and dispatchers throughout the
CCE organization within an 18-month time frame. It
required at least 17 weeks to implement SHORTREC
in a division with two or three dozen depots; the
implementation plan involved four divisions in par-
allel. We developed a three-phased approach.

• Phase 1: Division preparation. The central team
began working with each division two months before
coming on-site to provide basic training and prepa-
ration guidance (e.g., data cleaning and information
gathering necessary for implementing SHORTREC).
This review helped to identify potential gaps or op-
portunities to minimize risk. For example, we would
discuss the differences between the old approach of
using the same static routes each day and the new
approach of determining new routes each day. We
would also discuss their ranking for data readiness.
This ranking reflected data accuracy on the key inputs
that SHORTREC needed for optimization. It also gave
us a snapshot of which divisions would need more
time during the pre-implementation phase.

• Phase 2: On-site implementation. The implementa-
tion at each division began with a workshop to train
the dispatchers. They had the opportunity to practice
what-if scenarios to see if they could come up with
that were superior to those of the other dispatchers.
This focused their attention on competing with each
other rather than complaining about the new method
and system. Furthermore, it encouraged the culture
of working toward continual improvement and lower
costs, while still creating practical schedules. After
eight weeks, we succeeded in getting approximately
half the depots to use the OR software for planning.

• Phase 3: Self-implementation. By this point, the di-
vision had enough skill and knowledge to deploy
the remaining depots on their own during this third
phase. We defined the following key performance
indicators for reporting during this phase: actual
costs, mileage, hours, overtime hours, violations, and
number of routes.

While we planned to continuously implement four
divisions in parallel including Europe and Canada,
Figure 5 shows only the US roll out.

We made some observations based on this experi-
ence. First, maintaining the master data (outlet deliv-
ery types, delivery time windows, geography codes,
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Figure 5: By the end of 2005, we had implemented SHORTREC in all the divisions that the slide shows. Some
European countries have yet to deploy.

vehicle files, templates, merchandising times, etc.)
properly is imperative. It is necessary to continuously
monitor data accuracy and compare across divisions
on a continual basis. The use of SHORTREC should
enable dispatchers who have the correct attitude and
skills to manage more locations, possibly across divi-
sions. It provides them with the tools to make quick
and educated decisions in less time and has enabled
them to increase their responsibilities; they work more
closely with sales teams to maintain master-data accu-
racy. In addition, we found we could train new dis-
patchers in less than a week.

Second, monetary savings from the implementation
vary across divisions and sites. This is not surprising
because it relates to several factors; these include how
well the division or site did strategic route design
and sales planning, how well it dispatched locations
prior to using SHORTREC, how open sales centers
were to accepting change, and local business prac-
tices. It is important to realize that dynamic dispatch-
ing involves change and change management.

Business Benefits
Overall, larger locations and those with growing
business volumes show greater monetary savings.

Because savings are, at least partially, a function of
the number of drivers, vehicles, and dispatchers, it
is easier to achieve savings when volume is grow-
ing rather than when it is declining. While we have
many examples, we provide two as illustrations. The
first example is among the 10 largest facilities in
North America; it delivers approximately 20 million
cases per year. Implementation began with the nor-
mal truck on August 31, 2004; it was completed with
a sideload in the second week of December 2004.
Its June 2005 year-to-date (YTD) business volume
increased 18 percent when compared to the same six-
month period in 2004; labor expenses increased by
only 1 percent. Therefore, the June 2005 YTD deliv-
ery cost per case improved by 15 percent over the
prior year. Although we cannot attribute all the sav-
ings solely to the implementation, there are other
indicators that give evidence of its success. Missed
deliveries (i.e., scheduled deliveries that have not
been serviced) declined from 6.3 percent in 2004 to
2.4 percent in 2005. This reduction led to improved
customer satisfaction (from the retail outlet perspec-
tive) and fewer lost sales (because more Coca-Cola
products were present on the shelves). There are other
indications of productivity improvement. Returns,
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which reflect a product that is taken to a retail outlet
but not delivered (e.g., the product arrived outside of
open hours, the order was inaccurate, or the driver
could not find the store), dropped from 4.5 per-
cent in 2004 to 3.7 percent in 2005. In the case of
a return, the product must be delivered again and
service to retail outlet management and customers
is unsatisfactory. Cases delivered per hour improved
from 86.3 percent in 2004 to 98.3 percent in 2005.
Outlets serviced per day remained essentially flat.
DOT hours-of-service rules limit the amount of time
that a driver can spend actively delivering prod-
ucts. Optimizing delivery enabled drivers to complete
more deliveries within the same time parameters and
thus be more productive.

The second example is a typical mid-sized facility
that delivers approximately 3.4 million cases per
year using different delivery modes. This facility has
been using SHORTREC for its dispatching process
since December 14, 2004. Its June 2005 YTD volume
increased only slightly (1 percent) over its June 2004
YTD volume. However, delivery labor costs decreased
by 15 percent. This led to a 16 percent improvement
in delivery cost per case. We conclude that this
location is delivering approximately the same vol-
ume but using fewer resources. Favorable results are
also apparent in other indicators for June 2005 YTD:
missed deliveries dropped from 5.1 percent to 3.8 per-
cent; returns dropped from 4.9 percent to 3.6 percent;
cases per hour improved from 76 to 81.6, while outlets
serviced per day stayed the same as in the prior year.

In two other divisions, the volume decreased
slightly over YTD June 2004. However, both divisions
reduced delivery labor costs (a 6 percent improve-
ment over the prior year for North Texas and a 5 per-
cent improvement for Central States). This led to a net
savings in cost per case for both divisions (5 percent
savings for North Texas and 2.6 percent for Central
States). For June 2005 YTD, both divisions also made
improvements in cases per hour, returns, and unpro-
ductive outlets over the prior year.

CCE Belgium also realized savings one year after
the implementation. Despite inflationary pressures
(e.g., a 3 percent driver wage increase from 2004 to
2005), it achieved overall yearly savings of 3 to 5
percent.

Across the CCE fleet, we estimate that we achieved
a $0.03 improvement in delivery cost per case. This
stems from the reduction in labor hours, fuel con-
sumption, and vehicle usage (i.e., number of vehicles
and wear and tear on existing vehicles). It represents
$45 million in annual delivery cost savings, based on
the 1.5 billion cases that dispatches planned using
SHORTREC.

Service has also improved. Fewer missed deliveries
have resulted in fewer lost sales and increased cus-
tomer satisfaction (from retail outlet managers and
consumers). The application of OR has led to greater
delivery predictability. We have been able to realize
time windows that are tighter and are based on the
preferences of the retail outlet management.

We have also experienced qualitative improve-
ments. Because our drivers drove fewer miles, we
reduced pollution and our consumption of natu-
ral resources, such as fossil fuels. Fewer unplanned
events reduced stress on our drivers and on the
retail outlet employees. OR has enabled us to cen-
tralize CCE operations more completely. In 2004 and
2005, we installed SHORTREC at 25 divisions that
had approximately 400 dispatchers. Because of the
larger span of control and the increased overview that
the plan provides, the dispatching process now takes
place at 10 business units and requires only about
300 dispatchers.

An ORTEC press release (http://us.ortec.com/
company/clients/case-coca-cola-enterprises/) report-
ed that the SHORTREC success at CCE has been
significant. In particular, the implementation method-
ology was important for this success. It is the basis
for Goos Kant’s (2006) inaugural speech at Tilburg
University.

Portability
The approach was so successful that Coca Cola ex-
tended it beyond CCE to other Coca-Cola bot-
tling companies (e.g., Coca-Cola HBC, which serves
25 countries that are mainly in Eastern Europe) and
beer distributors (e.g., Carlsberg, Heineken, and
Inbev). For example, we implemented SHORTREC at
Inbev in France and Belgium, and realized a 100 per-
cent return on investment within one year. For these
clients, we generalized the method in two ways: first,
we computed the optimal depot from which an out-
let would be delivered; second, we computed the
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optimal frequency and days to deliver an outlet to
achieve an overall balanced and clustered product
delivery.

Future Development Opportunities
SHORTREC functionality includes several additional
opportunities that can bring all CCE divisions to
a higher level of efficiency. Examples include the
following:

Multidepot Routing
SHORTREC includes a capability to optimize across
multiple depots simultaneously. This means that:

(1) The algorithm can decide the depot from which
to deliver to a specific retail outlet; and

(2) If a truck delivers along multiple routes, differ-
ent depots could make the delivery.

While this would alter some existing sales center
boundaries within the CCE organization, it would
also provide more savings and a higher level of cus-
tomer service. By proposing the most efficient deliv-
ery location for the outlet each day, SHORTREC
make determinations about the sharing of workload
and drivers across delivery locations. We should not
underestimate this capability from a change man-
agement perspective; however, it would require a
fundamental modification to the current information
system and might impact upstream supply chain pro-
cesses, such as forecasting.

Early in the software evaluation phase, we evalu-
ated this capability to route multiple depots at once
(i.e., in one session and with one responsible dis-
patcher), and determined that it was beneficial. The
Belgium division, which has put this into practice in
one of its locations, has found it to be advantageous.

Strategic Route Design
The delivery of products at CCE (and all other distri-
bution companies of Coca-Cola Company products)
takes place after visits by sales representatives
(i.e., merchandising). These sales visits are intended
to increase distribution-volume turnover (revenues);
these volumes must also be distributed to the retail
outlet. Thus, when a sales representative visits a retail
outlet on Monday, the distribution volume will be
delivered on, for example, the following Wednesday.
Depending on the expected distribution volumes,

retail outlets require one, two, or four sales visits (i.e.,
referred to as frequency 1, 2, or 4) in four weeks.
A retail outlet with a high expected-distribution vol-
ume is classified as an important outlet. Therefore, the
sales representative visits this outlet more often.

Retail outlets have different time windows and
frequencies and their expected distribution volumes
vary. These large differences in distribution volumes
make it difficult to balance the volume per day. Deliv-
ery does not take place on weekends. We must also
take into account that retail outlets are always served
on the same day of the week, and retail outlets with
frequency 2 are visited either in weeks 1 and 3 or
in weeks 2 and 4. The sales canal is leading, i.e., we
create routes only for the sales visits. However, dur-
ing the planning and optimization process, we con-
sider both the number of sales visits per day and
the expected distribution volumes two days later. We
must balance both measures as much as possible.

Hoendervoogt (2006) developed an algorithm for
this based on the approach of Tan and Beasley (1984).
Based on the “center of working areas for each day,”
the algorithm computes the cost for each delivery
schedule (possible delivery days + volume) for each
retail outlet. In the next step, it selects this delivery
schedule for each retail outlet such that, for each day,
the assigned volume and total working time is equal,
while minimizing the total costs (i.e., the deviation
from and to each center of working area per day).
The results are promising and CCE has already begun
pilots.

In addition, when the sales order for a retail out-
let is booked, an optimal loading algorithm computes
the required load (in volume, space, etc.) by optimiz-
ing the load on a pallet; as a next step, it optimizes
the load of a trailer or a container by considering the
length, width, and height of a pallet, a truck, and of
each of the product types, as well as loading restric-
tions (i.e., overhang, stackability, and possible loading
configurations). Because it is computing the required
space based on the order in the sales and merchan-
dising system, it can compute the optimal number of
pallets at that moment, thus optimizing the truck load.
If, for example, the calculated number of pallets is 1.8,
then the next step is to propose to sell a default item
to fill it up to two pallets: these pallets would be filled
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up with a (fast-moving) default item (or items). There-
fore, both truck utilization and pallet utilization can
be improved. Experiments at other Coca-Cola bottling
companies are showing promising results.
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