Detecção e diagnóstico de falhas em robôs manipuladores via redes neurais artificiais

Renato Tinós Orientador: Prof. Dr. Marco H. Terra

Sumário

- Introdução
- Detecção e diagnóstico de falhas (DDF) em sistemas dinâmicos
- Redes neurais artificiais (RNA)
- Robôs manipuladores
- Sistema de DDF via redes neurais artificiais
- Resultados
 - Manipulador planar com 2 graus de liberdade
 - Manipulador Puma 560
- Conclusões

Introdução

Falhas em sistemas dinâmicos:

- podem acarretar perdas de desempenho
- podem por em risco os equipamentos e o pessoal envolvido
- ocorrem: de modo abrupto ou de modo lento
- podem ser encobertas pela ação dos controladores
- pode ser entendida como qualquer tipo de mal funcionamento que ocasione perdas de desempenho
- Tolerância a falhas: redundância física e redundância em paralelo
 3

DDF em Sistemas Dinâmicos

- as técnicas de DDF utilizam processamento de informações das variáveis do processo
- através de DDF pode-se ter sistemas tolerantes a falhas: sistemas reconfiguráveis

Técnicas de DDF:

- através de redundância analítica:
 - uso do modelo matemático (erros de modelagem)
- através de técnicas de inteligência artificial (IA)

Conceito de Geração de Resíduos

DDF via redundância analítica

- uso do modelo matemático do sistema Alguns enfoques:
- por paridade de estados
- por observadores dedicados
- por identificação paramétrica

Problemas:

- erros de modelagem
- a modelagem pode ser díficil ou impossível
 Soluções:
- uso de técnicas robustas

DDF utilizando técnicas de IA

- baseada na classificação das varíaveis medidas
- baseada no conceito de geração de resíduos
 Técnicas de IA utilizadas:
- sistemas especialistas
- lógica nebulosa (*fuzzy*)
- redes neurais artificiais (RNA)
- Usando RNA e o conceito de geração de resíduos:
- Mapeamento: RNA como aproximador de funções
- Análise dos resíduos: RNA como classificador

Redes neurais artificiais

perceptron multicamadas (MLP) treinado por retropropagação do erro (*backpropagation*)

Perceptron multicamadas

- a relação entrada/saída do MLP define um mapeamento de um espaço *p*-dimensional para um espaço *q*-dimensional, que é continuamente diferenciável - teorema A1 [CYBENKO, 1989].
- Para o problema de classificação o MLP com treinamento por retropropagação produz bordas de decisão.

Problemas para a classificação em DDF:

- as bordas não estão em posições consevadoras
- nas áreas sem padrões de treinamento a classificação é arbitrária
 11

Rede com Função de Base Radial (Rede RBF)

Rede com Função de Base Radial (Rede RBF)

$$\xi_{1}(1) \xi_{1}(2) - \xi_{1}(n_{p})$$

 $\xi_{2}(1) \xi_{2}(2) - \xi_{2}(n_{p})$
 $\xi_{2}(1) \xi_{2}(2) - \xi_{2}(n_{p})$
 k_{1}
 $k_{2}(1) \xi_{2}(2) - \xi_{2}(n_{p})$
 k_{2}
 $k_{2}(1) \xi_{2}(2) - \xi_{2}(n_{p})$
 k_{2}
 $k_{2}(1) \xi_{2}(2) - \xi_{2}(n_{p})$
 k_{2}
 $k_{2}(1) \xi_{2}(2) - \psi_{2}(n_{p})$
 $k_{2}(1) \psi_{2}(2) - \psi_{2}(n_{p})$
 $k_{2}(1) \psi_{2}(1) \psi_{2}(2) - \psi_{2}(n_{p})$
 $k_{2}(1) \psi_{2}(1) \psi_{$

Rede RBF

- a classificação é feita de acordo com a distância do padrão a ser classificado e os vetores de centros
- o treinamento é rápido pois o modelo, após a determinação das unidades radiais, é linear
- inexistência de mínimos locais no cálculo dos pesos
- pode ser usada também para aproximação de funções, no entanto, espaços de entradas com dimensão alta podem tornar o treinamento complicado
- aqui, 4 métodos de treinamento foram utilizados

1) Forward Selection (FS)

- emprega seleção de subconjuntos para escolher os centros das unidades radiais a partir dos padrões de treinamento
- começa com um subconjunto vazio e adiciona em cada passo o padrão que mais reduz a soma do erro médio quadrático
- a seleção termina quando um critério de parada é alcançado (aqui, o erro GCV)
- depois da escolha dos centros, a matriz de pesos pode ser calculada

 $\hat{\boldsymbol{\Omega}} = \left(\mathbf{H}^{\mathrm{T}} \mathbf{H} \right)^{-1} \mathbf{H}^{\mathrm{T}} \boldsymbol{\Psi}$

2) Global ridge regression (GRR)

- é equivalente à decaimento de pesos, usado em RNA
- emprega todos os padrões de treinamento como centros das unidades radiais, mas penaliza os pesos grandes
- um único termo de penalidade (λ) é aplicado em todas as unidades radiais

$$C_{k} = \sum_{n=1}^{n_{p}} \left(\psi_{k} \left(n \right) - \hat{\psi}_{k} \left(n \right) \right)^{2} + \lambda \sum_{j=1}^{m} \omega_{kj}^{2}$$

 $\hat{\mathbf{\Omega}} = \left(\mathbf{H}^{\mathrm{T}}\mathbf{H} + \lambda \mathbf{I}_{m}\right)^{-1} \mathbf{H}^{\mathrm{T}}\mathbf{\Psi}$

3) Local ridge regression (LRR)

 LRR aplica em cada unidade radial um termo de penalidade diferente

$$C_{k} = \sum_{n=1}^{n_{p}} \left(\psi_{k} (n) - \hat{\psi}_{k} (n) \right)^{2} + \sum_{j=1}^{m} \lambda_{j}^{2} \omega_{kj}^{2}$$

$$\hat{\boldsymbol{\Omega}} = \left(\boldsymbol{H}^{\mathrm{T}}\boldsymbol{H} + \boldsymbol{\Lambda} \right)^{-1} \boldsymbol{H}^{\mathrm{T}}\boldsymbol{\Psi}$$

 Λ é uma matriz diagonal formada pelos termos de penalidade individuais

4) Mapa Auto-organizável de Kohonen (MAOK)

- o conjunto de treinamento é separado de acordo com as diferentes classes
- inicialmente todos os padrões de cada classe são escolhidos como centros das unidades radiais
- para cada classe, a unidade com a maior ativação é selecionada

$$h_c(t) = \max_j \left\{ h_j(t) \right\}$$

o centro da unidade radial é atualizado de acordo com

$$\boldsymbol{\mu}_{j}(t+1) = \boldsymbol{\mu}_{j}(t) + \boldsymbol{\alpha}(t)\boldsymbol{\beta}(t) \Big[\boldsymbol{\xi}(t) - \boldsymbol{\mu}_{j}(t)\Big]$$

- se o número de iterações é suficientemente grande e os parâmetros são escolhidos apropriadamente, os centros das unidades radiais nos mesmos aglomerados deverão se mover para a mesma posição
- como várias unidades radiais têm centros nas mesmas posições, estas unidades podem ser agrupadas
- assim, a complexidade da rede é reduzida já que o número de parâmetros adaptativos decresce
- o próximo passo é agrupar as unidades radiais de cada classe em uma única rede RBF e calcular a matriz de pesos ótima

Robôs manipuladores

A dinâmica de um robo manipulador é dada por:

 $\ddot{\boldsymbol{\theta}} = \mathbf{M}(\boldsymbol{\theta}, t)^{-1} \Big[\boldsymbol{\tau} - \mathbf{v}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}, t) - \mathbf{g}(\boldsymbol{\theta}, t) - \mathbf{z}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}, t) - \mathbf{d}(t) \Big]$

Falhas em robôs manipuladores:

- podem gerar movimentos descontrolados que podem causar sérios danos ao robô e ao ambiente de trabalho
- Em medicina, exploração espacial e ambientes hostis, as falhas podem causar acidentes irreversíveis

DDF em robôs manipuladores

 geralmente utiliza-se redundância analítica para gerar os resíduos

Para análise dos resíduos, pode-se citar:

- utiliza-se *threshold* fixos: problemas de alarmes falsos
- utiliza-se *thresholds* variáveis: (Visinsky *et al.*, 1995), (Schneider e Frank, 1996) e (Naugthon *et al.*, 1996)
- O esquema aqui utilizado faz uso de um MLP para gerar os resíduos e uma rede RBF para produzir *thresholds* variáveis

DDF em robôs manipuladores via RNA Aplicando-se a Integração de Euler na eq. dinâmica:

 $\dot{\boldsymbol{\theta}}(t+\Delta t) = \mathbf{M}(\boldsymbol{\theta},t)^{-1}[\boldsymbol{\tau}-\mathbf{v}(\boldsymbol{\theta},\dot{\boldsymbol{\theta}},t)-\mathbf{g}(\boldsymbol{\theta},t)-\mathbf{z}(\boldsymbol{\theta},\dot{\boldsymbol{\theta}},t)-\mathbf{d}(t)]\Delta t+\dot{\boldsymbol{\theta}}(t)$

- O MLP deve reproduzir a função não-linear: $\dot{\theta}_{t+\Delta t} = f(\theta_t, \dot{\theta}_t, \tau_t)$
- A rede RBF tem como entradas os dados do resíduo e de velocidades nas juntas e como saídas o vetor de estados das falhas

Resultados: robô manipulador planar com 2 graus de liberdade

 O MLP é treinado com 10 trajetórias com 50 amostras cada

Resultados: robô manipulador planar com 2 graus de liberdade

Figura. Velocidades das juntas (tracejadas) e saídas do MLP (contínuas) para uma trajetória não-treinada livre de falhas

Resultados - Robo com 2 graus de liberdade Falhas:

- Falha 1: travamento da junta 1
- Falha 2: travamento da junta 2
- Critério de falhas adotado: 5 saídas consecutivas da rede RBF maiores que 0,5
- A rede RBF é treinada apresentado-se 9 trajetórias com 40 amostras cada para os dois tipos de falha e para operação normal (Total: 27 trajetórias)
- Foram usados os 3 métodos para treinamento da rede RBF: 1 único alarme falso nos testes.

Resultados: Rede RBF

Erro médio quadrático da rede RBF para o conjunto de treinamento.

	saída 1 - rede RBF	saída 2 - rede RBF
	(Falha 1)	(Falha 2)
FS	0.0008	0.0042
GRR	0.0015	0.0066
LRR	0.0013	0.0058
MAOK	0.0100	0.0212

Erro médio quadrático da rede RBF para o conjunto de teste.

	saída 1 - rede RBF	saída 2 - rede RBF
	(Falha 1)	(Falha 2)
FS	0.0699	0.2727
GRR	0.0354	0.0829
LRR	0.0414	0.1233
MAOK	0.0273	0.0788

Resultados: método global ridge regression

Figura. Saídas da rede RBF para uma trajetória nãotreinada. A falha 1 ocorre entre as amostras 10 e 80 Figura. Detecção da falha 1 para a saída 1 da rede RBF vista na Figura ao lado

Resultados: método local ridge regression

Figura. Saídas da rede RBF para uma trajetória nãotreinada. A falha 1 ocorre entre as amostras 10 e 80 Figura. Detecção da falha 1 para a saída 1 da rede RBF vista na Figura ao lado

RESULTADOS: PUMA 560

- o MLP é treinado com 10 trajetórias com 50 ampostras cada
- o MLP tem 9 entradas, 29 neurônios na camada escondida e 3 neurônios de saída

Resultados - Puma 560

- Falhas consideradas:
 - Falha 1: torque não é aplicado na junta 1
 - Falha 2: torque não é aplicado na junta 2
 - Falha 3: torque não é aplicado na junta 3
- A rede RBF foi treinada com 15 trajetórias com 12 amostras cada para as 3 falhas e para operação normal (720 padrões)
- Para os teste de validação, 30 trajetórias nãotreinadas com 15 amostras cada são apresentadas 4 vezes (1800 padrões)
- critério de falhas: 3 amostras consecutivas > 0,5 36

Resultados: Rede RBF

Erro médio quadrático da rede RBF para o conjunto de treinamento.

	saída 1 - rede RBF	saída 2 - rede RBF	saída 3 - rede RBF
	(Falha 1)	(Falha 2)	(Falha 3)
FS	0.0040	0.0017	0.0017
GRR	0.0155	0.0075	0.0119
LRR	0.0061	0.0022	0.0030
MAOK	0.0096	0.0042	0.0092

Erro médio quadrático da rede RBF para o conjunto de teste.

	saída 1 - rede RBF	saída 2 - rede RBF	saída 3 - rede RBF
	(Falha 1)	(Falha 2)	(Falha 3)
FS	0.0712	0.0431	0.0347
GRR	0.0419	0.0371	0.0271
LRR	0.7930	241.7819	2.6576
MAOK	0.0462	0.0400	0.0293

	número de alarmes	número de falhas
	falsos	não-detectadas
FS	8	2
GRR	1	0
LRR	7	1
МАОК	4	0

Resultados - Puma 560

Figura. Saídas da rede RBF para 4 simulações de uma mesma trajetória não-treinada (12 amostras). Nas três primeiras simulações um tipo diferente de falha ocorre.

Conclusões

- o sistema de DDF via RNA apresenta bons resultados quando aplicado em um robô manipulador planar com 2 braços e no Puma 560
- o grande atrativo é que o sistema consegue detectar falhas que ocorrem em trajetórias nãotreinadas
- para os métodos MAOK, GRR e LRR, as redes RBF apresentam sinais de saída mais suaves do que as redes treinadas pelo método FS
- o custo computacional do LRR é bastante alto
- o menor custo computacional ocorre no MAOK 39

Conclusões

- o método MAOK apresenta bons resultados quando comparados com os outros métodos
- um resultado interessante é que as redes treinadas pelo MAOK apresentam menor número de unidades radiais
- falhas cujo sistema apresente comportamentos semelhantes são difíceis de serem isoladas