

Optical I Major Miles	Fiber Chronology: tones				
1854	Light guiding in water jet— Tyndall				
1910 1930	 Dielectric waveguide analysis Hondros & Debye Early experiments with silica fibers Lamb 				
1951 1961	 Image transmission by fiber bundles— van Heel, Kapany Mode analysis of optical fiber— Snitzer 				
1962 1963 1964	 First semiconductor lasers demonstrated— various groups First POF— DuPont 				
1966	 Fiber Lasers proposed & analyzed - Shitzer FO proposed for long distance comms - Kao & Hockman 				
1970	— First fiber with < 20dB/Km loss- Corning				
1979	— Record low loss of 0.2dB/Km @ 1.55um				
1987 1991	 Er fiber amplifier demonstrated Payne & Desurvire Holey fibers first proposed Russell 				
1996 2007	- Fist solid-core PCF fiber made - Bend-insensitive fiber introduced—Corning Special for Special for the second s				

Mode Nomenclature		
[EXACT MODES	LP MODES
 TE (Transverse Electric) Modes E field [⊥] to direction of propagation 	$HE_{1 \mu}$ $HE_{2 \mu} + TM_{0 \mu} + TE_{0 \mu}$ $HE_{\{\nu+1\}\mu} + EH_{(\nu-1)\mu}$	ι LP _{Oμ} ι LP _{1μ} ι LP _{1μ}
 TM (Transverse Magnetic) Modes H field[⊥] to direction of propagation 		
 TEM (Transverse Electro-Magnetic Both E & H fields [⊥] to direction of propaga) Modes ation	
• HE and EH (Helical or Skew) Modes	S	
LP (Linearly Polarized)		
 All other modes can be constructed with I 	LP ones	
24		WSOF Tutorial: Specialty Optical Fibers A. Mendez

Standard Single-Mode Fiber Corning SMF-28

Fiber Parameter	Expected Value		
Attenuation at 1310/1550 nm (standard quality)	0.35 / 0.22 dB/km		
Cut-Off Wavelength	<1260 nm		
Mode Field Diameter (@1310 nm)	9.2 μm Designe	ed for	
Numerical Aperture	0.14 bitra	te TD. 310 nn	
Zero Dispersion Wavelength	1313 nm		
Zero Dispersion Slope	<u><</u> 0.092 ps/(nm²-km)		
PMD Link Value	<u>≺</u> 0.1 ps/km ^{.5}		
Core-to-Cladding Eccentricity	<u><</u> 0.5 μm		

Most widely deployed so far, introduced in 1986, cheapest

WSOF Tutorial: Specialty Optical Fibers A. Mendez

31	

Specialty Fiber Types

Singlemode	Large Core
Multimode (step index, graded index)	Large NA
	Low-Birefringence
Bend Insensitive	Liquid Core
Chiral	Metal-coated
D-Shape	Nano Fibers
Dispersion Shifted	Multi-Core
Dispersion Flattened	Photonic & Crystal fibers
Dispersion Compensating	Photosensitive
Double Clad	Plastic-clad (PCS)
Dual-mode	Polarization maintaining
Electro Optic	Polarizing
Elliptical Core	Polymer
Fluorescent	Pure silica core
Hermetic	Rare-earth doped
Hollow core	Side Hole
R fibers	Spun
32	WSOF Tutorial: Specialty Optical Fibers A. Mendez

Fiber Draw Tower

- Height dictated by fiber cooling & drawing speed (8 – 30m tall)
- High temperature polishes glass surface
- Strength preserved by polymer coating
- Feedback ensures dimensional control
- Draw speed: >25 m/s (55mph)
- Fiber production >1000 km per preform

WSOF Tutorial: Specialty Optical Fibers A. Mendez

Fiber/Waveguide Material	Transmission Window (µm)	Typical Minimum Attenuation (dB/km @ I µm)	Typical Fiber NA	Operating Temperature °C	Ultimate Bend Radius for Typical Diameter
SIO2	0.35-1.40	0.4 @ 1.32	0.16	<300	20 mm for 350 µm
Low OH SIO	0.4-2.5	12 @ 0.82	0.16-0.3	<300	20 mm for 350 µm
Sapphire	0.5-3	5000 @ 2.9	1.42	<1800	30 mm for 300 µm
Fluoride ZBLAN	0.4-5	15 @ 2.5	0.21	<200	40 mm for 330 µm
Chaicogenide	1-11	400 @ 6	0.40	<150	20 mm for 600 µm
Polycrystalline	4-15	500 @ 11	0.5	<350	20 mm for 700 µm
Hollow Glass ATIR	7-9.4	1400 @ 9.24*	0.05**	<500	300 mm for 1000 µm
Hollow Metal	3, 5-5.5, 10-13	500 @ 10.6*	0.05**	<500	300 mm for 1000 µm
Hollow Sapphire	10-17	1000 @ 10.6*	0.05**	<1800	1000 mm for 1064 µm
Optimum laser me	des and launch	** Effective NA			

	INDEX	EXPANSION a	VISCOSITY	STABILITY	DURABILITY		RAYLEIGH SCATTERING	IR LOSS	cos
GeO2	t	t	ł	•	ł	t	tt	•	ł
P202	t	ł	Ħ	•	Ħ	٠	t	ł	•
B203	ł	t	Ħ	٠	Ħ	٠	?	t	•
F	ŧŧ	•	ł	•	++	•	?	•	•
TIO ₂	tt	ł	ł	ł	?	ł	?	•	•
Al ₂ O ₃	1	t	+ .	++	?	ł	?	•	•

Popular Singlemode Fiber Designs

- Mobile Antenna Pointing & Stabilization
- Vehicle Navigation
- Autonomous Vehicle Navigation - Material Handling Equipment
- Torpedoes
- Weapons Simulators
- Video Camera Stabilization
- Open & closed-loop designs
- 1,2,3, 6 axes
- Typically PM fiber with 80um OD.

Source: KVH

EO Fiber Polarization Switch: Operating Principle

- An optical fiber is fitted with a small metallic conductor section (~ few cm).
- An electrical current in injected into the conductor, thus inducing a number of localized effects:
 - Thermal
 - Thermo-optic index change
 - Thermal expansion
 - Mechanical
 - Shock pressure wave (short current pulse)→ localized strain which induces bi-refringence

102

- Acoustic
 - Induced vibration from sudden expansion & contraction of glass

Random Hole Optical Fiber (RHOF)

Cladding region is filled with randomly oriented air holes ranging in size from 100 nm to a few μ m.

The fiber is made by drawing a preform assembly comprising a solid silica core, surrounded by a porous, sol-gel fabricated, cladding—containing gasproducing powders—and a final protective silica substrate tube.

During fiber drawing, the cladding pores become cylindrical holes running the length of the fiber.

Source: V. Tech

WSOF Tutorial: Specialty Optical F A Mendez

WSOF Tutorial

Specialty Opt A. Mendez

Microstructure Fibers

Optical fiber constructed with a lattice of voids (air holes) along its length \rightarrow provide unique optical properties impossible to obtain with solid fibers.

Very large index of refraction differences

- 1.0 (air) to 1.45 (undoped silica): ∆n ~0.45
- Doped silica fiber: $\Delta n \sim 0.03$

Voids can be filled with functional materials allowing dynamic properties

- Control local index with temperature, electrical field, magnetic field, etc.

Photonic bandgap operation

Periodic structure creates resonance, like a 2-D grating.

<section-header><section-header><image>

Fiber Coatings/Jacket Materials: Operating Temperature Range

Carbon- OFS	-Coated	Fibers:	Ofs Leading Optical Innovations	Carbon-Coated Fibers: New Designs	Verrillon THE FIBER IN FIBEROPTICS
Optical Properties Cepting wavelength Catell wavelength Mode Reid damater @ (1310 nm Materiald damater @ 1550 nm Attenzielon @ 1310 nm Attenzielon @ 1350 nm Numerical quarture (numical)	GEO 1310 11 1310/150 nm #1290 nm 9.3 ± 0.5 µm 40.5 ± 1.0 µm #0.6 dfillom 0.11	GEO 1310 16 12/01/530 mm al 220 mm 6.7 ± 3.0 µm 7.5 ± 1.0 µm a0.8 dblkm a0.6 dblkm 0.16	PYROCOAT Hermetic Silica Silica		
Dimensions/Geometric Pro Care diamatar (portrad) Cod diamatar Coding diamatar Coding diamatar Coding consultativy Constitute of that Constitute of that	8.4 µm 125 ± 2 µm 125 ± 5 µm <22.0% =00% =1.0 µm	6.3 µm 125 ± 2 µm 135 ± 5 µm c2.0% ±80% ±1.0 µm	Coating Carbon Clad Core Typical Applications • Data links • Single-mode sensors • Down-hole deployment • Above-ground well networking		A A
Coating/Buffer Description	Harmatic Carbon/PVRDC0AT	Hamatic Carbov/P7ROC047	Raman back-scattering		
Spouting temperature	-65 trr +300 °C	-65 to +300°C	Features and Benefits Touch class for barsh environments	 Fiber with air gaps to slow down H₂ in 	gress
Mechanical and Testing Da	ita		Wavelength performance at both	Multiple air hole designs	
Shart-tarm band nafus Long-tarm band nafus Proof test lineil Product Description Code	a4 mm a4 mm a200 kpsi (1.38 GPs) SMFA131082	ad mm ad mm a200 kpsi (1.38 GPh) SMB-0131002	1310 and 1550 nm • Choice of NAs: 0.11 and 0.16 • High survivability in water, high	 With and without carbon coatings Protection is only temporary- diffusion 	n delay –and hydrogen
Order by Part Number	BF05717	F9001-01	active chemical environments	eventually completely diffuses in.	
			Abrasion resistant		
			Long lengths up to 14 km WEOE Tutorial		WEGE Tutorial
-		141	Specially Optical Fibers A. Mendez	142	Specialty Optical Fibers A. Mendez

Specialty Fibers: Average Selling Prices

		WSOF Specia	Tutorial: Ity Optical Fibers
Microstructured fiber	\$20 to \$50 (large quantity) \$200 to \$400 (small quantity	/)	
Hollow silica waveguides (IR)	\$150 to \$700		
Erbium-doped fiber	\$5 to \$10 (standard) \$100 (custom)		
UV photosensitive fiber	\$5 to \$10		
Polarization-maintaining fiber	\$3		
Dispersion compensating fiber	\$1.50		
Conventional single-mode fiber	\$0.20		
Type of Fiber	Price per Meter		

