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Abstract—Although sliding mode control has many drawbacks
when applied to electrical drives due to real limitations of
switches, as limited frequency of operation, turn on and turn
off delays, some of its theory can be succesfully used in order to
project a high performance controller, robust and with a reduced
design effort. This paper shows the use of sigmoidal function,
hyperbolic tangent, instead of the signal function. So, it actually
consists not in a pure but in a pseudo (or quasi) sliding mode,
combined to an integrative controller action and with an anti-
windup effect, so the result is a high performance controller,
robust to machine parameters and disturbances, and light in its
design. Results shows its high performance and robustness. The
chosen sliding surface has integrative control action combined to
an anti-windup feature, which zeroes the steady state error and
minimizes the output system overshoot.

Keywords—Quasi sliding Mode Control, brushless DC motor
control, motor speed control.

I. INTRODUCTION

An ideal sliding mode does not exists in practice since
it would imply that switches work at an infinite frequency.
Due to real realizations of the switches, as a limited switching
frequency and commutation delays, as well as limitations in
the feedback control, such as discontinuities, discretization,
and time delays, a particular dynamic behavior appears in the
vicinity of the sliding surface and it is commonly referred as
chattering [1].

This is a serious drawback in the sliding mode control
utilization as it can degrade the performance of the system,
causes stress in the actuators and maximizes control effort [2].
Chattering can be minimized by the use of smooth functions
instead of the sign function (like saturation or sigmoidal
functions) in first-order sliding modes [3] or by higher-order
sliding modes [4].

The use of smooth functions in first order sliding modes
has some advantages: reduces chattering and make sliding
modes viable in real switches due to their limited switching
frequency specially in those systems which employs pulse
width modulation with a fixed frequency. The drawback is that
it can compromise its robustness and the convergence is made
asymptotically to the set point [1][3].

Higher-order sliding mode controllers can reduce and also
eliminate the chattering but they may converge asymptoti-
cally [1].

In order to satisfy the conditions of convergence to the
solution of the system, or the convergence to the sliding
regime, it is necessary to define the sliding variable (σ), and
a possible arbitrary order sliding variable is [5]:

σ =

(
d

dt
+ λ

)r−1
ε (1)

Where

ε = x∗ − x;
r: is the degree of sliding surface;
x: vector of state variables;
x∗: references for state variables;
λ: is a constant.

So, the sliding surface is defined as σ = 0 and the proposed
sliding variable differs from (1):

σ =

∫ (
λ(ε) +

d

dt

)r−1
ε dt (2)

The difference lies in the integral operator and that λ is a
function of x∗ − x.

In this application, it is considered a sliding surface of order
2 (r = 2):

σ =

∫
λ(ε)εdt + ε = 0 (3)

And the function λ is defined as the Gaussian function:

λ(ε) = kI exp(−kG ε2) (4)

II. BRUSHLESS DC MOTOR ELECTRICAL DRIVE

In this paper, the therm brushless DC motor refers to the
set composed by an electrical machine, more specifically a
surface-mount permanent magnet synchronous machine, with
its electric power converter, commonly a three phase ma-
chine with a three phase electric converter (a three phase
inverter) [6][7]. Ideally, the electrical machine has a trapezoidal
back-EMF waveform and with a 120◦ square wave stator
current produces an almost ripple free electromagnetic torque,978-1-4799-8779-5/15/$31.00 c©2015 IEEE



as in Fig. 1. In this case, the converter operates in six-
step mode and with each switch activated by 120◦ electrical,
resulting in 2 inverter legs activated simultaneously.

ia

ea

eb

ib

ec
ic

0 π
3

2π
3 π 4π

3
5π
3 2π

θr

Te

Fig. 1. Brushless DC motor ideal electromagnetic torque generation (θr :
electrical position of the rotor).

A block diagram of the complete drive system is shown in
Fig. 3, where there are two control loops: the stator current
control loop, where GI represents the current loop controller;
and the rotor speed control loop, where Gω represents the
speed loop controller. As the time constant of mechanical
system is far greater than the time constant of electrical system,
those control loops are weakly coupled, so it is possible to
make separate analysis for the controllers of speed loop (Gω)
and for current loop (GI ) [8].

The current controller (GI ) is a first order sliding mode
controller, as in [9], so its sliding mode variable is:

σI = i∗ − i (5)

Where

i∗: stator line current reference;
i: measured stator line current:

i =


ia if θr ∈ [30◦, 150◦[

ib if θr ∈ [150◦, 270◦[

ic if θr ∈ [0◦, 30◦[ or [270◦, 360◦[

(6)

And the stator current controller is:

GI : δ = tanh kI ·σI (7)

Where δ is PWM duty cycle, from -1 (reverse motion) to 1
(direct motion).

The used machine model is as follows:

[
va
vb
vc

]
=

[
Ls Ms Ms

Ms Ls Ms

Ms Ms Ls

]
d
dt

[
ia
ib
ic

]
+

Rs

[
ia
ib
ic

]
+

[
ea
eb
ec

]
+

[
vn
vn
vn

] (8)

Where

ea, eb and ec: induced voltage of stator phases
a, b and c, respectively, due to rotor magnets
movement, as in (9);

ia, ib and ic: stator phase currents a, b and c,
respectively;

Ls: stator phase self-inductance;
Ms: stator phases mutual inductances;
Rs: stator phase resistance;
va, vb and vc: a, b and c stator phases applied

voltages, respectively;
vn: stator neutral terminal voltage (this terminal is

not normally connected).

[
ea
eb
ec

]
=

d

dt

[
Φra
Φrb
Φrc

]
= ωe

[
Φ′ra
Φ′rb
Φ′rc

]
(9)

Where

Φra, Φrb and Φrc: linked magnetic fluxes between
rotor magnets and stator winding phases a, b and
c, respectively;

ωe: electrical rotor speed.

Te = npp (Φ′raia + Φ′rbib + Φ′rcic) (10)

Where

Te: machine-generated electromagnetic torque;
npp: number of machine’s pole pairs;

The back-EMFs are ideally trapezoidal, therefore Φ′ra, Φ′rb
and Φ′rc are also trapezoidal as shown in Fig. 2, consider-
ing (9), where ΦM is their amplitudes and θe is the rotor angle
in electrical degrees.

Fig. 2. Waveforms for Φ′ra, Φ′rb and Φ′rc.
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Fig. 3. System complete control block diagram (KT = 2nppΦM , Gω : rotor speed controller, GI : stator current controller).

Considering that only two stator phases are active in each
time interval in the six-step 120◦ power converter mode of
operation, the reduced electric equation for machine stator
is [9]:

v12 = 2Rs i+ 2(Ls −Ms)
di

dt
+ 2Φmωe (11)

Where

v12: voltage between terminals 1 and 2, which can
be terminals of a, b or c phases, depending on
the rotor position, i. e., as brushless DC motors
comprises of a machine and a converter operating
in six-step 120◦ mode, only two phases are
feeding the machine each time (neglecting the
transient switching between the phases), and a
more detailed deduction is shown in[9].

The reachability and the sliding mode conditions of the
current controller for the first order sliding mode controller
(7) are both shown in [9].

A. Rotor speed loop controller

The speed loop controller is a sliding mode of order 2, as
described by the sliding variable (3), so:

σω =

∫
λ(εω)εωdt+ εω (12)

Where

σω: sliding variable for rotor speed control loop
(Gω);

εω = ω∗ − ω: shaft speed error;
ω∗: rotor speed reference;
ω: measured rotor speed.

The dynamic mechanical load equation is:

dω

dt
= ω̇ = −B

J
ω − 1

J
TL +

1

J
Te (13)

Where

B: equivalent frictional coefficient, composed by
rotor shaft bearings and load frictional losses;

J : combined inertia momentum of machine rotor and
load;

TL: load torque;

B. System convergence

As a general non-linear system can be written as:

ẋ = f(x) + g(x)U

y = h(x)
(14)

Where

U : system input;
f , g, h: linear or non-linear functions, characterizing

the system;
y: system output.

The system input function can be written as a sum of a
continuous function and a switching function:

U = Ueq + Uc (15)

Where

Ueq: is a continuous function and is referred as
“equivalent control”, representing the operation
point where the sliding regime occurs [10];

Uc: is the switching control, representing the variable
structure of the system, responsible to the attrac-
tiveness of the system to the sliding regime.

A well accepted method to prove the convergence of that
system to the operation point is by the definition of V , a energy
Lyapunov function:

V =
1

2
σ2 (16)

For the asymptotic stability of the chosen surface (3) in the
equilibrium point (σ = 0), some conditions must be satisfied:

a) V̇ < 0 for σ 6= 0

b) lim
|σ|→∞

V =∞

Condition b is clearly satisfied, but condition a follows:

V̇ = σσ̇ and σ̇ =
∂σ

∂x
ẋ (17)

Writing (14) using the defition of the input as in (15):

ẋ = (f(x) + g(x)Ueq) + (g(x)Uc) (18)



Solving Ueq to make the first therm of (18) be zero or,
in other way, from the definion of equivalent control as the
portion of control that is responsible for the set point of the
system:

Ueq = −
(
∂σ

∂x
g(x)

)−1(
∂σ

∂x
f(x)

)
(19)

Rewritten (17):

V̇ = σσ̇ = σ
∂σ

∂x
g(x)Uc < 0 (20)

A simple form of implementing Uc is by signal func-
tion (21), however it causes a drawback in system performance
due to the so called chattering, which can be considered the
main drawback of sliding mode control [11]. But the purpose
of the use of signal function here is to show the convergence
by proving (20) inequality.

Uc = ρ sign(σ(x)) (21)

Where

ρ: amplitude of switching control input.

Considering the use of function sign in (20):

V̇ =
∂S

∂x
g(x)ρ |σ(x)| < 0 (22)

As the therm ρ |σ(x)| > 0, then the reachability condition
of the system depends on the internal product of the surface
σ partial derivative by x by the function g(x):

∂σ

∂x
g(x) < 0 for σ 6= 0 (23)

The use of a sigmoidal function in (21) does not alter the
inequality (23) as well.

In order to prove the sliding mode of the system, one must
prove that the equivalent control (19) can be bound to systems
limits and in order to prove the reachability condition, (23)
must be satisfied. Using (13), the equivalent control of the
system input (Te) is:

Teeq = Bω + TL (24)

Considering the bounding limits of operation, in the maxi-
mum desired speed, maximum machine electromagnetic torque
must equals the product of maxim speed and shaft friction
coefficient plus maximum load torque.

In order to prove the system will stay in the adopted sliding
surface (12), (23) leads to:

λ(εω)εω
ω̇

− 1 < 0⇒ λ(εω)εω
ω̇

< 1⇒ (25)

λ(εω) <
ω̇

εω
(26)

So it represents an inequality where the Gaussian func-
tion (4) must be inscribed in order to satisfy the reachability
condition, where ω̇ can be obtained from (13) for the desired
operational situation.

III. RESULTS

The used machine and its load has the parameters shown
in Table I. The load torque (TL) must be kept bellow 2.6Nm
for this machine.

TABLE I. BLDC MOTOR AND MECHANICAL LOAD PARAMETERS USED
IN SIMULATIONS.

Motor Load
Rs = 2.3Ω J = 4.2 · 10−3kg m2

(Ls −Ms) = 12.5mH B = 3.032 · 10−3kg m2/s
npp = 3

Φm = 0.12Wb

A. Simulation Results

Some results from simulations are shown in Figs. 4 to 5.
In the figures, the load torque is varied abruptly from 0
to its maximum value (2.2Nm) or even to its maximum in
the opposite direction (-2.2Nm). Fig. 4 shows the machine
accelerating and reaching 1000rpm of operation speed. The
details of machine speed is shown in Fig. 5, where its speed
decreases when torque load increases and vice-versa. Note that
the overshot is practically nonexistent and there is no shaft
speed steady state error due to the integrative action of the
controller, thanks to the selective integral operation given by
the introduction of λ as a function of speed error (12). This
anti-windup technique is similar to the conditional integration
method, where the integrative portion of the controller is
activated when the error is bellow of a predefined value [12].

Fig. 6 shows chattering in PWM duty cycle which is
applied to the power inverter bridge, which can not be consid-
ered as properly a chattering because machine stator current
decreases due to inverter bridge phase switching, the controller
tries to compensate that by increasing duty cycle.

Fig. 7 shows the machine accelerating from 1000rpm
and reaching 2000rpm. During this interval, load torque is
applied against machine motion (positive value) and favoring
its motion (negative value). Those load torque changes causes
some transients in machine speed. After machine achieves its
set point speed, it occurs a little overshoot due to load torque
favoring its motion (Fig. 8). In t = 0.35s, load torque is
released, so machine speed falls but integrative action of the
controller put it back to its set point. In t = 0.4s, a load torque
against its motion is applied, so machine speed falls again, but
due to integrative action, it reaches its set point after 50ms.
When this load is released, machine accelerates but it is back
to its set point again in 25ms, in t = 0.5s.

B. Implementation Results

The results obtained from the physical implementation are
shown in Figs 9 to 11. The former shows the response for a
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Fig. 4. Machine operation at 1000rpm.
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speed step of 60rd/s (573rpm). In that figure, the rotor speed
using the proposed second order sliding mode controller, with
its integrative action, is shown (ω) together with the results
without the integrative action (ω′), i. e., making kI = 0 in (4).
The speed without integrative action (ω′, kI = 0) presents a
steady state error, while the speed with the integrative action
(ω, kI > 0) does not present steady state error as expected,
but with no overshoot which would be expected for integrative
controllers under step responses. The speed error for both
situations is shown in Fig. 10, where it is clearly seen that
average error using integrative controller is zero. Also, there
is no overshoot in rotor speed. In Fig. 9, the electromagnetic
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torque reference is also shown.
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Fig. 9. Machine operation at 60rd/s (≈ 600rpm), show rotor speed with
integrative controller action (ω) and without (ω′).

Similar results are shown in Fig. 11, where the shaft
speed reference is 100rd/s (955rpm). The shaft speed with
integrative action (ω) does not present steady state error,
while without integrative action (ω′) does. The electromagnetic
torque reference is also shown (T ∗e ).

The implementation setup can be seen in Fig. 12. Basically,
the system consists of 2 machines: one is the BLDC motor (4)
mechanically coupled to a induction machine (6) used as a
generator. Each machines are fed separately by its three-phase
inverters (3 and 5). The BLDC motor’s inverter is controller



-10

-5

0

5

10

0 0.1 0.2 0.3 0.4 0.5

rd
/
s

t(s)

ǫω
ǫ′ω

Fig. 10. Error detail of rotor speed with integrative controller action (εω)
and without (ε′ω).

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1 1.2 1.4

rd
/
s,
N
.m

t(s)

ω∗

ω
T ∗
e · 10

ω′

Fig. 11. Machine operation at 100rd/s (≈ 1000rpm), show rotor speed with
integrative controller action (ω) and without (ω′).

by an ARM Cortex-M4 (2) connected to its PCB while the
induction machine’s inverter is controlled by an ARM Cortex-
M3 which is integrated in its PCB (3).

Fig. 12. Implementation setup, where 1: shaft coupling between brushless-DC
motor (4) and induction generator (6); 2: ARM Cortex-M4 board; 3: inverter
for BLDC motor; 4: BLDC motor; 5: inverter for induction generator; 6:
induction generator used as mechanical load; 7: bus rectifier; 8: line input
protection; 9: bus capacitor; 10: low voltage circuits power supplies; 11:
current sensors.

IV. CONCLUSIONS

This work introduces a new sliding mode surface in order
to neutralize the steady state error of the system which is intro-
duced by the use of analog functions as switching functions,
instead of the signal function. The use of an analog function,

as the hyperbolic tangent function, can reduce significantly
system chattering, but it is not properly a sliding mode control
and causes non-zero steady state error, as pointed out by the
literature. The anti-windup effect achieved by the proposed
surface is similar to the conventional method called conditional
integration, but with the difference that the integrative portion
is gradually activated as the error decreases, so the integrator
is active even for large error values. This is a good feature
once the conventional method can fail if the error does not
fall in a limit.

The proposed surface is successfully used in the speed
control loop of an electrical machine, a brushless-DC motor,
showing a good performance, no steady state error, minimum
rotor speed overshoot and reduced chattering. Therefore, the
side effects of the use of a sigmoidal function were mitigated.
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