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Abstract—This paper proposes the use of an analog switching
function in sliding mode control for a brushless DC motor speed,
with the objective of input chattering reduction. The sliding mode
control topology is used in the mechanical speed loop control as
well as in the stator current loop control. The results show a
good chattering reduction, a good machine performance and a
good robustness of the controller due to disturbances, without the
need of fine tunneling of the controller parameters, as in other
kinds of control. The parameters of a real machine where used
in the simulations. This kind of function in the used sliding mode
controllers turned to be a very good alternative depending on the
application.
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I. INTRODUCTION

It is undoubtedly that electrical machines are indispensable
elements in contemporary world, from processes industry to
home applications. Electrical motors have many advantages
over other kind of motors, not limited to, but including: low
cost, high power density, simple construction and installation
requirements, robustness, versatility (it can be easily adapted
to various types of loads), high efficiency and control simplic-
ity [1].

Regarding the various types of electrical motors, direct-
current motors are very attractive and widely used in variable
speed applications. However, its brushes carry many of disad-
vantages, among then: the decrease of operational efficiency
due to losses in the mechanical commutator and brushes
themselves, high maintenance rate that increases machine
operational cost, acoustic noise, electromagnetic noise due to
brush spark, etc. Brushless DC motors, as it name says, do
not have the disadvantages associated to brushes. Perhaps, their
cost for equivalent machines are higher, but it tends to decrease
over time, as electronics cost tends to decrease. However its
main cost factor is due to the magnet material, which are high
for high energy types. If the cost of such a machine is critical
in an application, another kinds of machine can be used, as
induction motors and switched reluctance motors [2].

II. BRUSHLESS DC MOTOR ELECTRICAL DRIVE

The therm brushless DC motor refers to the set composed
by an electrical machine, more specifically a surface-mount

permanent magnet synchronous machine, with its electric
converter, commonly a three phase machine with a three phase
electric converter (a three phase inverter) [3][4]. Ideally, the
electrical machine has a trapezoidal back-EMF waveform and
with a 120◦ square wave stator current produces an almost
ripple free electromagnetic torque, as in Fig. 1. In this case,
the converter operates in six-step mode and with each switch
activated by 120◦ electrical, resulting in 2 switches activated
simultaneously.
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Fig. 1. Brushless DC motor ideal electromagnetic torque generation.

The machine model is shown in (1) to (5).
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Where:

ea, eb and ec: induced voltage of stator phases



a, b and c, respectively, due to rotor magnets
movement, as in (2);

ia, ib and ic: stator phase currents a, b and c,
respectively;

Ls: stator phase self-inductance;
Ms: stator phases mutual inductances;
Rs: stator phase resistance;
va, vb and vc: a, b and c stator phases applied

voltages, respectively;
vn: stator neutral terminal voltage (this terminal is

not normally connected).
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Where:

Φra, Φrb and Φrc: linked magnetic fluxes between
rotor magnets and stator winding phases a, b and
c, respectively;

ωe: electrical rotor speed.

Te = npp (Φ′raia + Φ′rbib + Φ′rcic) (3)

Where:

Te: machine-generated electromagnetic torque;
npp: number of machine’s pole pairs;

As depicted in Fig. 1, the back-EMFs are ideally trape-
zoidal, therefore Φ′ra, Φ′rb and Φ′rc are also trapezoidal as
shown in Fig. 2, considering (2), where ΦM is their amplitudes
and θe is the rotor angle in electrical degrees.

Fig. 2. Waveforms for Φ′ra, Φ′rb and Φ′rc.

Eq. (1) can be also written as:

vabc − [vn] = Rsiabc + (Ls −Ms)
d

dt
iabc + eabc (4)

In order to produce a smooth electromagnetic torque in its
shaft, the phase currents shown in Fig. 1 must be produced,
so the inverter bridge (Fig. 3) must have only two switches
closed each instant of time. Machine internal position sensors
are responsible to signal to inverter bridge electronics which
switches must be activated each time. Those sensors can be

magnetic (by Hall effect) or optical, detecting rotor position
in intervals of 60◦ electrical, in the case of a three-phase
configuration. Taking into account (4) and negleting the effects
of phase comutation, which lasts a fraction of time of phase
conduction, the system can be reduced to Fig. 4, for simplified
analysis purposes, which is similar to a four quadrant chopper.
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Fig. 3. Three-phase inverter bridge and PMSM machine.
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Fig. 4. Simplified BLDC motor equivalent circuit.

In Fig. 4, e is given by (5).

e = 2ΦMωe (5)

v12 = 2Rs i+ 2(Ls −Ms)
di

dt
+ 2Φmωe (6)

Where:

v12: voltage between terminals 1 and 2;
i: phase to phase current;

Depending on the signal from position sensors, transistor
Mx (Fig. 4) can be M1, M3 or M5, My can be M2, M4 or M6;
the same for Mu which can be M1, M3 and M5 and Mv can
be M2, M4 or M6. The analogous for diodes Dx, Dy, Du and
Dv. Eventually, terminals 1 and 2 can be any machine phase,
a, b or c, each one.

As an example, supposing machine phase a is positive,
phase b is negative and phase c is to be open, x=1, y=4, u=3,
v=6, so Mx is M1, Dx is D1, My is M4, and so on. Terminal
1 is phase a and 2 is phase b.

Following, there are some different possibilities in order
to obtain the desired voltage in machine terminals, to produce
the goal current. It can be listed 3 of these possibilities, shown
in Table I, where δ denotes that the PWM signal is applied to
that switch, so it will be turned on during δ · T , where T is
PWM period and δ is PWM duty cycle; 0 means the switch
is off during all PWM period; 1 means switch in on; and δ̄ is
the opposite of δ, which means the switch will be off during
δ ·T and on the remaining PWM period time, i. e., (1− δ) ·T .



TABLE I. SWITCHING SCHEMES USED TO FEED MACHINE PHASES.

Scheme Mx My Mu Mv
1 δ 0 0 δ
2 δ 0 0 1
3 δ δ̄ 0 1

The chosen scheme for this work is number 3, due to some
advantages it presents over the others as it presents reduced
current swing, it presents current continuous mode in any load
and PWM duty cycle condition (which is not always true using
numbers 1 and 2) and it is possible to regenerate energy (which
is not in number 2).

A. Mechanical load

The dynamic mechanical load equation is shown in (7).

J
dω

dt
+Bω + TL = Te (7)

Where:

B: equivalent frictional coefficient, composed by
rotor shaft bearings and load frictional losses;

J : combined inertia momentum of machine rotor and
load;

TL: load torque;
ω: rotor mechanical speed.

The machine parameters as well as mechanical load pa-
rameters are in Table II, load torque (TL) is not show because
it is different in each simulation.

TABLE II. BLDC MOTOR AND MECHANICAL LOAD PARAMETERS
USED IN SIMULATIONS.

Motor Load
Rs = 2.3Ω J = 4.2 · 10−3kg m2

(Ls −Ms) = 12.5mH B = 3.032 · 10−3kg m2/s
npp = 3

Φm = 0.12Wb

III. SLIDING MODE CONTROL

Sliding mode control was first presented to western World
in a book published in 1976 [5] and, perhaps more known,
a paper in 1977 [6]. The main idea in sliding mode control
is once the sliding mode was reached, the system is immune
to parametric variations and disturbances, limited to a sort of
ranges, naturally.

In order to satisfy the conditions of convergence to the
solution of the system, or the convergence to the sliding
regime, it is necessary to define the sliding surface. The most
used sliding surface is shown in (8) [7].

σ(x) =

(
d

dt
+ λ

)r−1

(x∗ − x) (8)

Where:

r: is the degree of sliding surface;
x: vector of state variables;

x∗: references for state variables;
λ: weight factor.

In order to prove the convergence of a system like (9) one
can write the system input function as (10), as it is a sum of
a continuous function and a switching function.

ẋ = f(x) + g(x)U

y = h(x)
(9)

Where:

U : system input;
f , g, h: linear or non-linear functions, characterizing

the system;
y: system output.

U = Ueq + Uc (10)

Where:

Ueq: is a continuous function and is referred as
“equivalent control”, representing the operation
point where the sliding regime occurs [8];

Uc: is the switching control, representing the variable
structure of the system, responsible to the attrac-
tiveness of the system to the sliding regime.

A well accepted method to prove the convergence of the
system to the operation point is by the definition of V , a energy
Lyapunov function:

V =
1

2
σ2 (11)

For the asymptotic stability of the chosen surface (8) in the
equilibrium point (σ = 0), some conditions must be satisfied:

a) V̇ < 0 for σ 6= 0

b) lim
|σ|→∞

V =∞

Condition b is clearly satisfied, but condition a follows:

V̇ = σσ̇ and σ̇ =
∂σ

∂x
ẋ (12)

Writing (9) using the defition of the input as in (10):

ẋ = (f(x) + g(x)Ueq) + (g(x)Uc) (13)

Solving Ueq to make the first therm of (13) be zero or,
in other way, from the definion of equivalent control as the
portion of control that is responsible for the set point of the
system:

Ueq = −
(
∂σ

∂x
g(x)

)−1(
∂σ

∂x
f(x)

)
(14)

Rewritten (12) using above:



V̇ = σσ̇ = σ
∂σ

∂x
g(x)Uc < 0 (15)

A simple form of implementing Uc is by signal func-
tion (16), however it causes a drawback in system performance
due to the so called chattering, which can be considered the
main drawback of sliding mode control [9]. But the purpose
of the use of signal function in this section is to show the
convergence by proving (15) inequality.

Uc = ρ sign(σ(x)) (16)

Where:

ρ: amplitude of switching control input.

Considering the use of function sign in (15):

V̇ =
∂S

∂x
g(x)ρ |σ(x)| < 0 (17)

As the therm ρ |σ(x)| > 0, then the stability of the
system depends on the internal product of the surface σ partial
derivative by x by the function g(x):

∂σ

∂x
g(x) < 0 for σ 6= 0 (18)

Following section assesses the stability for each considered
control system.

IV. PROPOSED TOPOLOGY

The control system diagram is shown in Fig. 6, where
GI represents the current loop controller and Gω represents
the speed loop controller. As the time constant of mechanical
system is far greater than time constant of electrical system,
it is possible to make separate analysis for the controllers of
speed loop (Gω) and for current loop (GI ) [10].

For the current control loop, (6) must be written in the
form of (9) in order to verify if it satisfies (18), as in (19).
Also, the equivalent control expression has solution consider-
ing the range for shaft speed operation and maximum stator
current (20).

∂σI
∂i

gI(i) = − 1

2(Ls −Ms)
< 0 (19)

δeq = 2
Rs + ΦMωe

VBUS
(20)

Where σI = i∗ − i.
The same for speed control loop, where (7) must be written

in the form of (9) to verify if it satisfies (18), as in (21).
Additionally, the equivalent control expression has solution
considering load torque and shaft speed operational ranges.

∂σω
∂ω

gω(ω) = − 1

J
< 0 (21)

Teeq= = Bω + TL (22)

Where σω = ω∗ − ω.

As condition (18) is satisfied for both control loops, is time
to define each one. For the speed controller Gω follows:

T ∗e = TeM tanh kω · σω (23)

Where:

T ∗e : electromagnetic torque reference;
TeM : maximum allowed electromagnetic torque for

this particular machine;
kω: hyperbolic tangent constant, it defines the incli-

nation of hyperbolic tangent;
ω∗: shaft rotor speed reference.

Regarding to the diagram of Fig. 6, the saturation block
for i∗′ is unnecessary, as T ∗e from (23) has its maximum and
minimum values limited by tanh, but it can be maintained for
sake of security, in the case of an implementation.

Now, for the current controller GI :

δ = tanh kI · σI (24)

Where:

δ: PWM duty cycle, as stated before, with the
difference that here it can be a negative number,
which means machine will be fed in the opposite
direction1;

kI : hyperbolic tangent constant for current.

One must note that the use of tanh in the place of sign does
not alter condition (18), once the therm σ tanhσ is positive
for σ 6= 0.

Fig. 5 shows the effect of some tanh coefficients in order
to better illustrate tanh as a signal function, where it is seen
that for higher values of k, it behaves close to a sign function
(k = 100); in the opposite, it resembles a line (k = 1).
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Fig. 5. Some tanh coefficient examples.

1In practice, the position sensors signals are going to be inverted, so machine
will be fed by a “negative” voltage by the inverter bridge, or in other therms,
the voltage is displaced by 180◦ electrical.
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With the help of Fig. 5, it is possible to pick up k for each
controller, so:

kω =
k

ωM
and kI =

k

IM
(25)

Where:

ωM : is the maximum shaft speed;
IM : is the maximum stator current allowed to the

machine, which is matched to its maximum elec-
tromagnetic torque.

The used values for the simulations are kω = 5 and kI = 3
and, for machine, ωM = 2000rpm and TM = 3.6N.m (IM =
5A).

V. RESULTS

The starting operation of BLDC motor is shown in Fig. 7,
where it accelerates up to 1000 rpm (104.7rd/s), with no load
torque until t = 0.15s, after that, load torque of 2.2N.m
(machine nominal load) is applied in its shaft. It can be seen
that a low speed error is present after that instant and it is
equal to 0.55rd/s (0.52% of error).
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Fig. 7. BLDC motor starting with proposed SMC using tanh function as
analog sign function.

Fig. 8 shows the acceleration of BLDC motor up to
2000rpm (209.4rd/s), with some shaft torque load variations, as
shown in the figure. The final machine rotor speed is 209.4rd/s,
an error of 0.4rd/s (0.2% of error).
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Fig. 8. BLDC motor with proposed SMC using tanh function as analog sign
function.

Fig. 9 shows the reversion of the machine, from 2000rpm to
-2000rpm. During the reversion, the mechanical load is applied
in different directions. After 0.4s, the maximum torque allowed
to the machine is 5N.m, so the machine has an extra torque
to accelerate.
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Fig. 9. BLDC motor during reversion with proposed SMC using tanh function
as analog sign function.

And in Fig. 10, a zoom in the interval from 0.6s to 0.7s
shows machine operating details. It is possible to see the PWM
duty cycle reference, which is the output of the controller
GI ; the spikes shown in figure are due to stator switching



phase compensation, where the controller increases duty cycle
in order to compensate current lowering.
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Fig. 10. Detail of BLDC motor operation, showing PWM duty cycle.

The phase plane considering the machine operation shown
in Fig. 7 is shown in Fig. 11, where it can be seen that speed
error due to shaft load variation can reach about 2rpm (when
machine achieves its set point at aprox. 1000rpm), and the
error due to machine parameters variation are neglivible, as
shown by other curves (colors other than red). In Fig. 12, it
is shown the same load operational conditions of the previous
Fig., except that kω is now equal to 3. It can be seen that load
variation is still the major factor causing speed error (about
5rpm) but machine parameters variation plays a noticeable role
when operating at full load.
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Fig. 11. Phase plane for BLDC motor operating at 1000rpm under load and
machine parameters variations, using kω = 5.

VI. CONCLUSIONS

The use of SMC has some advantages as it is very robust
to plant parameter variation, to external disturbances and
uncertainties. Also, it can be pointed out the low effort by
the designer to tunneling controller parameters, as is the case
of this work.

The use of hyperbolic tangent, instead of the signal func-
tion for sliding mode control topology, in BLDC motors also
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Fig. 12. Phase plane for BLDC motor operating at 1000rpm under load and
machine parameters variations, using kω = 3.

proved to be robust and with some advantages over the signal
function, as the reduction of chattering in its input, i. e., in
the electromagnetic torque reference, considering the speed
controller, and the PWM duty cycle, considering the current
control loop. One drawback that can be pointed out concerns
the steady state error presented in the results for shaft speed,
but it can be neglected depending on the application due
to its low value, around 0.5%. Considering this error, it is
presented by the system only under full load torque, but it can
be considered imperceptible in major part of applications of
this nature.
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