

EPUSP

Escola Politécnica da Universidade de São Paulo - EPUSP Departamento de Engenharia de Energia e Automação Elétricas - PEA Av. Prof. Luciano Gualberto, Travessa 3, No.158 Butantã - São Paulo - SP CEP: 05508-900

COMPONENTES E SISTEMAS DE COMUNICAÇÃO E SENSOREAMENTO A FIBRAS ÓPTICAS

6^a AULA

Polarização, Birrefringência e Efeitos Ópticos Relacionados às Fibras Ópticas

Prof. Dr. Josemir Coelho Santos

Horário: 14 h às 17 h (4ª Feira)

3° Quadrimestre 2016

PEA 5716

Polarização da Luz

- Só pode ser definida a partir da Teoria Eletromagnética.
- Luz propagando no espaço livre é Transversal Eletromagnética (TEM)

O desenho traçado pela ponta do vetor campo elétrico em um plano transversal à direção de propagação é chamado de polarização da onda eletromagnética.
 ^{3º} Quadrimestre 2012 PEA 5716

Polarização da Luz

$$\vec{E}_{x} = \vec{e}_{x}E_{0x}\cos(\omega t - \beta z + \phi_{x})$$

$$\vec{E}_{y} = \vec{e}_{y}E_{0y}\cos(\omega t - \beta z + \phi_{y})$$

$$\beta = kn = \frac{2\pi}{\lambda}n$$

$$\vec{E}_{TOTAL} = \vec{E}_{x} + \vec{E}_{y}$$

© A.Lobo (2004)

 $\overline{}$

Polarização da Luz

- Luz polarizada pode ser classificada como: linear, circular e elíptica.
- Luz propagando no espaço livre é Transversal Eletromagnética (TEM)

Para que uma onda seja polarizada não é necessário que ela seja harmônica!
 ^{3º} Quadrimestre 2012
 PEA 5716

Tipos de Polarização

• Expressão Geral para campo elétrico de uma onda TEM propagando-se na direção z:

$$\begin{split} E &= E_x(t)\hat{a}_x + E_y(t)\hat{a}_y \\ &= E_{x0}\cos\left(\omega t - kz + \phi_x(\phi)\hat{a}_x + \phi\right)E_{y0}\cos\left(\omega t - kz + \phi_y\right)\hat{a}_y \end{split}$$

 O que define o tipo de polarização (linear, circular ou elíptica) é o valor relativo das amplitudes Ex e Ey e das fases φx e φy

Polarização Linear

20

$$E_{x}(t) = E_{x0} \cos(\omega t + \phi)$$

$$E_{y}(t) = E_{y0} \cos(\omega t + \phi)$$

$$E_{y}(t) = \frac{E_{y0}}{E_{x0}} E_{x}(t)$$

$$\theta = \tan^{-1} \left(\frac{E_{y0}}{E_{x0}}\right)$$

Polarização Linear

$$\vec{E}_{TOTAL} = \vec{e}_x E_{0x} \cos(\omega t - \beta z) + \vec{e}_y E_{0y} \cos(\omega t - \beta z + \pi)$$

© A.Lobo (2004)

Polarização Circular

Considere agora

$$E_{x0} = E_{y0} = E_0$$

 $\phi_x = \phi_y + \frac{\pi}{2}$
 $E_x(t) = E_0 \cos(\omega t + \phi_x)$
 $E_y(t) = E_0 \cos(\omega t + \phi_x - \frac{\pi}{2}) = E_0 \sin(\omega t + \phi_x)$

• Polarização Circular à Direita

$$E(t) = \sqrt{E_x(t)^2 + E_y(t)^2}$$

= $\sqrt{E_0^2(\cos^2(\omega t + \phi_x) + \sin^2(\omega t + \phi_x))} = E_0$
 $\psi(t) = \tan^{-1}\left(\frac{E_y(t)}{E_x(t)}\right) = \tan^{-1}\left(\frac{E_0\cos(\omega t + \phi_x)}{E_0\sin(\omega t + \phi_x)}\right)$
= $\tan^{-1}(\tan(\omega t + \phi_x)) = \omega t + \phi_x^2$

• Polarização Circular à Esquerda

$$E_{x0} = E_{y0} = E_0$$
$$E(t) = E_0$$
$$\psi(t) = -\omega t + \phi_x$$

PEA 5716

Polarização Circular

Polarização Elíptica

 A polarização elíptica abrange todas as outras configurações das amplitudes Ex e Ey e das fases φx e φy

PEA 5716 $\leq \delta \leq \pi$

Polarização Eliptica

Light Propagation in Fibres and Related Optical Effects Birrefringência

Cálculo de Jones

- É uma descrição matemática extremamente compacta da luz polarizada.
- Aplica-se somente a luz polarizada.
- Diferentemente do cálculo de Mueller (Vetores de Stokes) não pode ser usedo para descrever luz não polarizada, mas pode descrever a fase.

Vetor de Jones

 O vetor de Jones é um vetor coluna de dois elementos que descreve as amplitudes e as fases dos campos elétricos paralelos às direções x e y para um feixe de luz propagando-se ao longo do eixo z.

$$\boldsymbol{J} = \begin{bmatrix} \boldsymbol{E}_{x} \\ \boldsymbol{E}_{y} \end{bmatrix} = e^{i2\pi\omega t} \begin{bmatrix} \boldsymbol{A}_{x}e^{i\boldsymbol{\varepsilon}_{x}} \\ \boldsymbol{A}_{y}e^{i\boldsymbol{\varepsilon}_{y}} \end{bmatrix}$$

 onde t é o tempo, ω é a frequencia ângular, ε é a fase, A é a amplitude, e E é o campo elétrico.

3º Quadrimestre 2012

PEA 5716

Intensidade de um Feixe Óptico

• A intensidade de um feixe óptico e dada por:

$$I = A_x^2 + A_y^2$$

- O Vetor de Jones, em geral, é normalizado, para que a intensidade seja unitária e o vetor seja escrito na sua forma mais simples.
- Por exemplo:

 $\begin{bmatrix} e^{i\frac{\pi}{2}} \\ 1 \end{bmatrix} \neq \text{normalizado para:} \quad \frac{1}{\sqrt{2}} \begin{bmatrix} i \\ 1 \end{bmatrix}$

• Algumas vezes escreve-se abreviadamente $e^{i\frac{\pi}{2}}$ como *i*, de forma que:

Alguns Vetores de Jones comuns

Name	Normalised	Full
\leftrightarrow Horz. linear polarised	$\left[\begin{array}{c}1\\0\end{array}\right]$	$\begin{bmatrix} A_x e^{i\boldsymbol{\varepsilon}_x} \\ 0 \end{bmatrix}$
Vert. linear polarised	$\left[\begin{array}{c}0\\1\end{array}\right]$	$\begin{bmatrix} 0\\ A_y e^{i\boldsymbol{\varepsilon}_y} \end{bmatrix}$
∕ 45°	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$	$\begin{bmatrix} A_x e^{i\boldsymbol{\varepsilon}_x} \\ A_x e^{i\boldsymbol{\varepsilon}_x} \end{bmatrix}$
► -45°	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -1 \end{bmatrix}$	$\begin{bmatrix} A_{x}e^{i\boldsymbol{\varepsilon}_{x}} \\ -A_{x}e^{i\boldsymbol{\varepsilon}_{x}} \end{bmatrix}$
General Linear	$\left[\begin{array}{c}\cos(R)\\\pm\sin(R)\end{array}\right]$	$\begin{bmatrix} A_x e^{i\boldsymbol{\varepsilon}_x} \\ A_y e^{i\boldsymbol{\varepsilon}_y} \end{bmatrix}$
신 LH Circular	$\frac{1}{\sqrt{2}} \left[\begin{array}{c} -i \\ 1 \end{array} \right]$	$\begin{bmatrix} A_{x}e^{i\boldsymbol{\varepsilon}_{x}}\\ A_{x}e^{i\left(\boldsymbol{\varepsilon}_{x}+\frac{\pi}{2}\right)} \end{bmatrix}$
U RH Circular	$\frac{1}{\sqrt{2}} \left[\begin{array}{c} i \\ 1 \end{array} \right]$	$\begin{bmatrix} A_{x}e^{i\boldsymbol{\varepsilon}_{x}}\\ A_{x}e^{i\left(\boldsymbol{\varepsilon}_{x}-\frac{\pi}{2}\right)} \end{bmatrix}$
General	$\frac{1}{\sqrt{2}} \begin{bmatrix} \cos(R)e^{-i\frac{\gamma}{2}} \\ \sin(R)e^{i\frac{\gamma}{2}} \end{bmatrix}$	$\begin{bmatrix} A_x e^{i\boldsymbol{\varepsilon}_x} \\ A_y e^{i\boldsymbol{\varepsilon}_y} \end{bmatrix}$

Matrix de Jones

- Quando a luz passa por um dispositivo ou meio sensível à polarização seu estado de polarização, *J* irá mudar.
- O novo estado de polarização, *J*, é calculado multiplicando o antigo estado por uma matrix 2x2, *M*, chamada Matrix de Jones.

$$\mathbf{\hat{J}} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \mathbf{J}$$

• A matrix de Jones para uma rotação de um par de eixos coordenados por uma ângulo θ em torno do eixo Z é dada por:

$$M_{rotate}(\theta) = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

Matrix de Jones

(*) E. Hecht, "Optics", 4Ed. Addison Wesley, Chapter 8, 2002.

A matrix de Jones para uma rotação de um par de eixos coordenados \bullet por uma ângulo θ em torno $E_{in} = \begin{bmatrix} dE_{\Theta_X} e^{i\Theta_X Z} e \\ E_{\Theta_Y} e^{i\Theta_Y Z} \end{bmatrix}$ é dada por $E_{in} = \begin{bmatrix} e^{i\Theta_X Z} e^{i\Theta_X Z$

3° Quadrimestre 2012

Algumas Matrizes de Jones Típicas:

Description	Jones Matrix
Ideal isotropic non-absorbing material	$\left[\begin{array}{rrr}1&0\\0&1\end{array}\right]$
Absorbing isotropic material with transmittance p	$\left[\begin{array}{cc} \sqrt{p} & 0\\ 0 & \sqrt{p} \end{array}\right]$
Linear horizontal polariser	
Linear vertical polariser	
45° polariser	
	$\left[\begin{array}{cc} 0.5 & 0.5 \\ 0.5 & 0.5 \end{array}\right]$
–45° polariser	$\begin{bmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{bmatrix}$
General polariser at angle $ heta$	$\begin{bmatrix} \cos^2(\theta) & \cos(\theta)\sin(\theta) \\ \cos(\theta)\sin(\theta) & \sin^2(\theta) \end{bmatrix}$
Waveplate with horizontal fast axis, retardance ϕ	$\begin{bmatrix} e^{i\frac{\phi}{2}} & 0\\ 0 & e^{-i\frac{\phi}{2}} \end{bmatrix}$
Waveplate with vertical fast axis, retardance ϕ	$\begin{bmatrix} e^{-i\frac{\phi}{2}} & 0\\ 0 & e^{i\frac{\phi}{2}} \end{bmatrix}$
Waveplate with fast axis angle θ , retardance ϕ	$\begin{bmatrix} \cos^{2}(\theta) e^{i\frac{\phi}{2}} + \sin^{2}(\theta) e^{-i\frac{\phi}{2}} & \cos(\theta)\sin(\theta)2i\sin\left(\frac{\phi}{2}\right) \\ \cos(\theta)\sin(\theta)2i\sin\left(\frac{\phi}{2}\right) & \cos^{2}(\theta) e^{-i\frac{\phi}{2}} + \sin^{2}(\theta) e^{i\frac{\phi}{2}} \end{bmatrix}$

Cálculo com Matrizes de Jones

Multiplica-se o vetor de Jones do feixe de entrada pela matriz do elemento ou meio pelo qual ele passa para se obter o vetor de Jones do feixe de saída

Por exemplo, se tomarmos um feixe de entrada linearmente polarizado na horizontal e fizermos passar por uma placa retardadora de um quarto de onda a 45º e depois por um polarizador orientado verticalmente, obteremos:

Medição da Matriz de Jones de um Elemento Óptico

[from D.Derickson, "Fiber Optic Test and Measurement" Prentice Hall, Ch. 6 (1998)]

Cálculo de Mueller (Vetores de Stokes)

• Aplicável tanto a luz totalmente quanto parcialmente polarizada;

The first of the function in the state and iterated of priori in the out

Parâmetros de Stokes Normalizados

2. Light Propagation in Fibres and Related Optical Effects Esfera de Poincaré

• Ferramenta gráfica em espaço real, 3D, que permite uma descrição conveniente de ondas polarizadas e de transformações de polarização causadas pela propagação através de dispositivos;

3º Quadrimestre 2016

PEA 5716

Continua...