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EM basicsEM basics

 Review

 Maxwell equations

 Field strength tensor: Anti-symmetryAnti-symmetry 2nd rank tensor in terms of E and B

Formulation of inhomogeneous Maxwell equations:

Four-vector: Continuity equation:

(1)

(2)

(3)

(4)
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EM basicsEM basics

 Scalar and vector potential

 The 3rd Maxwell is equivalent to the statement for the magnetic field:

 The 2nd Maxwell takes the following form:

 The electric field can be written as follows:

 Relativistic notation:

Defect of potential formulation:
⇒ V and A are not uniquely determined!

New possible potential:

Change of potential: Gauge
transformation: Lorentz condition
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EM basicsEM basics

 Photon field

 Inhomogeneous Maxwell equations

 With Lorentz condition:

 Free photon case:

 Solution:

Constrain: Massless particle: Photon

Polarization vector

Photon field in QED
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EM basicsEM basics

 Polarization vector

 Lorentz condition requires:

 In the Coulomb gauge, i.e.:

 The polarization three-vector is perpendicular to the direction of propagation: Free
photon is transversely polarized: Coulomb gauge = Transverse gauge

 Two linear independent three-vectors:

 Note:

• Massless particle: Only two spin states (helicity +1 or -1) regardless of its spin, except
spin 0 with only one spin state!

• Massive particle: 2s+1 spin states (3 for spin 1 particle!)

Two linear independent three-
vectors perpendicular to p!
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QED Feynman rulesQED Feynman rules

 Lagrangian in QED

 Sum of Dirac free field (charged particles) and interaction term:

Compare this to:

 Local gauge invariance

• LQED can be formally obtained from Lfree with the following substitution:

• With this substitution, Lfree is invariant under the following local gauge transformation: U(1)

• With the above substitution of the partial derivative, we convert a global invariant Lagrangian into
a locally invariant Lagrangian. This is called minimal coupling rule!

Here:
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QED Feynman rulesQED Feynman rules

 General considerations: Electron/Positron

 Relativistic quantities

 Electron and positron spinor

 Dirac equation for electron and positrons

 Properties among electron and positron spinors

• Orthogonal:

• Normalization:

• Completeness:

Adjoint:
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QED Feynman rulesQED Feynman rules

 General considerations: Photon

 Relativistic quantities

 Photon field

 Lorentz gauge

 Coulomb gauge
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QED Feynman rulesQED Feynman rules

 1 Notation

 Label incoming and outgoing four-momenta: p1, p2,…, pn and the corresponding spins: s1, s2,…, sn

 Assign arrows:

• External lines: Electron, positron

• Internal lines: Preserve direction of flow

 2 External lines

 Electron:

 Incoming:

 Outgoing:

 Positron:

 Incoming:

 Outgoing:

 Photon:

 Incoming:

 Outgoing:

 3 Vertex factor

 4 Propagator

 Electron/Positron

 Photon
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QED Feynman rulesQED Feynman rules

 5 Conservation of energy and momenta

 6 Integrate over internal lines

 7 Cancel the delta function

 The result will include a factor:

Corresponding to overall energy-momentum conservation. Cancel this factor and what remains is -iM!

 8 Antisymmetrization

 Include a minus sign between diagrams that differ only in the interchange of two incoming (or outgoing)

electrons (or positrons), or of an incoming electron with an outgoing positron (or vice versa).
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QED example processesQED example processes

 A) Electron-muon scattering

 Feynman graph

 Application of Feynman rules:

 Integration over q yields:
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QED example processesQED example processes

 B) Electron-electron scattering (Moeller scattering)

Interchange: p3,s3 p4,s4
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QED example processesQED example processes

 B) Electron-electron scattering (Moeller scattering)

 Cross-section calculation

 Relativistic limit:

 Non-relativistic limit:

Rutherford term!

Rutherford term!

Scaling in:
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QED example processesQED example processes

 C) Electron-Positron scattering (Bhabha scattering)
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QED example processesQED example processes

 C) Electron-Positron scattering (Bhabha scattering)

 Comparison of Bhabha scattering results at PETRA (DESY) and QED calculations

 Relativistic limit:

 Non-relativistic limit:

Scaling in:

Rutherford term!

TASSO

MARK-J
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QED example processesQED example processes

 D) Photon-electron scattering (Compton scattering)

 Amplitudes:
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QED example processesQED example processes

 D) Photon-electron scattering (Compton scattering)

Hofstadter 1949 and
Bernstein 1956
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QED example processesQED example processes

 E) Electron-positron (Fermion-pair production)

Charge of fermion pair!

Number of colors: : Nc=3
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Casimir Casimir trick and trace theoremstrick and trace theorems

 Casmir trick

 See Latex document

 Result:

No spinors on left side!
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Casimir Casimir trick and trace theoremstrick and trace theorems

 Trace theorems

 General identities:

 Important relations among gamma matrices:
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Casimir Casimir trick and trace theoremstrick and trace theorems

 Trace theorems

Note: The trace of the product of an odd number of
gamma matrices is zero!
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Casimir Casimir trick and trace theoremstrick and trace theorems

 Trace theorems involving γ5 matrix

Note: The trace of the product of an odd number of gamma matrices
multiplied by a γ5 matrix is zero!
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Casimir Casimir trick and trace theoremstrick and trace theorems

 Contraction of ε tensor
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RenormalizationRenormalization

 Introduction

Leading order:

Same process involving loop diagram: Vacuum polarization

4 internal lines!

Divergent integral!
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RenormalizationRenormalization

 Dealing with divergent terms (1)

 The solution to this problem contributed enormously to the development of QED (Dirac,
Pauli, Kramers, Weisskopf, Bethe besides Tomonaga, Schwinger and Feynman)

 The procedure to deal with divergent loop terms is call renormalization!

 General concept: Redefinition of masses and coupling constants

Contains divergent terms!

What we measure!
Special case: Lowest order
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RenormalizationRenormalization

 Dealing with divergent terms (2)

 Technical idea:

 With this procedure M becomes:

 Introduce renormalized coupling constant:
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RenormalizationRenormalization

 Dealing with divergent terms (3)

 In terms of gR we find then for M:

 Two terms:

• Infinite term: absorbed in gR

• Finite term: depends on q2 (f-term)

 Express end result in terms of α:

Consequence of loop
diagram: q2 dependence
Effect in QED is small!

Note: If all infinities arising from
higher-order diagrams can be
accommodated through
renormalized quantities, a theory is
said to be renormalizable!

All gauge theories are
renormalizable: t’Hooft/Feldman


