
Lista de Exercícios 8

Comportamento Mecânico dos Materiais - Parte I

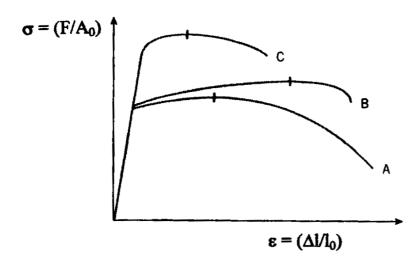
2014

1. Considere as curvas tensão de engenharia *versus* deformação de engenharia para os três materiais (A, B e C) e responda as afirmativas com falso (F) ou verdadeiro (V).

- a) Os três materiais têm módulos de elasticidade idênticos. ()
- b) Os três materiais apresentam módulos de resiliência idênticos. ()
- c) O material C apresenta maior limite de escoamento do que A ou B. ()
- d) O material C apresenta maior limite de resistência do que A ou B. ()
- e) O material **A** apresenta maior alongamento uniforme do que **B**. ()
- f) O material **A** apresenta maior alongamento total (ductilidade) do que **B**. ()
- g) O material **B** tem provavelmente maior tenacidade do que **C**. ()
- h) O material **B** apresenta maior expoente de encruamento do que **A**. ()
- i) O material C é provavelmente mais duro do que A. ()
- j) Os três materiais (A, B e C) são provavelmente materiais cerâmicos. ()
- **2.** Uma amostra cilíndrica de aço inoxidável com diâmetro de 12,8 mm e comprimento de 50,8 mm é submetida à tração. Utilize os dados da tabela para responder os itens de (a) a (f).

Força (N)	Comprimento (mm)	
0	50,800	
12700	50,825	
25400	50,851	
38100	50,876	
50800	50,902	
76200	50,952	
89100	51,003	
92700	51,054	
102500	51,181	
107800	51,308	
119400	51,562	
128300	51,816	
149700	52,832	
159000	53,848	
160400	54,356	
159500	54,864	
151500	55,880	
124700	56,642	

- (a) Desenhe a curva tensão deformação de engenharia
- (b) Calcule o Módulo Elástico
- (c) Determine a Tensão de Escoamento
- (d) Determine o Limite de Resistência a Tração para essa liga
- (e) Qual a ductilidade em percentual de alongamento?
- (f) Desenhe a curva tensão deformação real
- **3.** Para uma liga de latão, a tensão na qual a deformação plástica se inicia é 345 MPa e o Módulo de Elasticidade é 103 GPa.
- (a) Qual a carga máxima que pode ser aplicada em uma amostra com área de seção transversal de 130 mm² sem causar deformação plástica?
- (b) Se o comprimento original da amostra é 76 mm, qual o alongamento máximo possível sem causar deformação plástica?
- **4.** Um pedaço de arame recozido de aço baixo carbono tem 2 mm de diâmetro, limite de escoamento 210

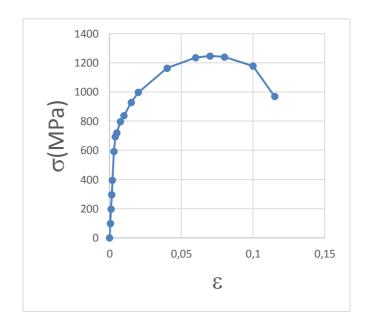

MPa, limite de resistência 380 MPa e módulo de elasticidade 207 GPa.

Pergunta-se:

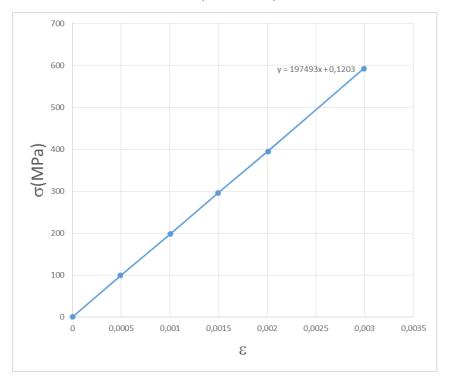
- a) Se uma garota de 54 kg se dependura neste arame, ocorrerá deformação plástica no arame?
- b) Se for possível, calcule o alongamento porcentual do arame com a garota dependurada.
- c) O que aconteceria se o arame fosse de cobre (limite de escoamento = 70 MPa; limite de resistência = 220 MPa e módulo de elasticidade = 115 GPa)?
- **5.** Discuta o efeito da temperatura na deformação plástica dos materiais.

Lista de Exercícios	Diagramas de fases II e Transformações de fases Comportamento mecânico - Parte I
2014	Resolução

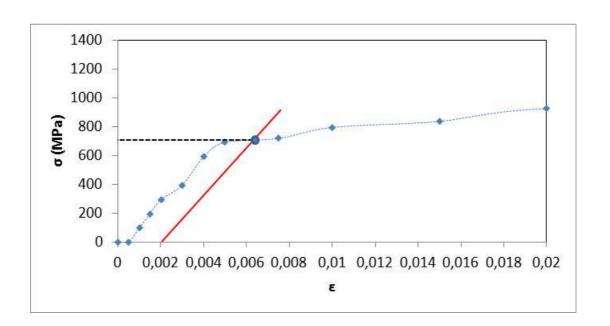
1


- a) Os três materiais têm módulos de elasticidade idênticos. (V)
- b) Os três materiais apresentam módulos de resiliência idênticos. (F)
- c) O material **C** apresenta maior limite de escoamento do que **A** ou **B**. (**V**)
- d) O material **C** apresenta maior limite de resistência do que **A** ou **B**. (**V**)
- e) O material A apresenta maior alongamento uniforme do que B. (F)
- f) O material **A** apresenta maior alongamento total (ductilidade) do que **B**. (**V**)
- g) O material **B** tem provavelmente maior tenacidade do que **C**. (**V**)
- h) O material **B** apresenta maior expoente de encruamento do que **A**. (**V**)
- i) O material **C** é provavelmente mais duro do que **A**. (**V**)
- j) Os três materiais (A, B e C) são provavelmente materiais cerâmicos. (F)

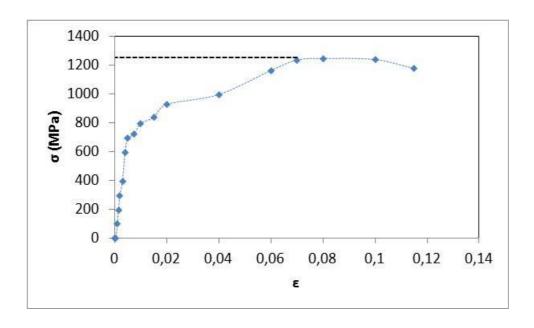
<mark>2a</mark>


Área: 128,67 mm²

Força (N)	Comprimento (mm)	Tensão σ (MPa)	Deformação ε
		$\sigma = \mathbf{F} / \mathbf{A}$	ε=Δl/l0
0	50,8	0	0
12700	50,825	98,70210616	0,00049213
25400	50,851	197,4042123	0,00100394
38100	50,876	296,1063185	0,00149606
50800	50,902	394,8084247	0,00200787
76200	50,952	592,212637	0,00299213
89100	51,003	692,469107	0,00399606
92700	51,054	720,4476568	0,005
102500	51,181	796,6114867	0,0075
107800	51,308	837,8021295	0,01
119400	51,562	927,9552343	0,015
128300	51,816	997,1244268	0,02
149700	52,832	1163,441362	0,04
159000	53,848	1235,719282	0,06
160400	54,356	1246,599829	0,07
159500	54,864	1239,605192	0,08
151500	55,88	1177,430637	0,1
124700	56,642	969,145877	0,115

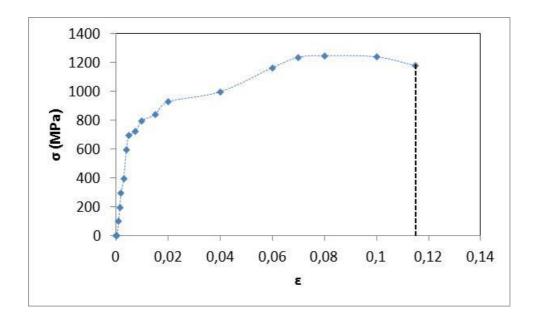

<mark>2b</mark>

Módulo Elástico: 197,5 GPa (≈ 200 GPa)

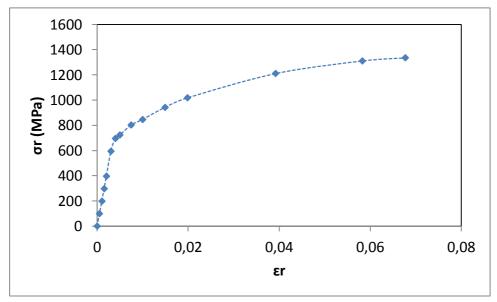


<mark>2c</mark>

Tensão de Escoamento: 750 MPa



2dLimite de Resistência a Tração: 1250 MPa


<mark>2e</mark>

Percentual de alongamento: 11,5 %

<mark>2f</mark>

Tensão Real (MPa)	Deformação Real ε	
$\sigma r = \sigma (1 + \epsilon)$	$\varepsilon r = \ln (1+\varepsilon)$	
0	0	
98,75068003	0,000492005	
197,6023937	0,001003433	
296,5493122	0,001494945	
395,6011502	0,002005861	
593,9846118	0,002987658	
695,2362572	0,0039881	
724,0498951	0,004987542	
802,5860729	0,007472015	
846,1801508	0,009950331	
941,8745628	0,014888612	
1017,066915	0,019802627	
1209,979016	0,039220713	
1309,862439	0,058268908	
1333,861817	0,067658648	
1338,773607	0,076961041	
1295,1737	0,09531018	
1080,597653	0,108854405	

OBS: As equações para a obtenção da tensão e deformação real são válidas apenas até o limite de resistência onde a deformação é uniforme.

<mark>3a</mark>

Tensão máxima onde não ocorre deformação plástica é a tensão de escoamento que nesse caso é 345 MPa, no limite elástico vale a lei de Hooke, assim:

$$\sigma = \frac{F}{A} \rightarrow F = 345 \, (MPa) \, x \, 130 \, (mm) = 44850 \, N$$

Lembrando que $Pa = N / m^2$ portanto $MPa = N / mm^2$

<mark>3b</mark>

No limite elástico vale a Lei de Hooke, portanto:

$$\sigma = E \ \epsilon \ \rightarrow \ \epsilon = \frac{345 \, (\text{MPa})}{103000 \, (\text{MPa})} = 3.35 \, \text{x} \ 10^{-3}$$

$$\varepsilon = \frac{I - I_0}{I_0} \rightarrow I = (\varepsilon \times I_0) + I_0 = [3,35 \times 10^{-3} \times 76 \text{ (mm)}] + 76 = 76,25 \text{ mm}$$

4

$$F = m \cdot a = 54 \, Kg \cdot 9.8 \, \frac{m}{s^2} = 529.2 \, \text{N}$$

$$A = \pi \cdot r^2 = \pi \cdot 10^{-6} m^2$$

$$\sigma = \frac{F}{A} = \left(\frac{529,2}{\pi}\right) \cdot 10^{-6} = 168,45 \, MPa$$

<mark>4a</mark>

A solicitação é inferior ao limite de escoamento e, portanto, ocorrerá apenas deformação elástica.

<mark>4b</mark>

Para deformação elástica vale a relação $\sigma = E_{\omega} \varepsilon$, onde E é o módulo de elasticidade

$$\varepsilon = \frac{\sigma}{E} = \frac{168,45.10^6}{207.10^9} = 0,00081$$
; ou seja 0,08%

4c

Se o arame fosse de cobre, ocorreria deformação plástica, mas o arame não se romperia, pois a solicitação (168,45 MPa) é superior ao limite de escoamento (70 MPa) e inferior ao limite de resistência (220 MPa). Neste caso, com os dados disponíveis, não é possível calcular o alongamento do fio.