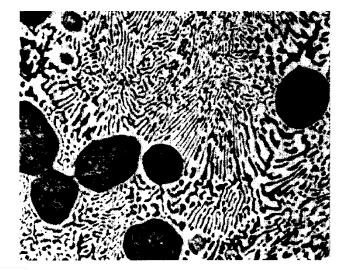
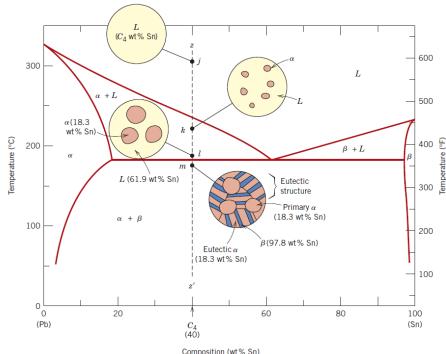


ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais

DIAGRAMAS DE FASES

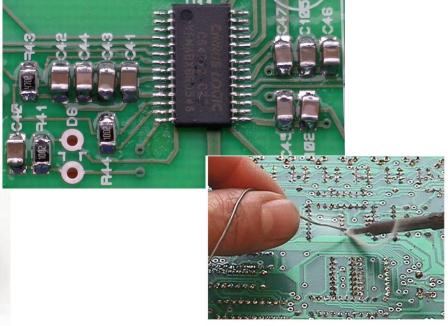

PMT 3100 - Introdução à Ciência dos Materiais para Engenharia 2° semestre de 2014

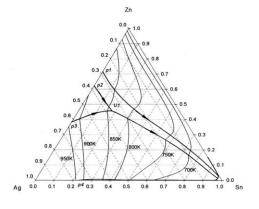

Roteiro da aula

- Importância do tema, aplicações.
- Definições : componente, sistema, fase, tipos de equilíbrios.
 - Limite de solubilidade
- Sistemas com um único componente
- Sistemas binários
 - Regra da alavanca
 - Transformações : eutética, eutetóide
- Desenvolvimento de estruturas em sistemas binários
 - em condições de equilíbrio
 - em sistemas com eutéticos
- Diagrama de fases Fe-C
 - Diagrama de fases Fe-Fe3C
 - Microestruturas eutetóides
 - Microestruturas hipoeutetóides

Por que estudar diagramas de fases?

- Os diagramas de fases relacionam temperatura, composição química e quantidade das fases em equilíbrio.
 - Um diagrama de fases é um "mapa" que mostra quais fases são as <u>mais estáveis</u> nas diferentes <u>composições</u>, <u>tempera-</u> <u>turas</u> e <u>pressões</u>.
- A <u>MICROESTRUTURA</u> dos materiais pode ser relacionada diretamente com o diagrama de fases.
- Existe uma relação direta entre as propriedades dos materiais e as suas microestruturas.


Exemplo de Diagrama de Fases Sistema Pb-Sn


Aplicações:

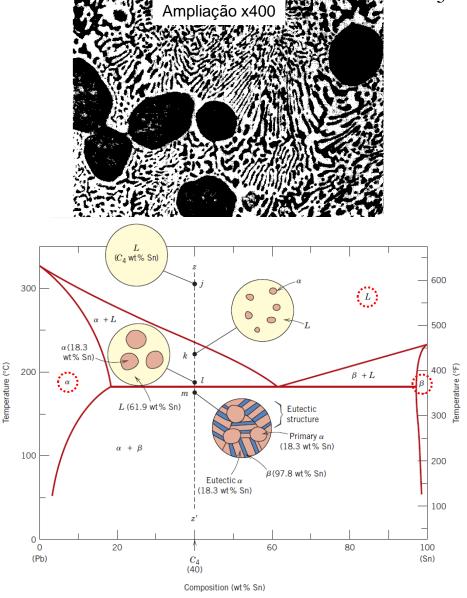
• peças fundidas como blocos de motores, soldagem branda para

aplicação em eletrônica, etc...

Definições (I):

COMPONENTES

 São <u>elementos químicos</u> e/ou compostos que constituem uma fase.


SISTEMA

- Definição 1: quantidade de matéria com massa e identidade fixas sobre a qual dirigimos a nossa atenção. Todo o resto é chamado vizinhança. Exemplo: uma barra da liga ao lado, com 40% de Sn.
- Definição 2: série de fases possíveis formadas pelos mesmos componentes, independendo da composição específica. Exemplo: o sistema Pb-Sn.

• FASE

Estado uniforme da matéria, tanto em composição química como em estado físico.

J. W. Gibbs

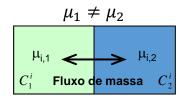
50%p Sn - 50%p Pb

Exemplo de Diagrama de Fases do Sistema Pb-Sn

Definições: tipos de equilíbrio

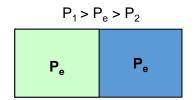
Equilíbrio mecânico

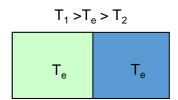
- Parede não rígida: móvel
- Propriedade termodinâmica: pressão.

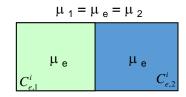

Equilíbrio térmico

- Parede diatérmica: permite o fluxo de calor
- Propriedade termodinâmica: temperatura.

Equilíbrio de fases


- · Parede permeável
- Propriedade termodinâmica: potencial químico

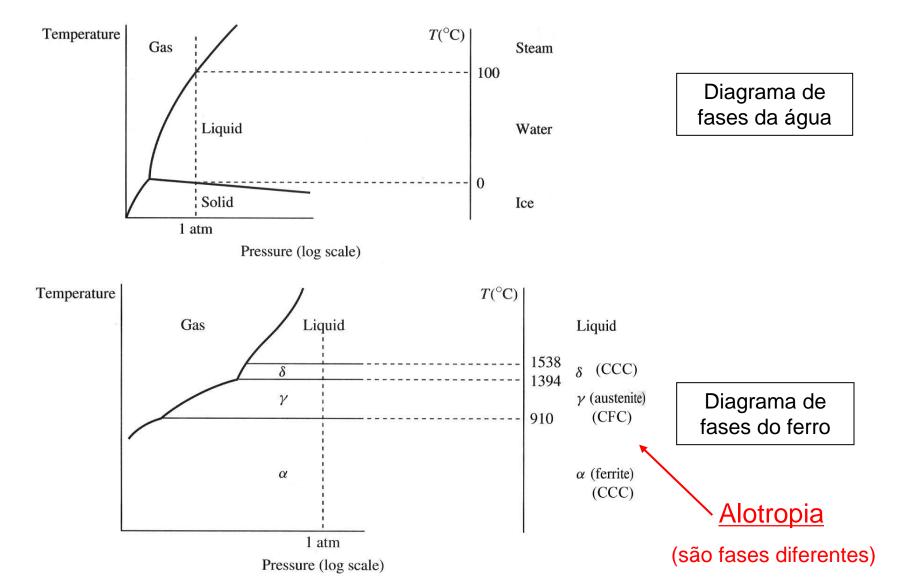




inicial

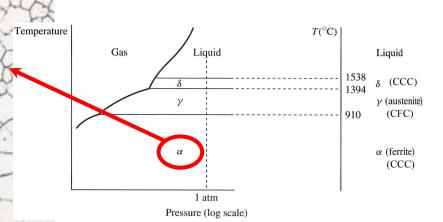
$$\mu_i = \left(\frac{\partial G}{\partial N_i}\right)_{p,T,N}$$

final

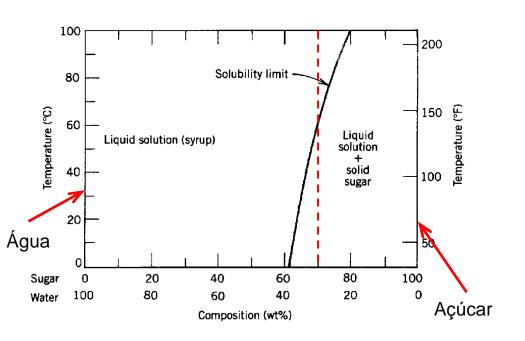

Definições: equilíbrio termodinâmico

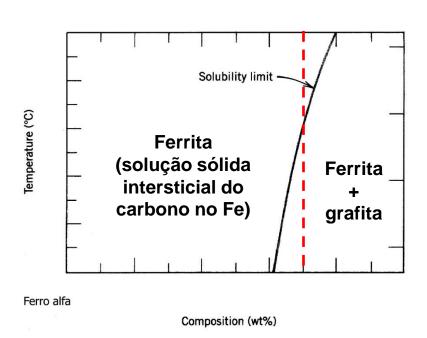
Dois sistemas estão em equilíbrio termodinâmico quando estão simultaneamente em:

- Equilíbrio mecânico.
- 2. Equilíbrio térmico.
- 3. Equilíbrio de fases.


Sistemas com um único componente

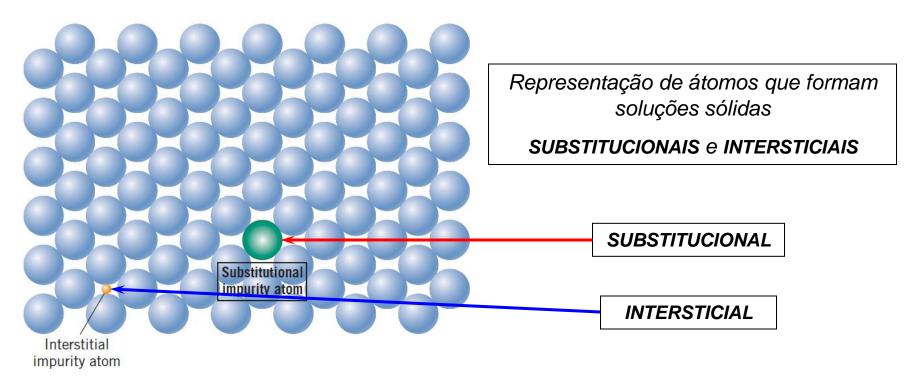
• O equilíbrio entre duas fases num sistema monocomponente chama-se equilíbrio *univariante*.


Diagrama de equilíbrio de fases unário do Fe



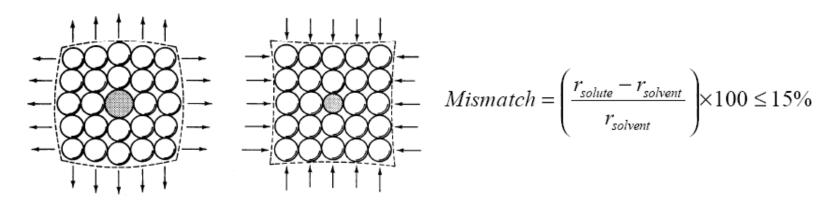
Aço	Composição química (%p)									
	С	Mn	Si	P	S	Al	Ti	Nb	N	
Ti I	0,0029	0,098	0,007	0,008	0,0074	0,055	0,0537	0,005	0,0019	
Ti 2	0,0031	0,090	0,006	0,008	0,0108	0,047	0,0571	0,005	0,0022	
Nb-Ti I	0,0028	0,108	0,001	0,007	0,0096	0,034	0,0202	0,022	0,0023	
Nb-Ti 2	0,0027	0,089	0,005	0,005	0,0082	0,028	0,0193	0,022	0,0035	

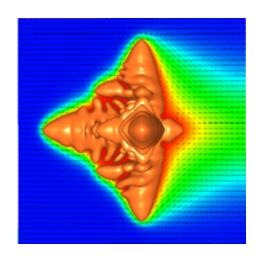
Limite de solubilidade


Concentração máxima de átomos ou moléculas de soluto que pode ser dissolvida no solvente formando uma solução

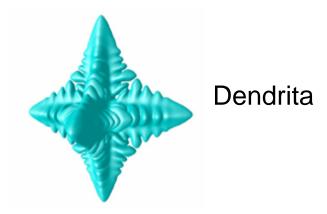
Parte do diagrama de fases Fe-C (esquemático)

Tipos de soluções sólidas (revisão)


Como se forma uma solução sólida?


Resposta:

- Mistura-se os dois componentes no estado líquido e forma-se a solução sólida durante a solidificação
- Por processos que envolvam difusão no estado sólido (p.ex:"mechanical alloying")


Regras de Hume-Rothery para solubilidade no estado sólido

- <u>Regra 1</u>: solução sólida substitucional ilimitada ocorre quando a diferença entre os raios atômicos dos componentes for menor que 15%. Se for maior que este valor, a solubilidade é limitada.
- Regra 2: uma solução sólida com solubilidade extensa é mais provável quando os dois componentes devem ter a mesma estrutura cristalina.
- Regra 3: um componente (A) dissolve mais um outro componente (B) com valência maior que (A), do que com valência menor que (A). O ideal é que os dois tenham a mesma valência.
- Regra 4: quanto menor a diferença de eletronegatividade entre os dois componentes, maior a possibilidade de formar solução sólida extensa.

Tipos de diagramas de fase

Diagramas de equilíbrio de fase isomorfos

 Num sistema binário isomorfo, os dois componentes são completamente solúveis um no outro.

Regra de Hume-Rothery

Compon.	Raio atômico	Mis- match	Estrut. crist.	Valên- cia	Eletro- neg.
Ni (solvente)	0,125 nm	2,3%	CFC	2+	1,9
Cu (soluto)	0,128 nm	2,3%	CFC	1+	1,9

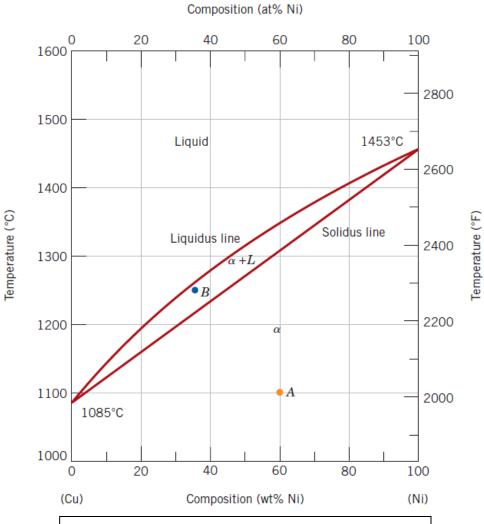
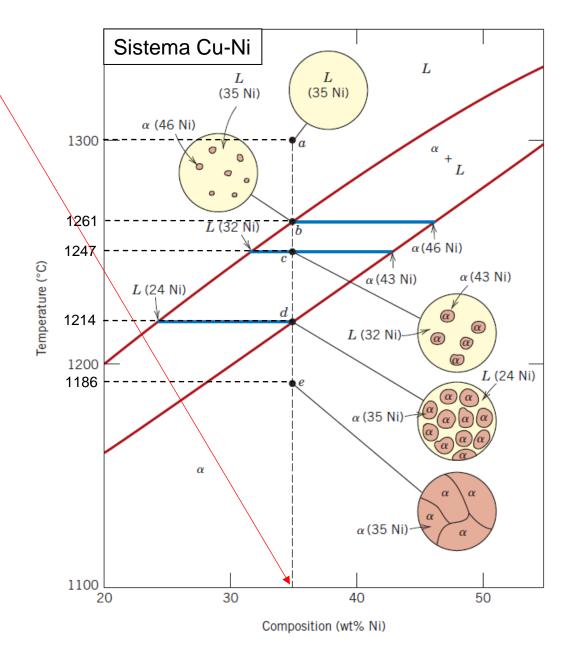
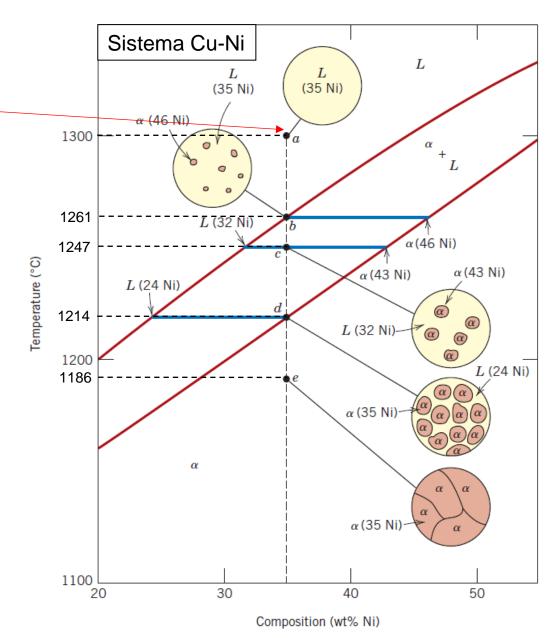
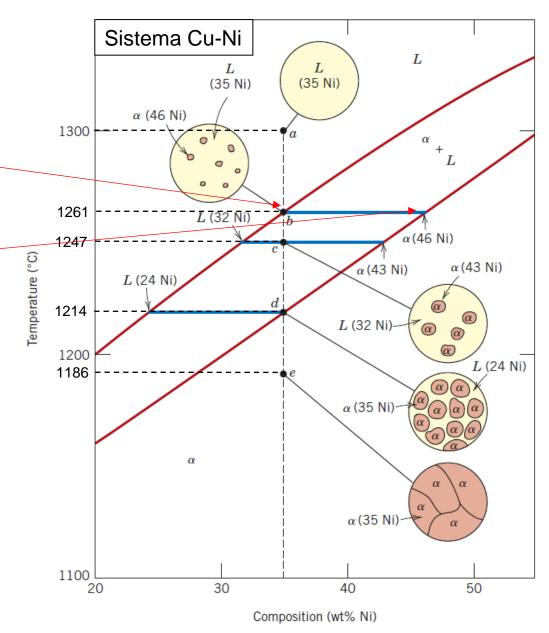
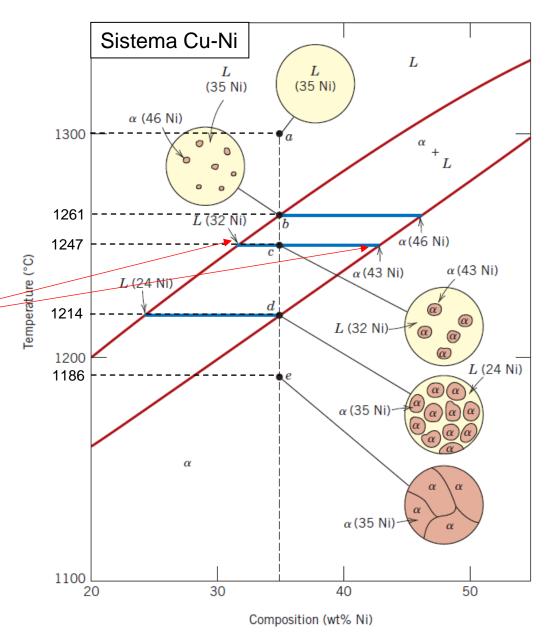
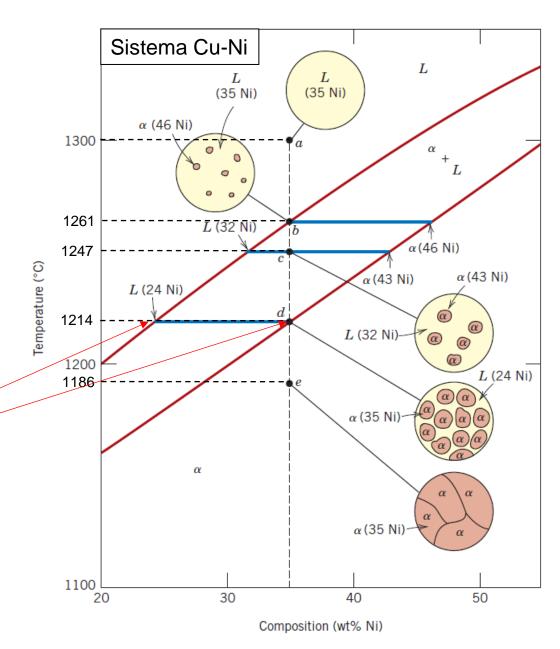
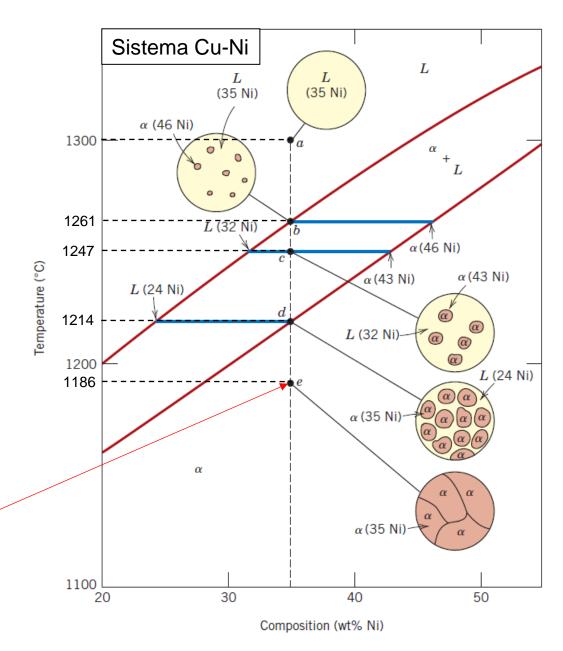




Diagrama de fases do Sistema Cu - Ni

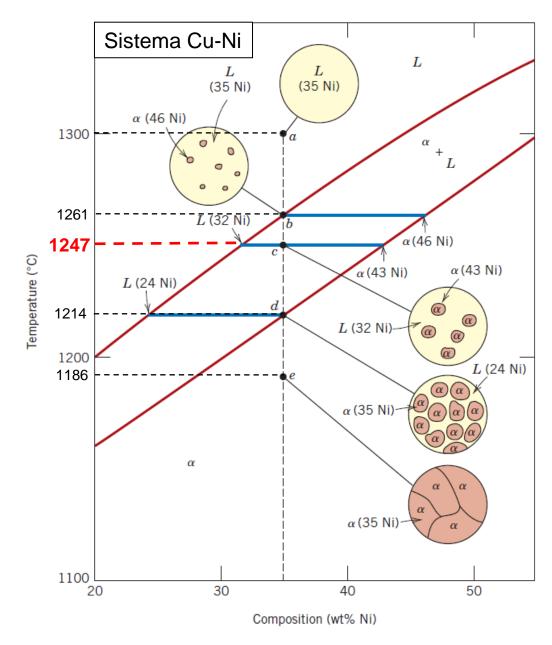

- A leitura de diagramas de fases é feita primeiramente definindo-se uma liga de interesse, como por exemplo 35% Ni.
- Na temperatura de 1300°C (ponto a) a fase em equilíbrio termodinàmico é a fase líquida com 35% de Ni.
- Na temperatura de 1261°C (ponto b) , que é a <u>temperatura líquidus</u> desta liga, começa a solidificação. Nesta temperatura estão em equilíbrio termodinâmico o líquido com 35% de Ni e os primeiros núcleos de sólido com 46% de Ni.
- Na temperatura de 1247°C (ponto c) estão em equilíbrio termodinâmico o líquido com 32% de Ni e o sólido com 43% de Ni.
- Na temperatura de 1214°C (ponto d), que é a <u>temperatura solidus</u> desta liga estão em equilibrio termodinâmico o último líquido com 24% de Ni e o sólido com 35% de Ni.
- Na temperatura de 1186°C (ponto a) a fase em equilíbrio termodinàmico é a fase sólida com 35% de Ni, que apresenta a microestrutura da liga de interesse.


- A leitura de diagramas de fases é feita primeiramente definindo-se uma liga de interesse, como por exemplo 35% Ni.
- Na temperatura de 1300°C (ponto a) afase em equilíbrio termodinâmico é a fase líquida com 35% de Ni.
- Na temperatura de 1261°C (ponto b), que é a temperatura líquidus desta liga, começa a solidificação. Nesta temperatura estão em equilíbrio termodinâmico o líquido com 35% de Ni e os primeiros núcleos de sólido com 46% de Ni.
- Na temperatura de 1247°C (ponto c) estão em equilíbrio termodinâmico o líquido com 32% de Ni e o sólido com 43% de Ni.
- Na temperatura de 1214°C (ponto d), que é a temperatura solidus desta liga estão em equilibrio termodinâmico o último líquido com 24% de Ni e o sólido com 35% de Ni.
- Na temperatura de 1186°C (ponto a) a fase em equilíbrio termodinâmico é a fase sólida com 35% de Ni, que apresenta a <u>microestrutura da liga</u> de interesse.


- A leitura de diagramas de fases é feita primeiramente definindo-se uma liga de interesse, como por exemplo 35% Ni.
- Na temperatura de 1300°C (ponto a) a fase em equilíbrio termodinâmico é a fase líquida com 35% de Ni.
- Na temperatura de 1261°C (ponto b) , que é a temperatura líquidus desta liga, começa a solidificação. Nesta temperatura estão em equilíbrio termodinâmico o líquido com 35% de Ni e os primeiros núcleos de sólido com 46% de Ni.
- Na temperatura de 1247°C (ponto c) estão em equilíbrio termodinâmico o líquido com 32% de Ni e o sólido com 43% de Ni.
- Na temperatura de 1214°C (ponto d) que é a temperatura solidus desta liga estão em equilibrio termodinâmico o último líquido com 24% de Ni e o sólido com 35% de Ni.
- Na temperatura de 1186°C (ponto a) a fase em equilíbrio termodinàmico é a fase sólida com 35% de Ni, que apresenta a microestrutura da liga de interesse.


- A leitura de diagramas de fases é feita primeiramente definindo-se uma liga de interesse, como por exemplo 35% Ni.
- Na temperatura de 1300°C (ponto a) a fase em equilíbrio termodinâmico é a fase líquida com 35% de Ni.
- Na temperatura de 1261°C (ponto b), que é a temperatura líquidus desta liga, começa a solidificação. Nesta temperatura estão em equilíbrio termodinâmico o líquido com 35% de Ni e os primeiros núcleos de sólido com 46% de Ni.
- Na temperatura de 1247°C (ponto c) estão em equilíbrio termodinâmico o líquido com 32% de Ni e o sólido com 43% de Ni.
- Na temperatura de 1214°C (ponto d), que é a temperatura solidus desta liga estão em equilibrio termodinâmico o último líquido com 24% de Ni e o sólido com 35% de Ni.
- Na temperatura de 1186°C (ponto a) a fase em equilíbrio termodinâmico é a fase sólida com 35% de Ni, que apresenta a microestrutura da liga de interesse.

- A leitura de diagramas de fases é feita primeiramente definindo-se uma liga de interesse, como por exemplo 35% Ni.
- Na temperatura de 1300°C (ponto a) a fase em equilíbrio termodinâmico é a fase líquida com 35% de Ni.
- Na temperatura de 1261°C (ponto b) , que é a <u>temperatura líquidus</u> desta liga, começa a solidificação. Nesta temperatura estão em equilíbrio termodinâmico o líquido com 35% de Ni e os primeiros núcleos de sólido com 46% de Ni.
- Na temperatura de 1247°C (ponto c) estão em equilíbrio termodinâmico o líquido com 32% de Ni e o sólido com 43% de Ni.
- Na temperatura de 1214°C (ponto d), que é a temperatura solidus desta liga estão em equilibrio termodinâmico o último líquido com 24% de Ni e o sólido com 35% de Ni.
- Na temperatura de 1186°C (ponto a) a fase em equilíbrio termodinàmico é a fase sólida com 35% de Ni, que apresenta a microestrutura da liga de interesse.



- A leitura de diagramas de fases é feita primeiramente definindo-se uma liga de interesse, como por exemplo 35% Ni.
- Na temperatura de 1300°C (ponto a) a fase em equilíbrio termodinâmico é a fase líquida com 35% de Ni.
- Na temperatura de 1261°C (ponto b) que é a temperatura líquidus desta liga, começa a solidificação. Nesta temperatura estão em equilíbrio termodinâmico o líquido com 35% de Ni e os primeiros núcleos de sólido com 46% de Ni.
- Na temperatura de 1247°C (ponto c) estão em equilíbrio termodinâmico o líquido com 32% de Ni e o sólido com 43% de Ni.
- Na temperatura de 1214°C (ponto d), que é a <u>temperatura solidus</u> desta liga estão em equilibrio termodinâmico o último líquido com 24% de Ni e o sólido com 35% de Ni.
- Na temperatura de 1186°C (ponto a) a fase em equilíbrio termodinâmico é a fase sólida com 35% de Ni, que apresenta a microestrutura da liga de interesse.

Como pode existir, a partir da composição química do líquido 35% Ni, em condições de equilíbrio termodinâmico a 1247°C, um líquido com 32% de Ni e um sólido com 43% Ni?

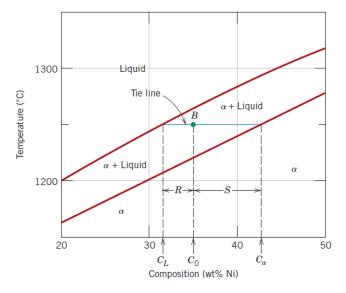
Resposta: A massa é
conservada, logo as
quantidades das fases em
equilíbrio termodinâmico não
podem ser iguais nesta
temperatura.

Regra da alavanca

É usada para se determinar as quantidades das fases em equilíbrio em um campo de duas fases.

Dedução

- → Chega-se à regra das alavancas simplesmente através de um balanço de massa.
- ightharpoonup Consideremos W_L e W_{\alpha} as frações mássicas, Respectivamente, da fase líquida, L, e da fase sólida, \alpha.
- \rightarrow Cada componente do sistema pode estar em cada uma das fases, em concentração C_L (no líquido) e C_α (no sólido)
- → As duas equações abaixo podem ser escritas:


$$W_{L} + W_{\alpha} = 1 \rightarrow W_{L} = 1 - W_{\alpha} \quad (eq.I)$$

$$W_{L} C_{L} + W_{\alpha} C_{\alpha} = C_{0} \quad (eq.II)$$

$$(1 - W_{\alpha}) C_{L} + W_{\alpha} C_{\alpha} = C_{0}$$

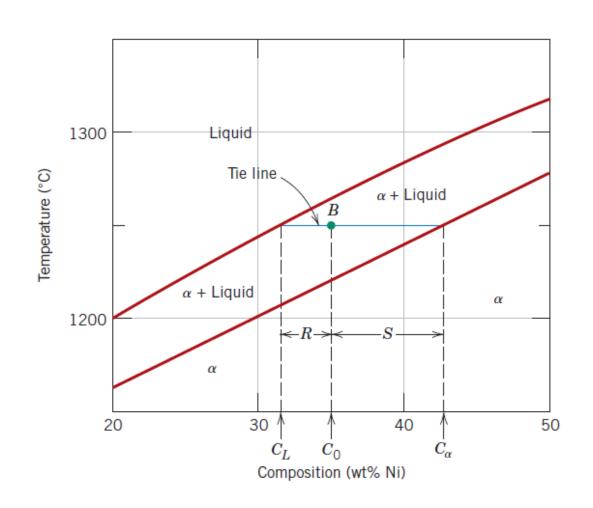
$$C_{L} - W_{\alpha} C_{L} + W_{\alpha} C_{\alpha} = C_{0}$$

 $W_{\alpha} (C_{\alpha} - C_{L}) = C_{0} - C_{L}$

$$W_{\alpha} = \frac{C_0 - C_L}{C_{\alpha} - C_L}$$

Se, ao invés de isolar W_L na (eq.I) isolarmos W_α , chega-se à equação da fração de fase líquida.

Regra da alavanca


É usada para se determinar as proporções das fases em equilíbrio em um campo de duas fases

FRAÇÃO DE LÍQUIDO

$$W_L = \frac{S}{R + S}$$

$$W_L = \frac{C_{\alpha} - C_O}{C_{\alpha} - C_L}$$

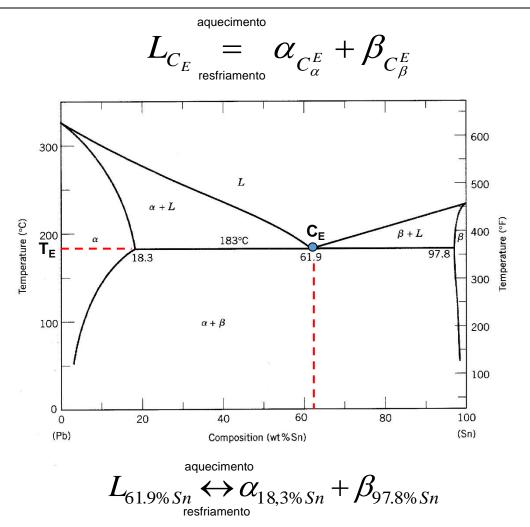
$$W_{L} = \frac{42.5 - 35}{42.5 - 31.5} = 0.68$$

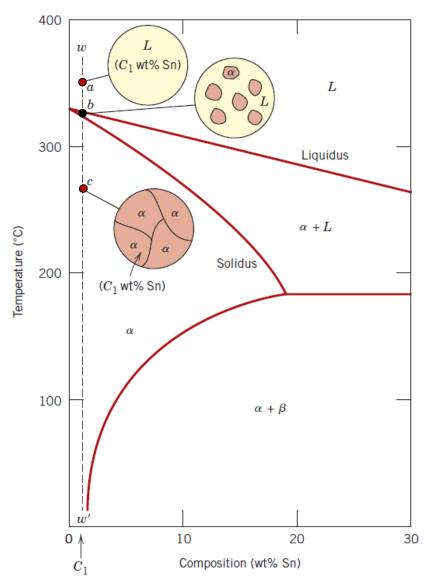

Regra da alavanca

FRAÇÃO DE SÓLIDO

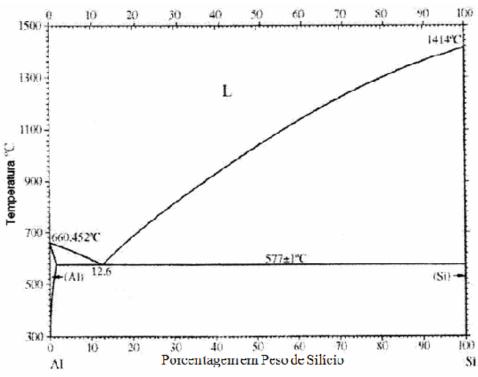
$$W_{\alpha} = \frac{R}{R + S}$$

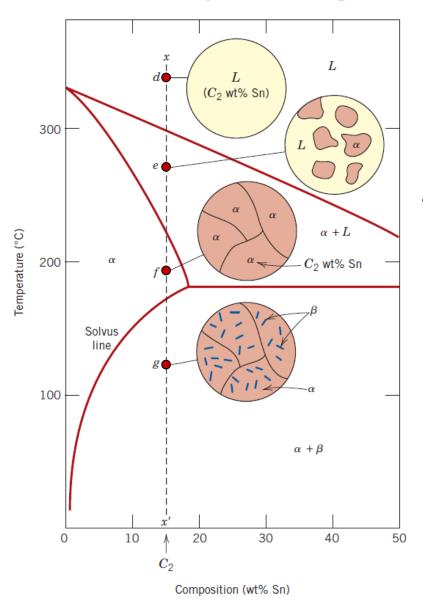
$$=\frac{C_O-C_L}{C_\alpha-C_L}$$


$$=\frac{35-31,5}{42,5-31,5}=0,32$$

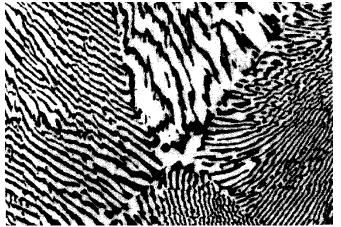

Diagramas de fase binários com três fases em equilíbrio

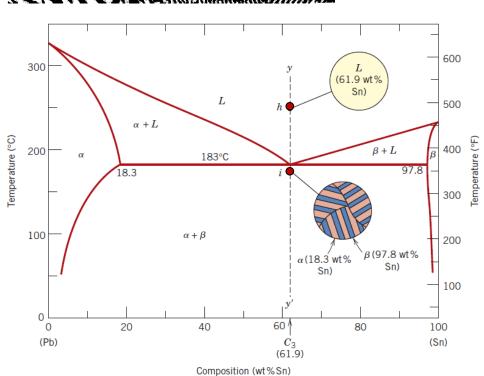
Diagramas de fase eutéticos

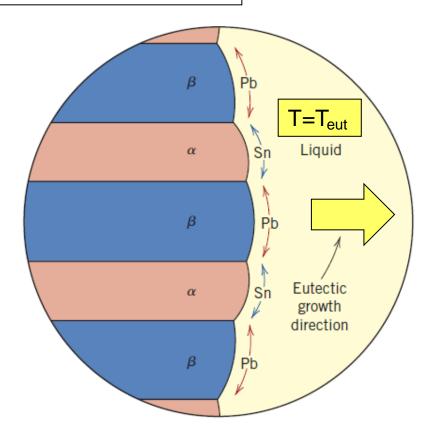

<u>Eutético</u>: O equilíbrio entre três fases ocorre a uma determinada temperatura (T_E) e a uma determinada composição (C_E) , formando dois sólidos também com composições fixas.


Microestrutura monofásica

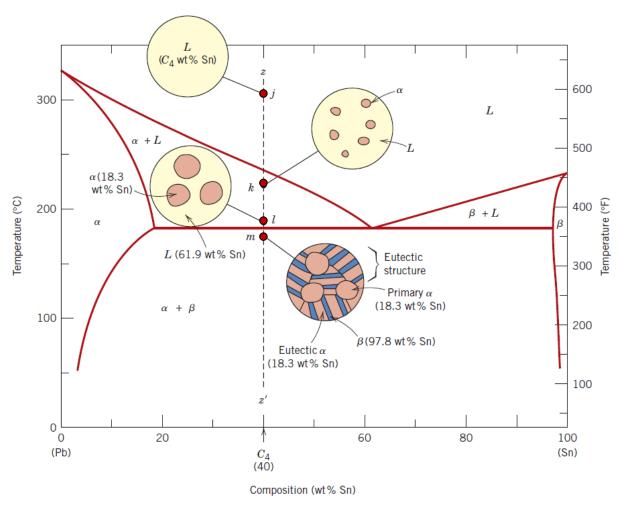
 É comum ser muito pequena a faixa de composições químicas em que pode se formar uma estrutura monofásica (por exemplo, α).

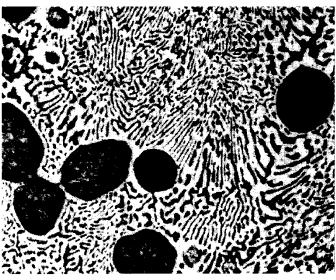

Precipitação de β em α .


PRECIPITAÇÃO


 Ao ser ultrapassado o limite de solubilidade (*linha solvus*) de Sn no Pb, ocorre a precipitação da fase β, de reticulado cristalino distinto do da fase α e com distintas propriedades físicoquímicas.

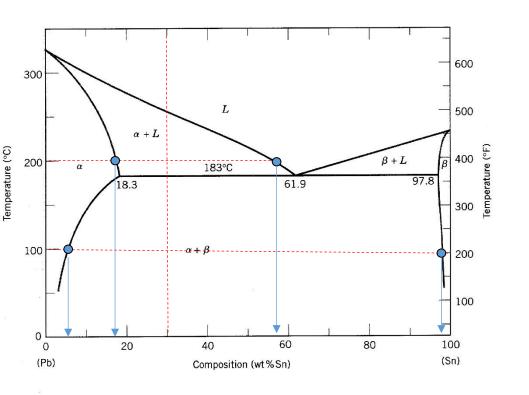
Eutéticos


A transformação eutética corresponde à formação de <u>uma mistura de</u> <u>duas fases</u> (α + β) <u>a partir do líquido</u> formando um arranjo interpenetrado



Crescimento cooperativo

Hipo-eutéticos.



Em ligas hipo-eutéticas ocorre inicialmente precipitação de fase primária - dendritas de α pró-eutéticas.

O líquido eutético residual L $_{(61,9\% \text{ Sn})}$ se transforma em microestrutura eutética $[\alpha_{(18,3\% \text{ Sn})}+\beta_{(97,8\% \text{Sn})}].$

Diagramas de fase eutéticos

Liga Pb30%Sn

200° C

- lpha 2 fases: lpha e L
- Fase α: 17%Sn
- Fase L: 57%Sn
- $M_{\alpha} = (57-30)*100/(57-17)=67,5\%$
- $M_1 = (30-17)*100/(57-17)=32,5\%$

100° C

- 2 fases: α e b
- Fase α: 5%Sn
- Fase β: 97%Sn
- $M_{\alpha} = (97-30)*100/(97-5)=72,8\%$
- $M_B=100-M_\alpha=27,2\%$

Outros tipos de diagramas

Eutectic	$L \rightarrow \alpha + \beta$	α $\alpha + \beta$ β
Peritectic	$\alpha + L \longrightarrow \beta$	$\alpha \rightarrow L$ β
Monotectic	$L_1 \rightarrow L_2 + \alpha$	Miscibility L_1 α $\alpha + L_2$
Eutectoid	$\gamma \rightarrow \alpha + \beta$	α $\alpha + \beta$ β
Peritectoid	$\alpha + \beta \rightarrow \gamma$	$\alpha + \beta$ β

(c)2003 Brooks Cole, a division of Thomson Learning, Inc. Thomson Learning, is a trademark used herein under ticense.

Diagrama de Fases Fe-C

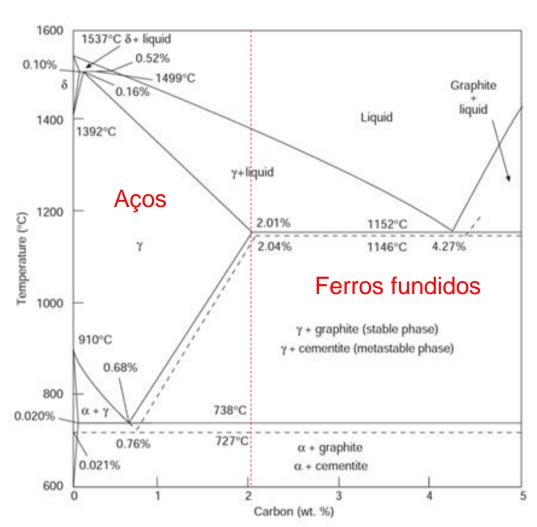
A metalurgia do ferro é uma das bases da civilização há pelo menos 2.500 anos e é um dos pilares da sociedade industrial.

- O C forma uma solução sólida intersticial com o Fe, mas com solubilidade limitada
- Atingido o limite de solubilidade forma-se o composto Fe₃C um carbeto de ferro chamado cementita,.
- A solubilidade do C na ferrita é muito baixa (0,020 %) comparada com a solubilidade na austenita (2,04 %)
- FERRITA (solução sólida intersticial do C no Fe-α)

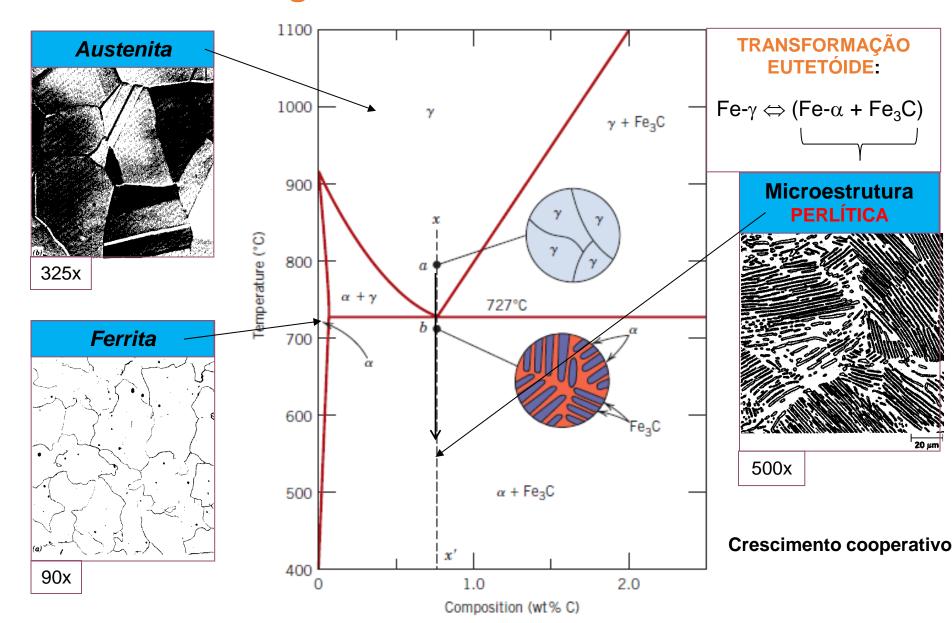
 \checkmark Fe-α : CCC

 AUSTENITA (solução sólida intersticial do C no Fe-γ)

√Fe-γ : CFC


 FERRITA δ (solução sólida intersticial do C no Fe-δ)

√Fe-δ : CCC


CEMENTITA

√Fe₃C

- PERLITA (não é fase, é morfologia)
 - ✓ Microestrutura formada por lamelas alternadas Fe₃C e ferrita

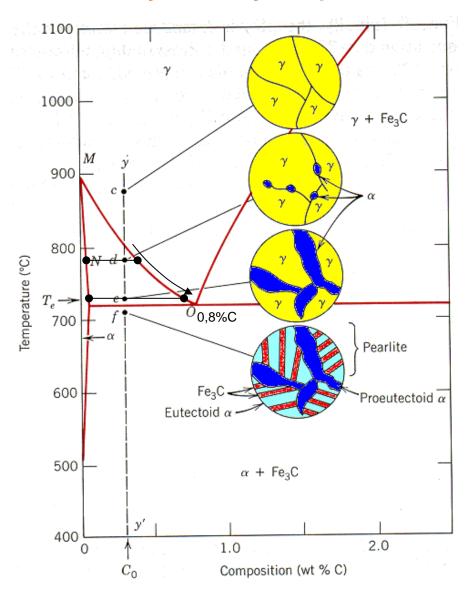


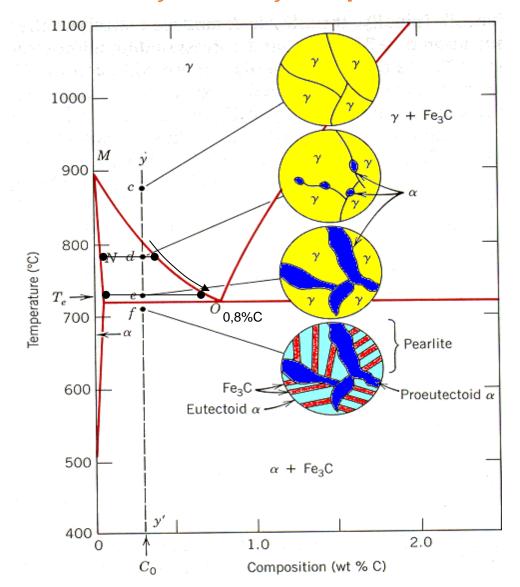
Diagrama de Fases Fe-Fe₃C

Diagrama de Fases Fe-Fe₃C

Transformação nos Aços Hipoeutetóides

Ponto c: Grãos de Austenita (γ) CFC

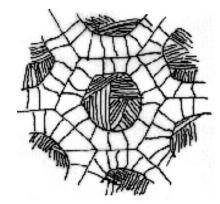
Ponto d: Nucleação e crescimento da ferrita (α – CCC) nos contornos de grão da austenita (γ – CFC).



Os contornos de grão apresentam elevada energia interfacial que é aproveitada facilitando a nucleação da nova fase.

Ponto e: Aumento da proporção de ferrita na austenita.

Diagrama de Fases Fe-Fe₃C

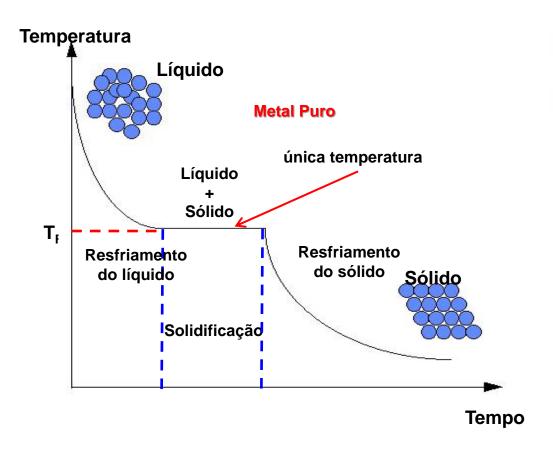

Transformação nos Aços Hipoeutetóides

Microestrutura de um aço 0,38% C resfriado lentamente (isto é, *em condições próximas ao equilíbrio*).

Ponto f: Crescimento de perlita a partir da austenita de composição eutetóide abaixo da temperatura eutetóide.

RESUMO

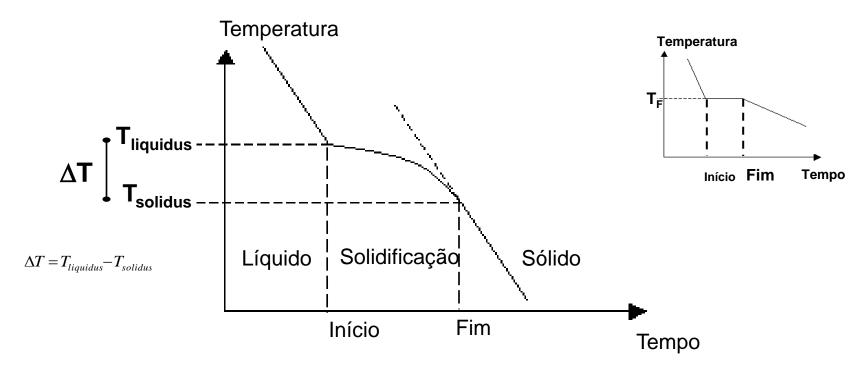
- Os diagramas de fases permitem o conhecimento das fases (número, quantidades e composições) presentes em determinada temperatura (e pressão) num dado material com composição química conhecida, em equilíbrio termodinâmico.
- A regra das fases de Gibbs (P + F = C + N) permite identificar o número de fases (P) associadas a uma condição de estado, a qual é definida como um conjunto de valores de temperatura (N) (e pressão), número de componentes (C) e outras variáveis necessárias para descrição do material (F).
- São pontos invariantes mais comuns: a fusão do componente puro e as transformações eutética, eutetóide, peritética e peritetóide (estas duas últimas a serem introduzidas em aulas posteriores)
- Num diagrama de fases, a regra da alavanca permite a determinação da quantidade relativa das fases em equilíbrio.


- Capítulos do Callister (7^a ed., 2008) tratados nesta aula
 - Itens do Capítulo 9: 9.1 A 9.12, 9.17

- Outras referências importantes
 - Callister 5 ^aed. Capítulo 9 do 9.1 até 9.7; 9.12
 - Shackelford, J. F. Ciência dos Materiais, 6^a ed., 2008. Cap. 9
- Van Vlack, L. Princípios de Ciência dos Materiais, 3ª ed.
 - os temas tratados nesta aula estão dispersos pelo livro do Van Vlack, e não são completamente cobertos nessa referência; os itens que apresentam assuntos tratados na aula são os seguintes:
 - Itens 9-1 a 9-9; 9-15; 10-9

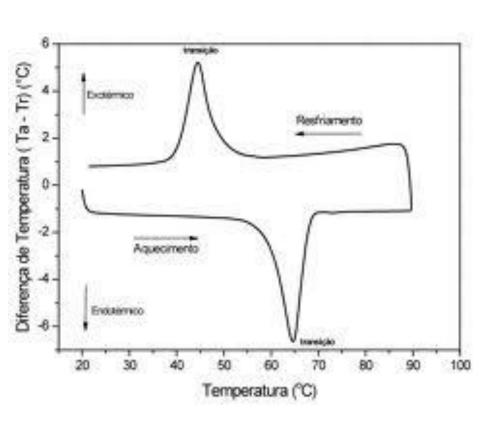
ANEXOS

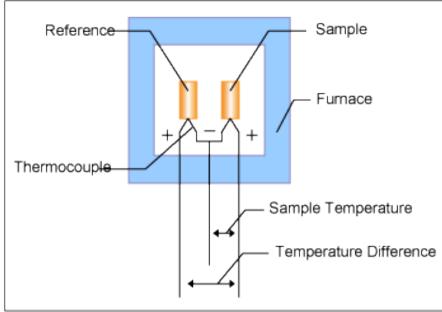
Como se constrói experimentalmente um diagrama de fases?


• <u>Análise térmica</u>: Técnica experimental termo-analítica que identifica mudanças de estado em função da temperatura as quais envolvem geração de entalpia. Por exemplo, a passagem do estado líquido para o estado sólido.

Copo em Shell Molding com termopar

Análise térmica da solidificação: liga metálica

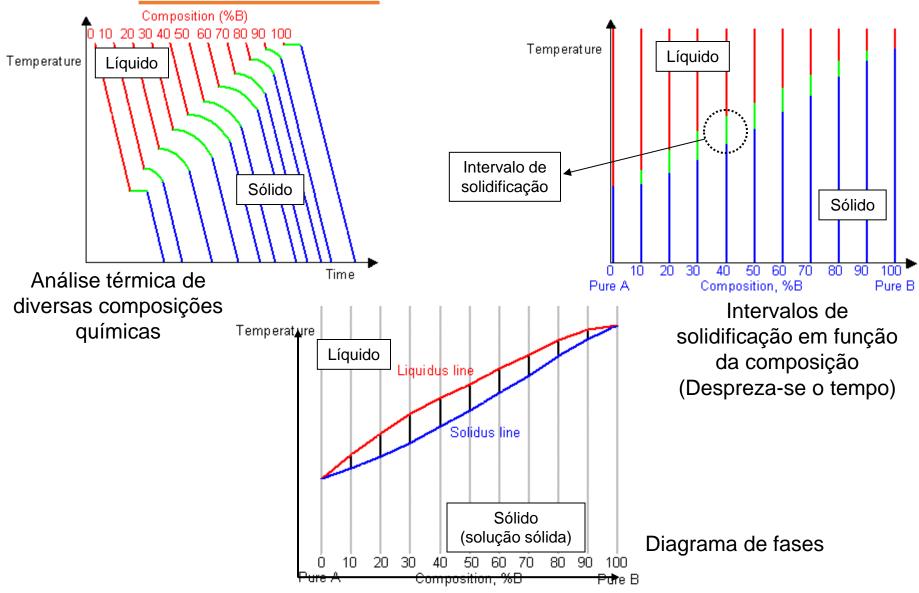



a <u>solidificação</u> ocorre em um <u>INTERVALO DE TEMPERATURA (△T)</u>.

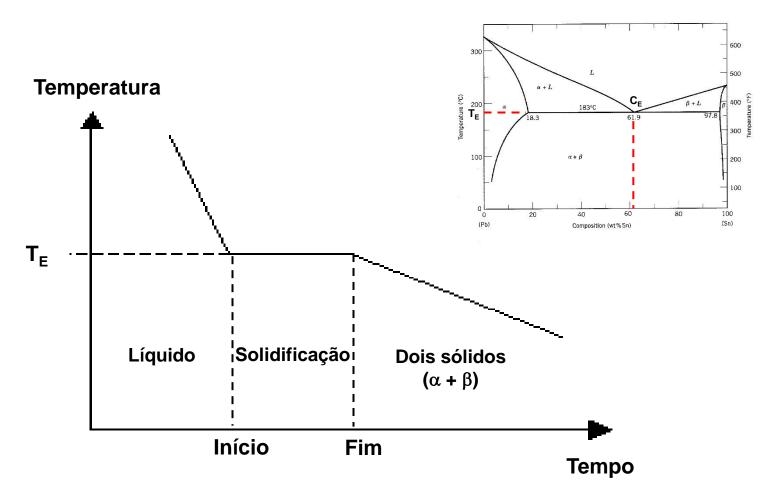
<u>Temperatura liquidus</u> = temperatura onde existe equilíbrio entre o líquido e os primeiros núcleos de sólido que se formaram. Acima desta temperatura a fase líquida é a fase estável.

<u>Temperatura solidus</u> = temperatura abaixo da qual o material é completamente sólido.

Análise Térmica Diferencial

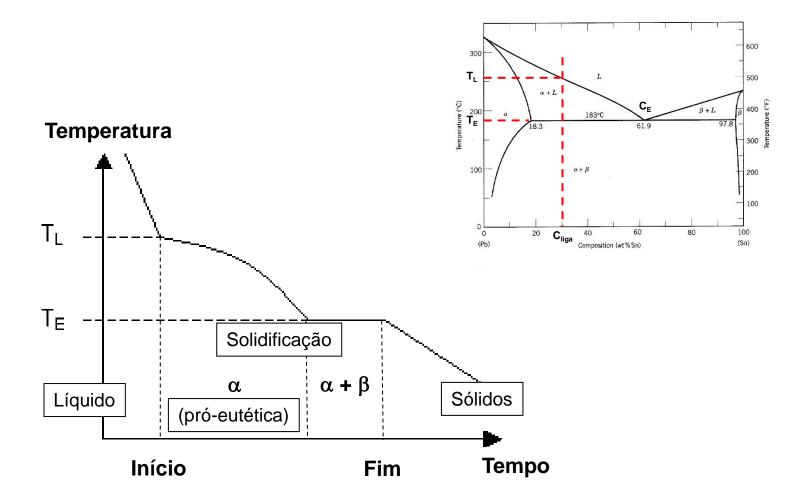


Outros métodos


- Metalografia óptica e eletrônica
- Difração de raios-X
- Dilatometria

•

Diagrama de fase de uma liga A-B por análise térmica



Análise térmica da solidificação: liga eutética.

• a <u>solidificação</u> ocorre em uma <u>TEMPERATURA CONSTANTE</u>, a temperatura eutética (T_E).

Análise térmica da solidificação: liga hipoeutética.

Regra das fases ou Lei das Fases de Gibbs

$$P + F = C + N$$

- **P** = número de fases presentes
- C = número de componentes do sistema
- **N** = número de variáveis além da composição química das fases. Por exemplo: temperatura e pressão.
- **F** = graus de liberdade
 - Número de variáveis externas controláveis que são especificadas para definir completamente o estado de um sistema. Esta variáveis podem ser alteradas de forma independente sem alterar o número de fases existente no sistema.
- A regra das fases <u>representa</u> um critério para o <u>número de</u> <u>fases</u> que coexistirão num sistema no equilíbrio.
- A regra das fases <u>não representa</u> um critério para <u>quantidade</u> <u>relativa</u> das fases que coexistem num sistema no equilíbrio.

Regra das fases de Gibbs aplicada em um diagrama de fases isomorfo

$$P + F = C + N$$

N = variáveis além da composição quimica = 1 (pressão é constante)

Ponto A

C = componentes = 1 (Cu)

P = número de fases = 2 (sólido e líquido).

$$2 + F = 1 + 1$$

$$F = 0$$

Assim, o ponto A é um **ponto invariante**, isto é, a temperatura de fusão do cobre puro é única.

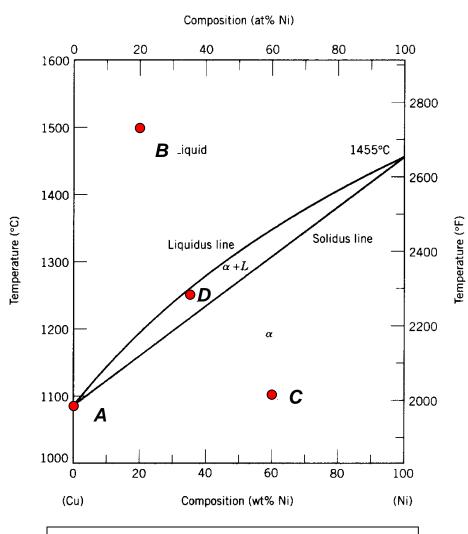


Diagrama de fases do Sistema Cu - Ni

Regra das fases de Gibbs aplicada em um diagrama de fases isomorfo

$$P + F = C + N$$

N = variáveis além da composição quimica = 1 (pressão é constante)

Ponto B ou Ponto C

C = componentes = 2 (Cu e Ni)

P = número de fases = 1 (ponto B fase líquida e no ponto C a fase sólida).

$$\boxed{1 + F = 2 + 1}$$
$$\boxed{F = 2}$$

Assim, nos pontos B e C são necessárias duas variáveis para definir o estado do sistema, a composição química e a temperatura. Em B a temperatura é de 1500°C e a composição de 20% de Ni. Em C a temperatura é de 1100°C e a composição é de 60% de Ni.

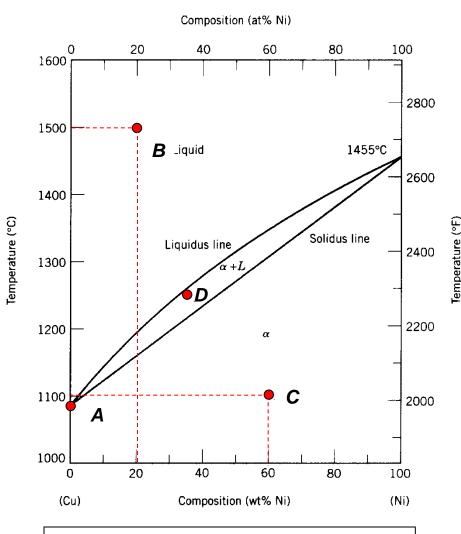
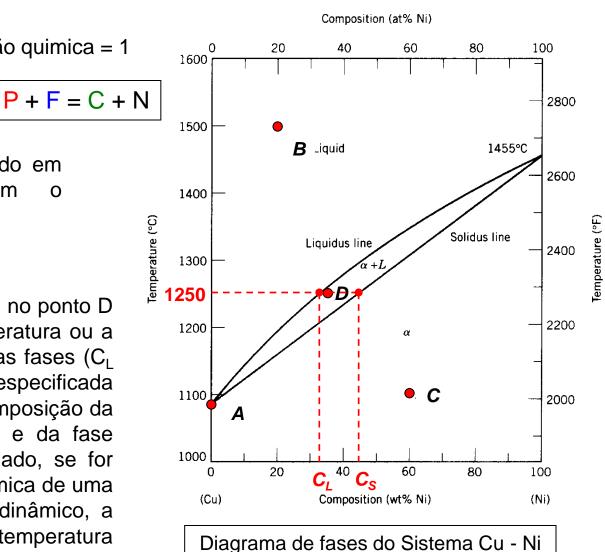


Diagrama de fases do Sistema Cu - Ni

Regra das fases de Gibbs aplicada em um diagrama de fases isomorfo.


N = variáveis além da composição quimica = 1 (pressão é constante)

Ponto D

C = componentes = 2 (Cu e Ni)

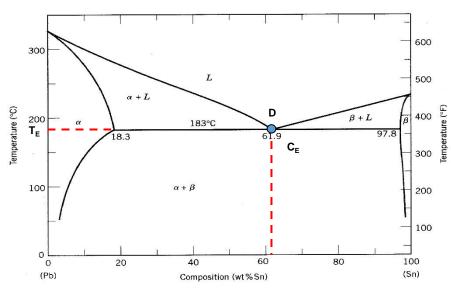
P = número de fases = 2 (sólido em equilíbrio termodinâmico com o líquido). 2 + F = 2 + 1

Assim, para descrever o estado no ponto D basta uma variável, ou a temperatura ou a composição qúimica de uma das fases (C_L ou C_S). Desta maneira, se for especificada a temperatura de 1250°C, a composição da fase líquida é de 33% de Ni e da fase sólida de 44% Ni. Por outro lado, se for especificada a composição química de uma das fases em equilíbrio termodinâmico, a composição da outra fase e a temperatura são automaticamente definidas.

Regra das fases de Gibbs diagrama de fases binário com três fases em equilíbrio

$$P + F = C + N$$

N = variáveis além da composição quimica = 1 (pressão é constante)

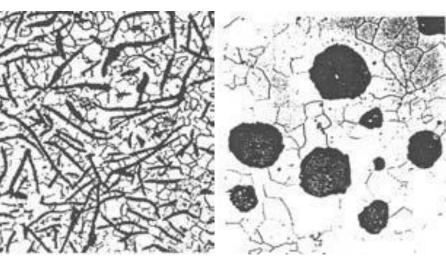

Ponto D

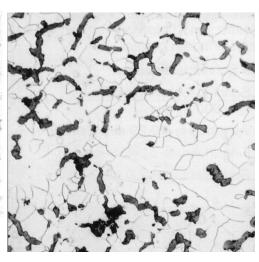
C = componentes = 2 (Pb e Sn)

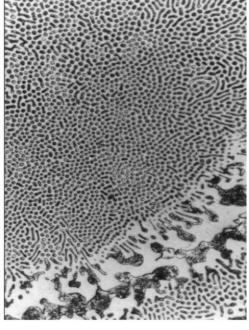
P = número de fases = 3.

$$3 + F = 2 + 1$$

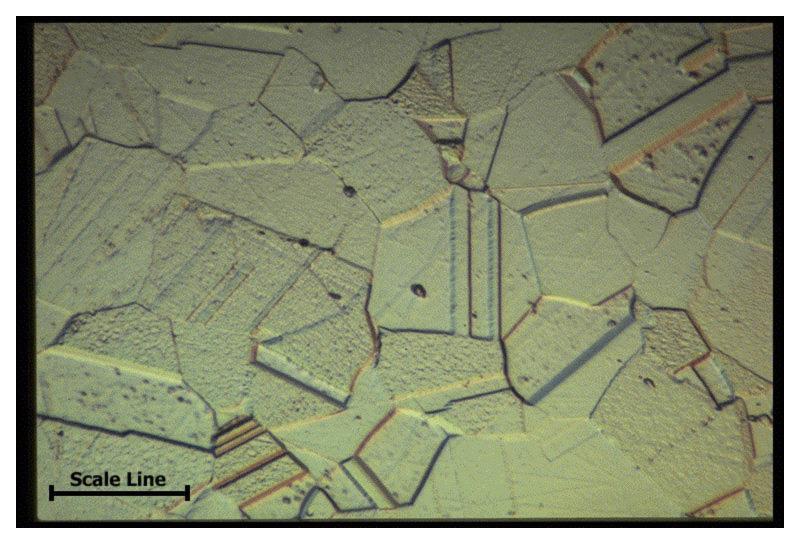
Assim, <u>o equilíbrio de três fases é invariante</u>, isto é, sua temperatura é única e as composição das fases envolvidas também são únicas.




$$L \rightarrow S_1 + S_2 = \text{eut\'etico}$$


$$S \rightarrow S_1 + S_2 = \text{eutet\'oide}$$

Sistema Fe-C


- •Região do eutético: ferros fundidos (fofo)
 - A forma da grafita determina o tipo de fofo
 - •Cinzento: grafita em flocos ou plaquetas
 - •Nodular: grafita em esferas (nódulos)
 - •Vermicular: mistura das anteriores
 - −Para o sistema Fe-Fe₃C:
 - Ferro fundido branco

MICROESTRUTURA Liga Cu-Ni

PMT 3100 Introdução à Ciência dos Materiais para Engenharia EPUSP - 2014