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Other Models of
Computation



Models of computation:

* Turing Machines
‘Recursive Functions
‘Post Systems
‘Rewriting Systems
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Church's Thesis:

All models of computation are equivalent

Turing's Thesis:

A computation is mechanical if and only if
it can be performed by a Turing Machine
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Church’'s and Turing's Thesis are similar:

Church-Turing Thesis
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Recursive Functions

An example function:

_ 2
Domain J(n)=n"+1

3 /(3)=10 10

Range
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We need a way to define functions

We need a set of basic functions
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Basic Primitive Recursive Functions

Zero function: z(x)=0

Successor function: s(x)=x+1

Projection functions: pi(x],Xxp) =X

P2 (x1,x2) =x7
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Building complicated functions:

Composition:  f(x,y)=h(g1(x,),g2(x,»))

Primitive Recursion:

f (x,0) = g1(x)

S, y+1)=h(gr(x,), f(x,y))
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Any function built from
the basic primitive recursive functions
is called:

Primitive Recursive Function
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A Primitive Recursive Function: add(x,y)

add(x,0)=x (projection)

add(x,y+1)=s(add(x,y))

(successor function)
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add(3,2) =s(add(3,1))
=s(s(add(3,0)))
=5(s(3))
=5(4)
=5



Another Primitive Recursive Function:
mult(x,y)

mult(x,0)=0

mult(x,y +1) = add(x,mult(x,y))
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Theorem:
The set of primitive recursive functions
is countable

Proof:
Each primitive recursive function
can be encoded as a string

Enumerate all strings in proper order

Check if a string is a function
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Theorem
there is a function that
IS hot primitive recursive

Proof:
Enumerate the primitive recursive functions

fla f29 f39“°
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Define function g@) = f;(@)+1

g differs from every f;

g 1s not primitive recursive

END OF PROOF
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A specific function that is not
Primitive Recursive:

Ackermann's function:

A0, y)=y+1
A(x,0) = A(x—11)
A(x,y+1)=A(x—1,A4(x,))

Grows very fast,
faster than any primitive recursive function
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U —Recursive Functions

uy(g(x,y))=smallest y such that g(x,y)=0

Accerman's functionis a

1 —Recursive Function
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U —Recursive Functions

Primitive recursive functions
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Post Systems

- Have Axioms

- Have Productions

Very similar with unrestricted grammars
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Example: Unary Addition

Axiom: 1+1=11

Productions:

N+Vy=V; — Ni+Vy,=I;l
Vj_+V2=V3 —> V_+V21=V31
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A production:

N+Vy =V — Ni+V,=7r3;l

|/

1+1=11 = 11+1=111 = 11+11=1111

VN

N+Vy=V; — N+rl=IJjsl
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Post systems are good for
proving mathematical statements
from a set of Axioms
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Theorem:
A language is recursively enumerable
if and only if
a Post system generates it
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Rewriting Systems

They convert one string to another

* Matrix Grammars
* Markov Algorithms

» Lindenmayer-Systems

Very similar to unrestricted grammars
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Matrix Grammars
Example: p. §-5.9,

P2: Sj_—>aS1, S2 —)szC
P3I Sj_—)ﬂ, Sz—)ﬁ

Derivation:

S = 818 = a$1bSH>c = aaS1bbSHrcc = aabbcc

A set of productions is applied simultaneously
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Pll S—)SlSz
Pz ) Sl —> aSl, S2 —)szc
P3I Sl—)/l, S2 —> A

L={a"b"c" :n>0}

Theorem:
A language is recursively enumerable
if and only if
a Matrix grammar generates it
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Markov Algorithms

Grammars that produce 4

Example: ab — S
aSb > S
S—> A

Derivation:

aaabbb = aaSbb = aSb = S = 1
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ab —> S
aSb — S
S—>.A

L={a"b" :n>0
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%k

Ingeneral: L={w: w=A1}

Theorem:

A language is recursively enumerable
if and only if
a Markov algorithm generates it
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Lindenmayer-Systems

They are parallel rewriting systems

Example:  a—aa

Derivation: a — aa — aaaa — aaaaaaad

271
L=4{a" :n=0}
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Lindenmayer-Systems are not general
As recursively enumerable languages

Extended Lindenmayer-Systems: (x,a,y) —>u

| ]

context

Theorem:
A language is recursively enumerable
if and only if an
Extended Lindenmayer-System generates it

Costas Busch - LSU



