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Evolutionary Games

E HAVE SO FAR STUDIED GAMES with inany different features—
simultaneous and sequential moves, zero-sum and non-zero-sum
payoffs, strategic moves to manipulate rules of games to come, one-shot
and repeated play, and even games of collective action in which a large
number of people play simultaneously. However, one ground rule has remained
unchanged in all of the discussions—namely, that all the players in all these
games are rational: each player has an internally consistent value system, can
calculate the consequences of her strategic choices, and makes the choice that
best favors her interests. .

In applying this rule, we merely follow the route taken by most of game theory,
which was developed mainly by economists. Economics was founded on the
dual assumptions of rational behavior and equilibrium, Indeed, these assump-
tions have proved useful in game theory. We have obtained quite a good under-
standing of games in which the players participate sufficiently regularly to have
learned what their best choices are by experience. The assumptions ensure that
a player does not attribute any false naiveté to her rivals and thus does not get
exploited by these rivals. The theory also gives some prescriptive guidance to
players as to how they should play.

However, other sacial scientists are much more skeptical of the rationality
assumption and therefore of a theory built on such a foundation. Economists,
too, should not take rationality for granted, as pointed out in Chapter 5. The
trouble is finding a feasible alternative. Although we may not wish to impose
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conscious and perfectly calculating rationality on players, we do not want to
abandon the idea that some strategies are better than others. We want good
strategies to be rewarded with higher payoffs; we want players to observe or
imitate success and to experiment with new strategies; we want good strategies
to be used more often and bad strategies less often, as players gain experience
playing the game. We find one possible alternative to rationality in the biologi-
cal theory of evolution and evolutionary dynamics and will study its lessons in
this chapter.

THE FRAMEWORK

The process of evolution in biology offers a particularly attractive parallel to the
theory of games used by social scientists. This theory rests on three fundamen-
tals: heterogeneity, fitness, and selection, The starting point is that a significant
part of animal behavior is genetically determined; a complex of one or more
genes (genotype) governs a particular pattern of behavior, called a behavioral
phenotype. Natural diversity of the gene pool ensures a heterogeneity of phe-
notypes in the population. Some behaviors are better suited than others to the
prevailing conditions, and the success of a phenotype is given a quantitative
measure called its fitness., People are used to thinking of this success as mean-
ing the common but misleading phrase “survival of the fittest”; however, the
ultimate test of biological fitness is not mere survival, but reproductive success.
That is what enables an animal to pass on its genes to the next generation and
perpetuate its phenotype. The fitter phenotypes then become relatively more
numerous in the next generation than the less fit phenotypes. This process of
selection is the dynamic that changes the mix of genotypes and phenotypes and
perhaps leads eventually to a stable state.

From time to time, chance produces new genetic mutations, Many of these
mutations produce behaviors (that is, phenotypes) that are ill suited to the envi-
ronment, and they die out. But occasionally a mutation leads to a new phenotype
that is fitter. Then such a mutant gene can successfully invade a population—
that is, spread to become a significant proportion of the population,

At any time, a population may contain some or all of its biologically con-
ceivable phenotypes. Those that are fitter than others will increase in propot-
tion, some unfit phenotypes may die out, and other phenotypes not currently
in the population may try to invade it. Biologists call a configuration of a
population and its current phenotypes evolutionary stable if the population
cannot be invaded successfully by any mutant. This is a static test, but often a
more dynamic criterion is applied: a configuration is evolutionary stable if it is
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the limiting outcome of the dynamics of selection, starting from any arbitrary
mixture of phenotypes in the population.!

The fitness of a phenotype depends on the relationship of the individual
organism to its environment; for example, the fitness of a particular bird depends
on the aerodynamic characteristics of its wings. Italso depends onthe whole com-
plex of the proportions of different phenotypes that exist in the environment—
how aerodynamic its wings are relative to those of the rest of its species. Thus
the fitness of a particular animal—with its behavioral traits, such as aggression
and sociability—depends on whether other members of its species are predomi-
nantly aggressive or passive, crowded or dispersed, and so on. For our purpose,
this interaction between phenotypes within a species is the most interesting as-
pect of the story. Sometimes an individual member of a species interacts with
members of another species; then the fitness of a particular type of sheep, for
example, may depend on the traits that prevailin the local population of wolves.
We consider this type of interaction as well, but only after we have covered the
within-species case.

The biological process of evolution finds a ready parallel in game theory.
The behavior of a phenotype can be thought of as a strategy of the animal in
its interaction with others—for example, whether to fight or to retreat. The dif-
ference is that the choice of strategy is not a purposive calculation as it would
be in standard game theory; rather, it is a genetically predetermined fixture of
the phenotype. The interactions lead to payoffs to the phenotypes. In biology,
the payoffs measure the evolutionary or reproductive fitness; when we apply
these ideas outside of biology, they can have other connotations of success in
the social, political, or economic games in question.

The payoffs or fitness numbers can be shown in a payoft table just like that
for a standard game, with all conceivable phenotypes of one animal arrayed
along the rows of the matrix and those of the other along the cohumns of the
matrix. If more animals interact simultaneously—which is called playing the field
in biology—ithe payoffs can be shown by functions like those for collective-action
games in Chapter 12. We will consider pair-by-pair matches for most of this
chapter and will look at the other case briefly in Section 9.

Because the population is a mix of phenotypes, different pairs selected from
it will bring to their interactions different combinations of strategies. The actual
quantitative measure of the fitness of a phenotype is the average payoff that
it gets in all its interactions with others in the population. Those animals with
higher fitness will have greater evolutionary success. The eventual outcomne of

*The dynamics of phenotypes is driven by an underlying dynamics of genotypes but, at least
at the elementary level, evolutionary biology focuses its analysis at the phenotype level and conceals
the genetic aspects of evolution. We will do likewise in our exposition of evolutionary games, Some
theories at the genotypes kevel can be found in the materials cited in footnote 2,
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the population dynamics will be an evolutionary stable configuration of the
population.

Biologists have used this approach very successfully. Combinations of ag-
gressive and cooperative behavior, locations of nesting sites, and many more
phenomena that elude more conventional explanations can be understood as
the stable outcomes of an evolutionary process of selection of fitter strategies
Interestingly, biologists developed the idea of evolutionary games by using thc-,;
preexisting body of game theory, drawing from its language but modifying the
assgmption of conscious maximizing to suit their needs. Now game theorists
are -m turn using insights from the research on biological evolutionary games to
enrich their own subject.?

Indeed, the theory of evolutionary games seems a ready-made framework
.foraa new approach to game theory, relaxing the assumption of rational behav-
lor.” According to this view of games, individual players have no freedom to
choose their strategy at all. Some are “born” to play one strategy, others another.
"ljhe idea of inheritance of strategies can be interpreted more broadly in applica-.
tions of the theory other than in biology. In human interactions, a strategy ma
be embedded in a player’s mind for a variety of reasons-—not Dl,lly genetics bu¥
a'lso (and probably more important) socialization, cultural background, educa-
tion, o'r a rule of thumb based on past experience. The population can, consist
of a mixture of different people with different backgrounds or experiences that

embed different strategies into them. Thus some politicians may be motivated
to adhere to certain moral or ethical codes even at the cost of electoral success
whereas others are mainly concerned with their own reelection; similarly, some:
ﬁrl‘flS may pursue profit alone, whereas others are motivated by social or eco-
logical objectives. We can call each logically conceivable strategy that can be

2 " . o
ls%R(.)bert Pool, ‘Puttmg Game Theory to the Test,” Science, vol. 267 (March 17, 1995), pp. 1591~
p 1 ,is ?}gOf)d article for‘genfaral readers and has many examples from biology. Jobn Maynard Smith
d ;:2993 Wﬁ 1 such games in Ib;ology in his Evolutionary Genetics (Oxford: Oxford University Press
1582; 3 a;f) .7, and Euo{u!zon and the Theory of Games (Cambridge: Cambridge University PressJ

P, l-e ormer ﬁ]Sf} gives m‘uch background on evolutiotr. Recommended for advanced readers
ireG eter Hammerstein and Reinhard Selten, “Game Theory and Evolutionary Biology,” in Hardbook
if Garne Theor.y, vol. %, ed. R J. Aumann and S. Hart (Amsterdam: North Hotland, 1994), pp. 929-993;
an(i Jorgen Weibull, Evolutionary Game Theory (Cambridge: MIT Press, 1995). o
IOWiLI'lgdfeid, agpilcatlons (l)f the evolutionary perspective need not stop with game theory. The fol-

Jjoke offers an “evolutionary theory of gravitation” as 4 ‘nati s or Ei in’

ohytal heorion yoi g as an alternative to Newton’s or Einstein’s

Question:Why does an apple fall from the tree to earth?

Answer: Originally, apples that came loose from tr i

. b at ¢z m trees went in all directions. But only thos

were genetically predisposed to fall to the earth could reproduce, ¥ hose that
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From a population with its heterogeneity of embedded strategies, pairs of phe-
notypes are repeatedly randomly selected to interact (play the game) with others
of the same or different “species.” In each interaction, the payoff of each player de-
pends on the strategies of both; this dependence is governed by the usual “rules
of the game” and illustrated in the game table or tree. The fitness of a particular
strategy is defined as its aggregate or average payoffin its pairings with all the strat-
egies in the population. Some strategies have a higher level of fitness than others;
in the next generation—that is, the next round of play—these higher-fitness strate-
gies will be used by more players and will proliferate. Strategies with lower fitness
will be used by fewer players and will decay or die out. Occasionally, someone may
experiment or adopt a previously unused strategy from the collection of those that
are logically conceivable. This corresponds to the emergence of a mutant. If the
new strategy is fitter than the ones currently being used, it will start to be used by
larger proportions of the population. The central guestion is whether this process
of selective proliferation, decay, and mutation of certain strategies in the popula-
tion will have an evolutionary stable outcome and, if so, what it will be. In regard to
the examples just cited, will society end up with a situation in which all politicians
are concerned with reelection and all firms with profit? In this chapter, we develop
the framework and methods for answering such questions.

Although we use the biological analogy, the reason that the fitter strategies
proliferate and the less fit ones die out in sociceconomic games differs from the
strict genetic mechanism of biology: players who fared well in the last round will
transmit the information to their friends and colleagues playing the next round,
those who fared poorly in the last round will observe which strategies succeeded
better and will try to imitate them, and some purposive thinking and revision of
previous rules of thumb will take place between successive rounds. Such “social”
and “educational” mechanisms of transmission are far more important in most
strategic games than any biological genetics; indeed, this is how the reelection
ortentation of legislators and the profit-maximization motive of firms are rein-
forced. Finally, conscious experimentation with new strategies substitutes for
the accidental mutation in biological games.

Evolutionary stable configurations of biological games can be of two kinds.
First, a single phenotype may prove fitter than any others, and the population
may come to consist of it alone. Such an evolutionary stable outcome is called
monomorphism—thatis, a single (mono) form (morph). In that case, the unique
prevailing strategy is called an evolutionary stable strategy (ESS). The other
possibility is that two or more phenotypes may be equally fit (and fitter than
some others not played), so they may be able to coexist in certain proportions.
Then the population is said to exhibit polymorphism—that is, a multiplicity
(poly) of forms (morph}. Such a state will be stable if no new phenotype or fea-
sible mutant can achieve a higher fitness against such a population than the
fitness of the types that are already present in the polymorphic population.

|
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Polymorphism comes close to the game-theoretic notion of a mixed strat-
egy. However, there is an important difference. To get polymorphism, no indi-
vidual player need follow a mixed strategy. Each can follow a pure strategy, but
the population exhibits a mixture because different individual players pu'rsue
different pure strategies.

The whole setup-~the population, its conceivable collection of phenotypes
the payoff matrix in the interactions of the phenotypes, and the rule for the evoj
lution of population proportions of the phenotypes in relation to their fitness—
constitutes an evolutionary game. An evolutionary stable configuration of the
population can be called an equilibrium of the evolutionary game.,

In this chapter, we develop some of these ideas, as usual through a series of
{llustrative examples. We begin with symmetric games, in which the two players
.are on similar footing—for example, two members of the same species compet-
ing with each other for food or mates; in a social science interpretation, they
could be two elected officials competing for the right to continue in pubiic of-
fice. In the payoff table for the game, each can be designated as the row player
or the column player with no difference in outcome.

Suppose a population is made up of two phenotypes. One type consists of
players who are natural-born cooperators; they always work toward the out-
come that is jointly best for all players. The other type consists of the defectors;
they work only for themselves. As an example, we use the restaurant pricing’
game described in Chapter 5 and presented in a simplified version in Chap-
ter 11. Here, we use the simpler version in which only two pricing choices are
available, the jointly best price of $26 or the Nash equilibrium price of $20. A
cooperator restaurateur would always choose $26, whereas a defector would
always choose $20. The payoffs (profits) of each type in a single play of this dis-
crete dilemma are shown in Figure 13.1, reproduced from Figure 11.2. Here we
call the players simply Row and Column because each can be any individual

COLUVIN

0 (Defecy

20 (Defect). 288, 288 360, 216

26 (Cooperate) 216, 360 324,324

FIGURE 13,1 Prisoners’ Dilernma of Pricing ($100s per Month)
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restaurateur in the population who is chosen at random to compete against
anather random rival,

Remember that under the evolutionary scenario, no one has the choice
between defecting and cooperating; each is “born” with one trait or the other
predetermined. Which is the more successful (fitter) trait in the population?

A defecting-type restaurateur gets a payoff of 288 ($28,800 a month) if
matched against another defecting type and a payoff of 360 ($36,000 a month)
if matched against a cooperating type. A cooperating type gets 216 ($21,600 a
month) if matched against a defecting type and 324 ($32,400 a month) if matched
against another cooperating type. No matter what the type of the matched rival,
the defecting type does better than the cooperating type.* Therefore the defect-
ing type has a better expected payoff (and is thus fitter} than does the cooperating
type, irrespective of the proportions of the two types in the population.

A little more formally, let x be the proportion of cooperators in the popula-
tion. Consider any one particular cooperator. In a random draw, the probability
that she will meet another cooperator (and get 324) is x and that she will meet
a defector (and get 216) is {1 — x). Therefore a typical cooperator’s expected
payoffis 324x + 216(1 — x). For a defector, the probability of meeting a coopera-
tor (and getting 360) is x and that of meeting another defector (and getting 288) is
(1 — x). Therefore a typical defector’s expected profit is 360x + 288(1 — x). Now it
is immediately apparent that

360x + 288(1 — x) > 324x + 216{1 — x) for all x between 0 and 1.

Therefore a defector has a higher expected payoff and is fitter than a cooperator.
This will lead to an increase in the proportion of defectors (a decrease in x) from
one “generation” of players to the next, until the whole population consists of
defectors.

What if the population initially consists of all defectors? Then jn this case
no mutant (experimental)} cooperator will survive and multiply to take over the
population; in other words, the defector population cannot be invaded success-
fully by mutant cooperators. Even for a very small value of x—that is, when the
proportion of cooperators in the population is very small—the cooperators re-
main less {it than the prevailing defectors, and their population proportion will
not increase but will be driven to zero; the mutant strain will die out.

Our analysis shows both that defectors have higher fitness than cooperators
and that an all-defector population cannot be invaded by mutant cooperators.
Thus the evolutionary stable configuration of the population is monomorphic,
consisting of the single strategy or phenotype Defect. We therefore call Defect
the evolutionary stable strategy for this population engaged in this dilemma
game. Note that Defect is a strictly dominant strategy in the rational behavior

“In the rational behavior context of the preceding chapters, we would say that Defect is the
strictly dominant strategy.
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analysis of this same game. This result is very general: if a game has a strictly
dominant strategy, that strategy will also be the ESS.

A. The Repeated Prisoners’ Dilemma

We saw in Chapter 11 how a repetition of the prisoners’ dilemma permitted con-
sciously rational players to sustain cooperation for their mutual benefit. Let us
see if a similar possibility exists in the evolutionary story. Suppose each chosen
pair of players plays the dilemma three times in succession. The overall payoff to
a player from such an interaction is the sum of what she gets in the three rounds.

Each individual player is still programmed to play just one strategy, but that
strategy has to be a complete plan of action. In a game with three moves, a strat-
egy can stipulate an action in the second or third play that depends on what hap-
pened in the first or second play. For example, “I will always cooperate no matter
what” and “T will always defect no matter what” are valid strategies. But "I will
begin by cooperating and continue to cooperate as long as you cooperated on
the preceding play; and I will defect in all later plays if you defect in an early play”
is also a valid strategy; in fact, this last strategy is just tit-for-tat (TFT).

To keep the initial analysis simple, we suppose in this section that there
are just two types of strategies that can possibly exist in the population: always
defect (A) and tit-for-tat (T). Pairs are randomly selected from the population,
and each selected pair plays the game a specified number of times. The fitness
of each player is simply the sum of her payoffs from all the repetitions played
against her specific opponent. We examine what happens with two, three, and
more generally n such repetitions in each pair,

- TWICE-REPEATED PLAY  Figure 13.2 shows the payoff table for the game in which
two members of the restaurateur population meet and play against one another
exactly twice. If both players are A types, both defect both times, and Figure 13.1
shows that then each gets 288 each time, for a total of 576. If both are T types,
defection never starts, and each gets 324 each time, for a total of 648. If one is an
A type and the other a T type, then on the first play the A type defects and the T
type cooperates, so the former gets 360 and the latter 216. On the second play
both defect and get 288. So the A type's total payoffis 360 + 288 = 648, and the T
type’s total is 216 + 288 = 504.

In the twice-repeated dilemma, we see that A is only weakly dominant. It is
easy to see that if the population is all A, then T-type mutants cannot invade, and
A s an ESS. But if the population is all T, then A-type mutants cannot do any bet-
ter than the T types. Does this mean that T must be another ESS, just as it would
be a Nash equilibrium in the rational-game-theoretic analysis of this game? The
answer s no. If the population is initially all T and a few A mutants enter, then
the mutants would meet the predominant T types most of the time and would
do as well as T does against another T, But occasionally an A mutant would meet
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COLUMN

A} 576,576 | 648,504

ROW
oo b 504,648 648, 648

FIGURE 13.2 Outcomes in the Twice-Repeated Prisoners’ Dilemma ($100s)

another A mutant, and in this match she does better than would a T against an
A. Thus the mutants have just slightly higher fitness than that of a member of the
predominant phenotype. This advantage leads to an increase, albeit a slow one,
in the proportion of mutants in the population. Therefore an all-T population
can be invaded successfully by A mutants; T is not an ESS.

Our reasoning relies on two tests for an ESS. First we see if the mutant does
better or worse than the predominant phenotype when each is matched against
the predominant type. If this primary criterion gives a clear answer, that settles
the matter. But if the primary criterion gives a tie, then we use a tie-breaking,
or secondary, criterion: does the mutant fare better or worse than a predomi-
nant phenotype when each is matched against a mutant? Ties are exceptional
and most of the time we do not need the secondary criterion, but it is there in
reserve for situations such as the one illustrated in Figure 13.2.°

I THREEFOLD REPETITION  Now suppose each matched pair from the (A, T) population
plays the game three times. Figure 13.3 shows the fitness outcomes, summed
over the three meetings, for each type of player when matched against rivals of
each type,

To see how these fitness numbers arise, consider a couple of exantples. When
two T players meet each other, both cooperate the first time, and therefore both
cooperate the second time and the third time as well; both get 324 each time, for
a total of 972 each over 3 months. When a T player meets an A player, the latter
does well the first time (360 for the A type versus 216 for the T player), but then
the T player also defects the second and third times, and each gets 288 in both of
those plays (for totals of 936 for A and 792 for T).

The relative fitnesses of the two types depend on the composition of the pop-
ulation. If the population is almost wholly A type, then A is fitter than T (because

“This game is just one example of a twice-repeated dilemma, With other payo#fs in the basic
game, twofold repetition may not have ties, That is so in the husband-wife jail story of Chapter 4. i
both the primary and secondary criteria yield ties, neither phenotype satisfies our definition of ESS,
and we need to broaden our understanding of what constitutes an equilibrium in the evolutionary
game, We consider such a possibility in Section 7 and provide the general theory for dealing with
such an outcome in Section 8.
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COLUMN

AT 864,864 | 936,792
ROW e

ST 792,936 | 972,972

FIGURE 13.3 Outcomes in the Thrice-Repeated Prisoners’ Diternma {$100s)

A types meeting mostly other A types earn 864 most of the time, but T types most
often get 792). But if the population is almost wholly T type, then T is fitter than A
(because T types earn 972 when they meet mostly other Ts, but A types earn 936 in
such a situation). Each type is fitter when it already predominates in the popula-
tion. Therefore T cannot invade successfuily when the population is all A, and vice
versa. Now there are two possible evolutionary stable configurations of the popu-
lation; in one configuration, A is the ESS and, in the other, T is the ESS.

Next consider the evolutionary dynamics when the initial population is
made up of a mixture of the two types. How will the composition of the popula-
tion evolve over time? Suppose a fraction x of the population is T type and the
rest, (1 — x), is A type.® An individual A player, pitted against various opponents
chosen from such a population, gets 936 when confronting a T player, which
happens a fraction x of the times, and 864 against another A player, which hap-
pens a fraction (1 — x of the times. This gives an average expected payoff of

936x + 864(1 — x) = 864 + T2x

for each A player. Similarly, an individual T player gets an average expected
payoff of

972x + 792(1 — X) = 792 + 180x.

Then a T player is fitter than an A player if the former earns more on average;
that is, if ’

792 + 180x > 864 + 72x
108x > 72
x> 2/3.

‘Literally, the fraction of any particultar type in the population is finite and can only take on val-
ues such as 1/1,000,000, 2/1,000,000, and so on. But, if the population is sufficiently large and we
show all such values as points on a straight line, as in Figure 13.4, then these points are very tightly
})ackfed together, and we can regard them as forming a continuous line. This amounts to letting the
fractions take on any real value between 0 and 1. We can then talk of the popuitation proportion of
a certain behavioral type. By the same reasoning, if one individual member goes to jail and is

l‘enlloved from the population, her removal does not change the population’s proportions of the
various phenotypes.
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In other words, if more than two-thirds (67%) of the population is already T type,
then T players are fitter and their proportion will grow until it reaches 100%. If
the population starts with less than 67% T, then A players will be fitter, and the
proportion of T players will go on declining until there are 0% of them, or 100%
of the A players. The evolutionary dynamics move the population toward one
of the two extremes, each of which is a possible ESS. The dynamics leads to the
same conclusion as the static test of mutants’ invasion. This is a common, al-
though not universal, feature of evolutionary games.

Thus we have identified two evolutionary stable configurations of the pop-
ulation. In each one the population is all of one type (monomorphic). For ex-
ample, if the population is initially 100% T, then even after a small number of
mutant A types arise, the population mix will still be more than 66.66.. . % T, T
will remain the fitter type, and the mutant A strain will die out. Similarly, if the
population is initially 100% A, then a small number of T-type mutants will leave
the population mix with less than 66.66 . .. % T, so the A types will be fitter and
the mutant T strain will die out. And as we saw earlier, experimenting mutants
of type N can never succeed in a population of A and T types that is either largely
T or largely A.

What if the initial population has exactly 66.66 . . . % T players (and 33.33 . .. %
A players)? Then the two types are equally fit. We could call this polymorphism.
But it is not really a suitable candidate for an evolutionary stable configura-
tion. The population can sustain this delicately balanced outcome only until a
mutant of either type surfaces. By chance, such a mutant must arise sooner or
later. The mutant’s arrival will tip the fitness calculation in favor of the mutant
type, and the advantage will accumulate until the ESS with 100% of that type is
reached. This is just an application of the secondary criterion for evolutionary
stability. We will sometimes loosely speak of such a configuration as an unsta-
ble equilibrium, so as to maintain the parallel with ordinary game theory where
mutations are not a consideration and a delicately balanced equilibrium can
persist. But in the strict logic of the biological process, it is not an equilibrium
at all.

This reasoning can be shown in a simple graph that closely resembles
the graphs that we drew when calculating the equilibrium proportions in a
mixed-strategy equilibrium with consciously rational players. The only differ-
ence is that in the evolutionary context, the proportion in which the separate
strategies are played is not a matter of choice by any individual player but a
property of the whole population, as shown in Figure 13.4. Along the horizontal

axis, we measure the proportion x of T players in the population from 0 to 1. We
measure fitness along the vertical axis. Each line shows the fitness of one type.
The line for the T type starts lower (at 792 compared with 864 for the A-type
line) and ends higher (972 against 936). The two lines cross when x = 0.66. . ..
To the right of this point, the T type is fitter, so its population proportion
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Fitness

Ttype 972

= 036

792

]
Propartion x of
Ttypes in population

FIGURE 13.4 Fitness Graphs and Equilibria for the Thrice-Repeated Prisoners’ Dilemma

Tlcreases o*.ver time and x increases toward 1, Similarly, to the left of this point
the A type is fitter, so its population proportion increases over time and x de-

creases toward 0. Such diagrams often prove useful as visual aids, and we will
use them extensively.’”

B. Muitiple Repetitions

What if each pair plays some unspecified number of repetitions of the game?
L'et us focus on a population consisting of only A and T types in which in%erac:
tions between random pairs occur 7 times (where n > 2). The table of the total
outcomes from playing » repetitions is shown in Figure 13.5. When two A types
meet, they always defect and earn 288 every time, so each gets 288n in n p{ap 5
When two T types meet, they begin by cooperating, and no one is the ﬁrst);o.
defect, so they earn 324 every time, for a total of 3247 When anAtypemeetsaT
type, on the first play the T type cooperates and the A type defects, and so the A
type gets 360 and the T type gets 216; thereafter the T type retaliates against the
preceding defection of the A type for all remaining plays, and each gets 288 in
all of the remaining (n - 1) plays. Thus the A type earns a total of 360 + 288

(7 - 1) = 2881 + 72 in n plays against a T type, whereas the T type gets 216 +
288(n — 1) = 288n — 72 in nplays against an A type.

7
Y - H N " . 3
ou should now draw a simitar graph for the twice-repeated case. You will see that the A line is

bO € the T Hlle fOl‘ all a[iles oI x =
a Vi A% ll!SS l i [ e '§
‘ . than 1, hul the two meet on the light hﬂlld edge of ”le jig{l[e
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COLUMBN

CAT 288n, 288n 288n + 72, 288n - 72

ROW

o T ) 288n-72,288n+ 72 324n,324n

FIGURE 13,5 OQutcomes in the n-fold-Repeated Dilemma

If the proportion of T types in the population is x, then a typical A type gets
x(288n + 72) + (1 — x)288n on average, and a typical T type gets x(324n) +
(1 — x)(288n —~ 72) on average. Therefore the T type is fitter if

x(324n) + (1 — x)(288n — 72) > x(288n + 72) + (1 — x)288n

36xn > 72
JL2 2
T %6n T m

Once again we have two monomorphic ESSs, one all T (or x = 1, to which the
process converges starting from any x > 2/n) and t‘he othelr all. Alorx =0, to
which the process converges starting from any x < 2/n). As in Figure 13.4, there
is also an unstable polymorphic equilibrium at the balancing point x = 2/x. .

Notice that the proportion of T at the balancing point depends on. n; 1.t 1.5
smaller when 7 is larger. When n = 10, it is 2/10, or 0.2. So if the popu}e}tion ini-
tially is 20% T players, in a situation where each pair plays 10 repetitions, tl.le
proportion of T types will grow until they reach 100%. R.et?a‘!l that when palzs
played three repetitions (n = 3}, the T players needed an initial strengthrof 67%
or more to achieve this outcome, and only two repetitions meant that T types
needed to be 100% of the population to survive. (We see the reason for this
outcome in our expression for the critical value for x, which shows that when
n =2, xmust be above 1 before the T types are fitter.) Remember, too, thata popu-
lation consisting of all T players achieves cooperation. Thus cooperation emerges
from a larger range of the initial conditions when the game is repeated more
times. In this sense, with more repetition, cooperation becomes more likely. What
we are seeing is the result of the fact that the value of establishing cooperation
increases as the length of the interaction increases.

{. Comparing the Evolutionary and Rational-Player Modeis

Finally, let us return to the thrice-repeated game illustrated in Figure 13.3 and,
instead of using the evolutionary model, consider it played b?f two consmm%sly
rational players. What are the Nash equilibria? There are two in pure s‘trategws,
one in which both play A and the other in which both play T. There is also an
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equilibrium in mixed strategies, in which T is played 67% of the time and A 33%
of the time, The first two are just the monomorphic ESSs that we found, and
the third is the unstable polymorphic evolutionary equilibrium. In other words,
there is a close relation between evolutionary and consciously rational perspec-
tives on games.

That is not a coincidence. An ESS must be a Nash equilibrium of the game
played by consciously rational players with the same payoff structure. To see
this, suppose the contrary for the moment. If all players using some strategy—
call it S—is not a Nash equilibrium, then some other strategy—call it R—must
yield a higher payoff for one player when played against S. A mutant playing R
will achieve greater fitness in a population playing S and so will invade success-
fully. Thus § cannot be an ESS. In other words, if all players using S is not a Nash
equilibrium, then S cannot be an ESS. This is the same as saying that, if § is an
ESS, it must be a Nash equilibrium for all players to use S.

Thus the evolutionary approach provides a backdoor justification for the ra-
tional approach. Even when players are not consciously maximizing, if the more
successtul strategies get played more often and the less successful ones die out
and if the process converges eventually o a stable strategy, then the outcome
must be the same as that resulting from cdnsciously rational play.

Although an ESS must be a Nash equilibrium of the corresponding
rational-play game, the converse is not true. We have seen two examples of this,
In the twice-repeated dilemma game of Figure 13.2 played rationally, T would
be a Nash equilibrium in the weak sense that if both players choose T, neither
has any positive gain from switching to A. But in the evolutionary approach A
can arise as a mutation and can successfully invade the T population. And in
the thrice-repeated dilemma game of Figures 13.3 and 13.4, rational play would
produce a mixed-strategy equilibrium. But the biological counterpait to this
mixed-strategy equilibrium, the polymorphic state, can be successfully invaded
by mutants and is therefore not a true evolutionary stable equilibrium. Thus
the biological concept of stability can help us select from a multiplicity of Nash
equilibria of a rationally played game.

There is one limitation of our analysis of the repeated game. At the outset,
we allowed just two strategies: A and T, Nothing else was supposed to exist or
arise as a mutation. In biology, the kinds of mutations that arise are determined
by genetic considerations. In social or economic or political games, the genesis
of new strategies is presumably governed by history, culture, and the experience
of the players; the ability of people to assimilate and process information and to
experiment with different strategies must also play a role. However, the restric-
tions that we place on the set of strategies that can possibly exist in a particular
game have important implications for which of these strategies (if any) can be
evolutionary stable. In the thrice-repeated prisoners’ dilemma example, if we
had allowed for a strategy $ that cooperated on the first play and defected on the
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second and third, then S-type mutants could have successfully invaded an all-T
population, so T would not have been an ESS. We develop this possibility further
in the exercises at the end of this chapter.

CHICKEN

Remember our 1950s youths racing their cars toward one another and seeing
who will be the first to swerve to avoid a collision? Now we suppose the players
have no choice in the maiter: each is genetically hardwired to be either a Wimp
(always swerve) or a Macho (always go straight). The population consists of
a mixture of the two types. Pairs are picked at random every week to play the
game. Figure 13.6 shows the payoff table for any two such players——say, Aand B.
{The numbers replicate those we used before in Figure 4.14.)

How will the two types fare? The answer depends on the initial population
proportions. If the population is almost all Wimps, then a Macho mutant will
win and score 1 lots of times, whereas all the Wimps meeting their own types
will get mostly zeroes. But if the population is mostly Macho, then a Wimp mu-
tant scores —1, which may look bad but is better than'the —2 that ail the Machos
get. You can think of this appropriately in terms of the biological context and the
sexism of the 1950s: in a population of Wimps, a Macho newcomer will show all
the rest to be chickens and so will impress all the girls. But if the population con-
sists mostly of Machos, they will be in the hospital most of the time and the girls
will have to go for the few Wimps who are healthy.

In other words, each type is fitter when it is relatively rare in the population.
Therefore each can successfully invade a population consisting of the other
type. We should expect to see both types in the population in equilibrium; that
is, we should expect an ESS with a mixture, or polymorphism. '

To find the proportions of Wimps and Machos in stich an ESS, let us calcu-
late the fitness of each type in a general mixed population. Write x for the frac-

tion of Machos and (1 — x) for the proportion of Wimps. AWimp meets another
Wimp and gets 0 for a fraction (I — x) of the time and meets a Macho and gets

Wimp
A .
. Macho 1,-1 -2,-2
FIGURE 13.6 Payoff Table for Chicken
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-1 for a fraction x of the time. Therefore the fitness of a Wimp is 0 X (1 - x) —
1 X x = —x. Similarly, the fitness of a Machois 1 X (1 — x) — 2x = 1 — 3x. The
Macho type is fitter if .

1-3x>-—x
2x <1
x<<1/2,

.If the population is less than half Macho, then the Machos will be fitter and
their proportion will increase. On the other hand, if the population is more than
half Macho, then the Wimps will be fitter and the Macho proportion will fail. Ei-
ther way, the population proportion of Machos will tend toward 1/2, and ‘this
50-50 mix will be the stable polymorphic ESS. . ,

Figure 13.7 shows this outcome graphically. Each straight line shows the fitness
{the expected payoff in a match against a random member of the population) for
o‘ne type, in relation to the proportion x of Machos. For the Wimp type, this func-
F1onal relation showing their fitness as a function of the proportion of the Machos
is —x, .as we saw two paragraphs ago. This is the gently falling line that starts at
the height 0 when x = 0 and goes to —1 when x = 1. The corresponding function
for the Macho type is 1 - 3x. This is the rapidly falling line that starts at height 1
when x = 0 and falis to —2 when x = 1. The Macho line lies above the Wimp line for
x < 1/2 and below it for x > 1/2, showing that the Macho types are fitter when the
value of xis small and the Wimps are fitter when x is large.

NOV\:” we can compare and contrast the evolutionary theory of this game with
our earlier theory of Chapters 4 and 7, which was based on the assumption that
the players were conscious rational calculators of strategies. There we found
three Nash equilibria: two in pure strategies, where one player goes straight and

Fithess

Macho

0

Proportion x of
Machos in population

FIGURE 13.7 Fitness Graphs and Polymorphic Equilibrium for Chicken
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the other swerves, and one in mixed strategies, where each player goes straight
with a probability of 1/2 and swerves with a probability of 1/2.

If the population is truly 100% Macho, then all players are equally fit (or equally
unfit). Similarly, in a population of nothing but Wimps, all are equally fit. But these
monomorphic configurations are unstable. In an all-Macho population, a Wimp
mutant will outscore them and invade successfully.? Once some Wimps get estab-
lished, no matter how few, our analysis shows that their proportion will rise inex-
orably toward 1/2. Similarly, an all-Wimp population is vulnerable to a successful
invasion of mutant Machos, and the process again goes to the same polymorphism.
Thus the polymorphic configuration is the only true evolutionary stable outcome.

Most interesting is the connection between the mixed-strategy equilibrium
of the rationally played game and the polymorphic equilibrium of the evolution-
ary game. The mixture proportions in the equilibrium strategy of the former are
exactly the same as the population proportions in the latter: a 50-50 mixture of
Wimp and Macho. But the interpretations differ: in the rational framework, each
player mixes his own strategies; in the evolutionary framework, every member

of the population uses a pure strategy, but different members use different strat-
egies, and so we see a mixture in the population.’

This correspondence between Nash equilibria of a rationally played game and
stable outcomes of a game with the same payoff structure when played according
to the evolutionary rules is a very general proposition, and we see it in its generality
later, in Section 6. Indeed, evolutionary stability provides an additional rationale
for choosing one of the many Nash equilibria in such rationally played games.

When we looked at chicken from the rational perspective, the mixed-strategy
equilibrium seemed puzzling. It left open the possibility of costly mistakes. Each
player went straight one time in two, S0 one time in four they collided. The pure-
strategy equilibria avoided the collisions. At that time, this may have led you to
think that there was something undesirable about the mixed-strategy equilib-
rium, and you may have wondered why we were spending time on it. Now you
see the reason. The seemingly strange equilibrium emerges as the stable outcome
of a natural dynamic process in which each player tries to improve his payoff

against the population that he confronts.

Among the important classes of strategic games introduced in Chapter 4, we
have studied prisoners’ dilemma and chicken from the evolutionary perspective.

8The mvasion of the Mutant Wimps could be an interesting science-fiction comedy movie.
There can also be evolutionary stable mixed strategies in which each member of the population

adopts a mixed strategy. We investigate this idea further in Section 6.E.

|
%
|
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T}:lat leaves the assurance game. We illustrated this type of game in Chapter 4
with the story of two undergraduates, Harry and Sally, deciding where topme t
for coffee. In the evolutionary context, each player is born liking either St'u'bu(:li3
or Local Latte and the population includes some of each type. Here we cassumz
that pairs of the two types, which we classify generically as men and women, are
chosen at random each day to play the game. We denote the strategies nox;v by
? {fzr Starb.uf:ks). and L (for Local Latte). Figure 13.8 shows the payoff table for z
:21; \ ;lﬁepzlll;;g in this game; the payoffs are the same as those illustrated earlier
If this were a game played by rational strategy-choosing players, there would
be two equilibria in pure strategies: (S, $) and (L, L). The latter is be:tter for both
pla;lrers. Hf they communicate and coordinate explicitly, they can setile on it quite
easily. But if they are making the choices independently, they need to coord?nat
through a convergence of expectations—that is, by finding a focal point )
The rationally played game has a third equilibrium, in mixed strateéies that
we found in Chapter 7. In that equilibrium, each player chooses Starbucksjwith
a probability of 2/3 and Local Latte with a probability of 1/3; the expected payoff
for each player is 2/3. As we showed in Chapter 7, this payoff is worse thzii)n{he
one asso;iated with the less attractive of the two pure-strategy equilibria, (S, S)
be?ause independent mixing leads the players to make clashing or bad (;hogces;
quite a lot of the time. Here, the bad outcome (a payoff of 0) has a probability of
4/9: the two players go to different meeting places almost half the time. e
What happens when this is an evolutionary game? In the large population
ea?h member is hardwired, either to choose S or to choose L. Randomly choseI;
paus of such people are assigned to attempt a meeting. Suppose x is the propor-
tion of S types in the population and (1 — x) is that of L types. Then the ﬁtnefs of
a particular S type—her expected payoff in a random encounter of this kind—is
XX 1+ (1 - x) X0 = x Similarly, the fithess of each L typeis x X 0 + (1 — x) X 2
= 2(1 = x). Therefore the S type is fitter when x > 2(1 — x), or for x > 2/3. The

L type is fitter when x < 2/3. At the balanci i
: cin tx = 2/1
equally fit. g point x = 2/3, the two types are

WOMEN
S (A 0,0
MEN '
L 0,0 2,2

FIGURE 13.8  Payoff Matrix for the Assurance Game
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Asin chicken, once again the probabilities associated with the mixed-strategy
equilibrium that would obtain under rational choice seem to reappear under
evolutionary rules as the population proportions in a polymorphic equilibrium.
But now this mixed equilibrium is not stable. The slightest chance departure of
the proportion x from the balancing point 2/3 will set in motion a cumulative
process that takes the population mix farther away from the balancing point.
If x increases from 2/3, the S type becomes fitter and propagates faster, increas-
ing x even more. If x falls from 2/3, the L type becomes fitter and propagates
faster, lowering x even more. Eventually x will either rise all the way to 1 or fall
all the way to 0, depending on which disturbance occurs. The difference is that
in chicken each type was fitter when it was rarer, so the population propor-
tions tended to move away {rom the extremes and toward a midrange balanc-
ing point. In contrast, in the assurance game each type is fitter when it is more
numerous; the risk of failing to meet falls when more of the rest of the popula-
tion is the same type as you—so population proportions tend to move toward
the extremes.

Figure 13.9 illustrates the fitness graphs and equilibria for the assurance
game; this diagram is very similar to Figure 13.7. The two lines show the fitness
of the two types in relation to the population proportion. The intersection of the
lines gives the balancing point. The only difference’is that, away from the bal-
ancing point, the more numerous type is the fitter, whereas in Figure 13.7 it was
the less numerous type. ’

Fitness

2

L type

Stype i1

0 2/3 1
Proportion x of
T types in popuiation

FIGURE 13.2 Fitness Graphs and Equilibria for the Assurance Game
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Because each type is less fit when it is rare, only the two extreme monomor-
phic configurations of the population are possible evolutionary stable states. It
is easy to check that both outcomes are ESS according to the static test: an inva-
sion by a small mutant population of the other type will die out because the mu-
tants, being rare, will be less fit. Thus in assurance or coordination games, uniike
in chicken, the evolutionary process does not preserve the bad equilibrium,
where there is a positive probability that the players choose clashing strategies.
However, the dynamics do not guarantee convergence to the better of the two
equilibria when starting from an arbitrary initial mixture of phenotypes—where
the population ends up depends on where it starts.

O INTERACTIONS ACROSS SPECIES

A final class of strategic games to consider is that of the battle-of-the-sexes
game. In Chapter 4 (Figure 4.13), we saw that the battle of the sexes game looks
similar to the assurance game in some respects. We differentiate between the
two by assuming here that “men” and “women” are still interested in meeting
at either Starbucks or Local Latte—no meeting yields each a payoff of 0—but
now each type prefers a different café. Thus a premium remains on taking
mutually consistent actions, just as in the assurance game. But the consequences
of the two possible mutually consistent actions differ. The types in the assurance
game do not differ in their preferences; both prefer (1, L) to (S, S). The players in
the battle game differ in theirs: Local Latte gives a payoff of 2 to women and 1
to men, and Starbucks the other way around. These preferences distinguish the
two types. In the language of biology, they can no longer be considered random
draws from a homogeneous population of animals.'? Effectively, they belong to
different species (as indeed men and women often believe of each other).

To study such games from an evolutionary perspective, we must extend our
methodology to the case in which the matches are between randomly drawn
members of different species or populations. We develop the battle-of-the-sexes
example to illustrate how this is done.

Suppose there is alarge population of men and a large population of women.
One of each “species” is picked, and the two are asked to attempt a meeting. All
men agree among themselves about the valuation (payoffs) of Starbucks, Local
Latte, and no meeting. Likewise, all women agree among themselves. But within
each population, some members are hard-liners and others are compromisers.

“In evolutionary biology, games of this type are fabeled “asymmetric” games. Symmetric games
are those in which a player cannot distinguish the type of another player simply from observing that
Playet’s outward characteristics; in asymmetric games, players can tell each other apait.
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A hard-liner will always go to his or her species’ preferred café. A compromiser
recognizes that the other species wants the opposite and goes to that location,
to get along.

If the random draws happen to have picked a hard-liner of one species and
a compromiser of the other, the outcome is that preferred by the hard-liner’s
species. We get no meeting if two hard-liners are paired and, strangely, also if
two compromisers are chosen, because they go to each other’s preferred café.
(Remember, they have to choose independently and cannot negotiate. Perhaps
even if they did get together in advance, they would reach an impasse of “No, 1
insist on giving way to your preference.”)

We alter the payoff table in Figure 4.13 as shown in Figure 13.10; what were
choices are now interpreted as actions predetermined by type (hard-liner or
compromiser).

In comparison with all the evolutionary games studied so far, the new fea-
ture here is that the row player and the column player come from different
species. Although each species is a heterogeneous mixture of hard-liners and
compromisers, there is no reason why the proportions of the types should be
the same in both species. Therefore we must introduce two variables to repre-
sent the two mixtures and study the dynamics of both.

We let x be the proportion of hard-liners among the men and y that among
the women. Consider a particular hard-liner man. He meets a hard-liner woman
a proportion y of the time and gets a 0, and he meets a compromising woman
the rest of the time and gets a 2. Therefore his expected payoff (fithess) is y X 0 +
(13 X 2=2(1 — 3. Similarly, a compromising man’s fitnessis y X 1 + (1 — 1) X0
= y. Among men, therefore, the hard-liner type is fitter when 2{(1 — ) > y or
y < 2/3. The hard-liner men will reproduce faster when they are fitter; that is, x
increases when y <t 2/3. Note the new, and at first sight surprising, feature of the
outcome: the fitness of each type within a given species depends on the proportion
of types found in other species, This is not surprising; remember that the games
that each species plays are now all against the members of the other species."!

WOMEN

S Compromiser.

- Hard-iner - 0,0 2.1

MEN

“Compromiser” 1,2 0,0

FIGURE 13.10  Payoffs in the Battle-of-the-Sexes Game

#And this finding supports and casts a different light on the property of mixed-strategy equilib-
ria, that each player's mixture keeps the other player indifferent among her pure strategies. Now we
can think of it as saying that in a polymorphic evolutionary equilibrium of a two-species game, the
proportion of each species’ type keeps all the surviving types of the others species equally fit.
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Similarly, considering the other species, we have the result that the
hard-liner women are fitter; so y increases when x < 2/3. To understand the re-
sult intuitively, note that it says that the hard-liners of each species do better
when the other species does not have too many hard-liners of its own, because
then they meet compromisers of the other species quite frequently.

Figure 13.11 shows the dynamics of the configurations of the two species.
Each of xand y can range from 0 to 1, so we have a graph with a unit square and x
and y on their-usual axes. Within that, the vertical line AB shows all points where
X = 2/3, the balancing point at which y neither increases nor decreases. If the
current population proportions lie to the left of this line (that is, x < 2/3), yis
increasing (moving the population proportion of hard-liner women in the verti-
cally upward direction). If the current proportions lie to the right of AB (x > 2/3),
then y is decreasing (motion vertically downward). Similarly, the horizontal line
CD shows all points where y = 2/3, which is the balancing point for x. When the
population proportion of hard-liner women is below this line (that is, when y
< 2/3), the proportion of hard-liner men, x, increases (motion horizontal and
rightward) and decreases for population proportions above it, when y > 2/3
(motion horizontal and leftward).

When we combine the motions of x and y, we can follow their dynamic
paths to determine the location of the population equilibrium. From a starting
point in the bottom-left quadrant of Figure 13.11, for example, the dynamics

Propertiony 1
of hard-finers K e
ameng women
v 1

RN N
iy

X 7 x—>
yT y‘L
o A
0 2/3

Proportion x of hard-liners
among men

FIGURE 13.11  Population Dynamics in the Battle of the Sexes
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entail both y and x increasing. This joint movement (to the northeast) continues
until either x = 2/3 and y begins to decrease (motion now to the southeast) or
y = 2/3 and x begins to decrease (motion now to the northwest). Similar pro-
cesses in each quadrant yield the curved dynamic paths shown in the diagram.
The vast majority of these paths lead to either the southeast or northwest cor-
ners of the diagram; that is, they converge either to (1, 0) or (0, 1}. Thus in most
cases evolutionary dynamics will lead to a configuration in which one species is
entirely hard-line and the other is entirely compromising. Which species will be
which type depends on the initial conditions. Note that the population dynam-
ics starting from a situation with a small value of x and a larger value of y are
more likely to cross the CD line first and head for (0, 1)—all hard-line women,
y = 1—than to hit the AB line first and head for (1, 0); similar results follow for
a starting position with a small y but a larger x. The species that starts out with
more hard-liners will have the advantage of ending up all hard-line and getting
the payoff of 2.

If the initial proportions are balanced just right, the dynamics may lead
to the polymorphic point (2/3, 2/3). But unlike the polymorphic outcome in
chicken, the polymorphism in the battle of the sexes is unstable. Most chance
departures will set in motion a cumulative process that leads to one of the
two extreme equilibria; those are the two ESSs for this game. This is a general
property—such multispecies games can have only ESSs that are monomorphic
for each species.

The hawk-dove game was the first example biologists studied in their develop-
ment of the theory of evolutionary games. It has instructive parallels with our
analyses so far of the prisoners’ dilemma and chicken, so we describe it here to
reinforce and improve your understanding of the concepts.

The game is played not by birds of these two species, but by two animals of
the same species, and Hawk and Dove are merely the names for their strategies.
The context is competition for a resource. The Hawk strategy is aggressive and
fights to try to get the whole resource of value V. The Dove strategy is to offer
to share but to avoid a fight. When two Hawk types meet each other, they fight.
Each animal is equally likely (probability 1/2) to win and get Vor to lose, be in-
jured, and get — C. Thus the expected payoff for each is (V — €)/2. When two
Dove types meet, they share without a fight, so each gets V/2. When a Hawk type
meets a Dove type, the latter retreats and gets a 0, whereas the former gets V.
Figure 13.12 shows the payoff table.
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' Hawk (V=CY2, (V=2 V0

Dove -, oV V2, viz2

FIGURE 13,12 Payoff Table for the Hawk-Dove Game

The analysis of the game is similar to that for the prisoners’ dilemma and
chicken games, except that the numerical payoffs have been replaced by algebraic
symbols. We will compare the equilibria of this game when the players rationally
choose to play Hawk or Dove and then compare the outcomes when players are
acting mechanically and success is being rewarded with faster reproduction.

A. Rational Strategic Choice and Equilibrium

L. If V> C, then the game is a prisoners’ dilemma in which the Hawk strat-
egy corresponds to “defect” and Dove corresponds to “cooperate.” Hawk is the
dominant strategy for each, but (Dove, Dove) is the jointly better outcome.

2. If V< G, then it's a game of chicken. Now (V — C)/2 < 0 and so Hawk is
no longer a dominant strategy. Rathet, there are two pure-strategy Nash equilib-
ria; (Hawk, Dove} and (Dove, Hawk). There is also a mixed-strategy equilibrium,
where B’s probability p of choosing Hawk is such as to keep A indifferent:

pV—0CO)2+ 01— pV=pxX0+ (1~ pPVi2
p=VIC

B. Evolutionary Stability for IV >

We start with an initial population predominantly of Hawks and test whether it
can be invaded by mutant Doves. Following the convention used in analyzing
such games, we could write the population proportion of the mutant phenotype
as m, for mutant, but for clarity in our case we will use d for mutant Dove. The
population proportion of Hawks is then (1 ~ d). Then, in a match against a ran-
domly drawn opponent, a Hawk will meet a Dove a proportion d of the time and
get Von each of those occasions and will meet another Hawk a proportion (1 — d)
of the time and get (V ~ C)/2 on each of those occasions, Therefore the fitness
of a Hawk is idV + (1 — d)(V— C}/2]. Similarly, the fitness of one of the mutant
doves is [d(V/2) + (1 — d} X 0]. Because V> C, it follows that (V- C}/2 > 0. Also,
V> 0 implies that V> V/2. Then, for any value of d between 0 and 1, we have

AV+ (1 - d)(V-CH2>d(VI2)+ (1 — d) X0,
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and so the Hawk type is fitter. The Dove mutants cannot successfully invade.
The Hawk strategy is evolutionary stable, and the population is monomorphic
(all Hawk).

The same holds true for any population proportion of Doves for all values
of d, Therefore, from any initial mix, the proportion of Hawks will grow and
they will predominate. In addition, if the population is initially all Doves, mu-
tant Hawks can invade and take over. Thus the dynamics confirm that the Hawk
strategy is the only ESS. This algebraic analysis affirms and generalizes our
earlier finding for the numerical example of the prisoners’ dilemma of restau-
rant pricing (Figure 13.1}.

€. Evolutionary Stabifity for V << (

If the initial population is again predominantly Hawks, with a small proportion
d of Dove mutants, then each has the same fitness function derived in Section
6.B. When V< C however, (V— C}/2 < 0. We still have V> 0, and so V> V/2.
But because d is very small, the comparison of the terms with (1 — 4} is much
more important than that of the terms with d, so

AVI22+ (1 —d) X0>dV+ (1 - d) (V- Q)2

Thus the Dove mutants are fitter than the predominant Hawks and can invade
successfully.

But if the initial population is almost all Doves, then we must consider
whether a small proportion A of Hawk mutants can invade. (Note that, be-
cause the mutant is now a Hawk, we have used £ for the proportion of the
mutant invaders.} The Hawk mutants have a fitness of [2(V - C)}/2 + (1 —
R V] compared with [2 X 0 + {I — R)(V/2)] for the Doves. Again V < Cim-
plies that (V- C)/2 <0, and V> 0 implies that V"> V/2. But, when 'k is small,
we get

AV-C)2+ 3 —-RV>hx0+ (1 - R(VI2).

This inequality shows that Hawks are fitter and will successfully invade a Dove
population. Thus mutants of each type can invade populations of the other
type. The population cannot be monomorphic, and neither pure phenotype can
be an ESS. The algebra again confirms our earlier finding for the numerical ex-
ample of chicken (Figures 13.6 and 13.7).

What happens in the population then when V <C? There are two possibili-
ties. In one, every player follows a pure strategy, but the population has a stable
mix of players following different strategies. This is the polymorphic equilibrium
developed for chicken in Section 13.3. The other possibility is that every player
uses a mixed strategy. We begin with the polymorphic case.
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0. V<< (: Stable Polymorphic Population

When the population proportion of Hawks is h, the fitness of a Hawk is
R(V—C)/2 + (1 — BV, and the fitness of a Dove is & X 0 + {1 — h(Vi2). The
Hawk type is fitter if

RV~CH2+ (1~ RV>(1 - B{V/2),

which simplifies to:

AV—-CV2+ (1 - h(Vi2) >0
V- hC>0
h<ViC

The Dove type is then fitter when k > V/C, or when (1 — h) < 1 — V/C =
(C — V)/C Thus each type is fitter when it is rarer. Therefore we have a stable
polymorphic equilibrium at the balancing point, where the proportion of Hawks
in the population is & = V/C. This is exactly the probability with which each in-
dividual member plays the Hawk strategy in the mixed-strategy Nash equilib-
rium of the game under the assumption of rational behavior, as calculated in
Section 6.A. Again, we have an evolutionary “justification” for the mixed-strategy
outcome in chicken.

We leave it to you to draw a graph similar to that in Figure 13.7 for this case.
Doing so will require you to determine the dynamics by which the population
proportions of each type converge to the stable equilibrium mix,

E. V< (:Each Player Mixes Strategies

Recall the equilibrium mixed strategy of the rational-play game calculated ear-
lier in Section 6.A in which p = V/Cwas the probability of choosing to be a Hawk,
while (1 ~ p) was the probability of choosing to be a Dove. Is there a parallel
in the evolutionary version, with a phenotype playing a mixed strategy? Let us
examine this possibility. We still have H types who play the pure Hawk strategy
and D types who play the pure Dove strategy. But now a third phenotype called
M can exist; such a type plays a mixed strategy in which it is a Hawk with prob-
ability p = V/Cand a Dove with probability1 — p =1~ V/C= (C— V}/(,

When an H or a D meets an M, their expected payoffs depend on p, the prob-
ability that M is playing H, and on (I — p), the probability that M is playing D.
Then each player gets p times her payoff against an H, plus (1 — p) times her pay-
off against a D. So when an H type meets an M type, she gets the expected payoff

V- - -
» 2C+(l_p)vzzv cC_cC-v

C 2 C
= LY ey Yoo
= -5 C-VI+5(C-V)
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And when a D type meets an M type, she gets

ViC—V)

V_C-VV
P v

pXU*I“(I.*p)"‘"Z”: """I"/"""""

The two fitnesses are equal. This should not be a surprise; the proportions
of the mixed strategy are determined to achieve exactly this equality. Then an M
type meeting another M type also gets the same expected payoff. For brevity of
future reference, we call this common payoff K, where K= V(C - V)/2C.

But these equalities create a problem when we test M for evolutionary stabil-
ity. Suppose the population consists entirely of M types and that a few mutants
of the H type, constituting a very small proportion # of the total population, in-
vade. Then the typical mutant gets the expected payoff h(V ~ C)/2 + (1 — B)K
To calculate the expected payoff of an M type, note that she faces another M
type a fraction (1 — k) of the time and gets K in each instance. She then faces
an H type for a fraction # of the interactions; in these interactions she plays H
a fraction p of the time and gets (V — C)/2, and she plays D a fraction (1 — p) of
the time and gets 0. Thus the M type’s total expected payoff (fitness) is

hp(V—C)/2 + (1 — WK

Because # is very small, the fitnesses of the M types. and the mutant H types are
almost equal. The point is that when there are very few mutants, both the H type
and the M type meet only M types most of the time, and in this interaction the
two have equal fitness as we just saw.

Evolutionary stability hinges on whether the original population M type is
fitter than the mutant H when each is matched against one of the few mutants.
Algebraically, M is fitter than H against other mutant H types when pV(C ~
V)20 = pK > (V- (C)/2. In our example here, this condition holds because
V< C(so (V- C) is negative} and because K is positive. Intuitively,this condi-
tion tells us that an H-type mutant will always do badly against another H-type
mutant because of the high cost of fighting, but the M type fights only part of
the time and therefore suffers this cost only a fraction p of the time. Overall, the
M type does better when matched against the mutants.

Sirnilarly, the success of a Dove invasion against the M population depends
on the comparison between a mutant Dove's fitness and the fitness of an M
type. As before, the mutant faces another P> a fraction d of the time and faces
an M a fraction (1 — d) of the time. An M type also faces another M type a frac-
tion (1 — d) of the time; but a fraction d of the time, the M faces a D and plays
H a fraction p of these times, thereby gaining pV, and plays D a fraction (1 — p)
of these times, thereby gaining {1 — p)V/2. The Dove’s fitness is then {dV/2 +
{1 — d)K], while the fitness of the M typeis d X [pV + (1 — ppV/2] + (1 — d)K The
final term in each fitness expression is the same, so a Dove invasion is success~
ful only if V/2 is greater than pV + (1 — p) V/2, This condition does not hold; the
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latter expression includes a weighted average of Vand V/2 that must exceed V/2
whenever V> 0. Thus the Dove invasion cannot succeed either.

This analysis tells us that M is an ESS. Thus if V< C, the population can ex-
hibit either of two evolutionary stable outcomes. One entails a mixture of types
(a stable polymorphismy), and the other entails a single type that mixes its strate-
gies in the same preportions that define the polymorphism.

7 maceewciorwes g ponuaTon

If there are only two possible phenotypes {strategies), we can carry out static
checks for ESS by comparing the type being considered with just one type of
mutant, We can show the dynamics of the population in an evolutionary game
with graphs similar to those in Figures 13.4, 13.7, and 13.9. Now we illustrate how
the ideas and methods can be used if there are three (or more) possible pheno-
types and what new considerations arise.

A, Testing for ESS

Let us reexamine the thrice-repeated prisoners’ dilemma of Section 13.2.A.11 and
Figure 13.3 by introducing a third possible phenotype. This strategy, labeled N,
never defects. Figure 13.13 shows the fitness table with the three strategies—A,
T, and N.

To test whether any of these strategies is an ESS, we consider whether a pop-
ulation of all one type can be invaded by mutants of one of the other types. An
all-A population, for example, cannot be invaded by mutant N or T types; so A is
an ESS. An all-N population can be invaded by type-A mutants, however; N lets
itself get fooled thrice (shame on it). So N cannot be an ESS,

What about T? An all-T population cannot be invaded by A. But when faced
with type-N mutants, the T types find themselves equally matched; notice that

COLUMN
A Tl N
AT ] 84,884 936,792 | 1080, 648
ROW 792,936 972,972 972,972
CNe | e4s, 1080 | 972,972 972, 972

FIGURE 13.13 Thrice-Repeated Prisoners’ Dilernma with Three Types ($100s)
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the four cells showing T and N competing only with each other show identical
payoffs for both phenotypes. In this situation the mutant N types would not pro-
liferate, but they would not die out either. A small proportion of mutants could
coexist with the {almost) all-T population. Thus T does not satisfy either of the
criteria for being an ESS, but it does exhibit some resistance to invasion.

We recognize the resilience shown by the T type in our example by introduc-
ing the concept of a neutral ESS." In contrast to the standard ESS, in which a
member of the main population needs to be strictly fitter than a mutant in a
population with a small proportion of mutants, neutral stability requires only
that a member of the main population have at least as high a fitness as does a
mutant. Then the mutant proportion does not increase but can stay at an ini-
tially small level. This is the case when our all-T population is invaded by a small
number of mutant N types. In the game illustrated in Figure 13.13, then, we have
one standard ESS, strategy A, and one neutral ESS, strategy T.

Let us consider further the situation when an all-T population is invaded by
type-N mutants. If the proportion of mutants is sufficiently small, the two types
can coexist happily. But if the mutant population is too large a proportion of the
full population, then type-A mutants can invade; A types do well against N but
pootly against T. To be specific, consider a population with proportions x of N
and (1 — x) of T. The fitness of each of these types is 972. The fitness of a type-A
mutant in this population is 936 (1 — x) + 1,080x = 144 + 936. This exceeds 972 if
144x> 972 — 936 = 36, or x > 1/4. Thus we can have T as a neutral ESS coexistiﬂg
with some small proportion of N-type mutants, but only so long as the propor-
tion of Ns is less than 25%,

B. Dynamics

To motivate our discussion of dynamics in games with three possible pheno-
types, we turn to another well-known game, rock-paper-scissors (RPS). In ratio-
nal game-theoretic play of this game, each player simultaneously chooses one of
the three available actions, either rock {make a fist), paper (lay your hand flat}, or
scissors (inake a scissorlike motion with two fingers). The rules of the game state
that rock beats {“breaks”) scissors, scissors beat (“cut”) paper, and paper beats
(“covers”) rock; identical actions tie. If players choose different actions, the win-
ner gets a payoff of 1 and the loser gets a payoff of —1; ties yield both players 0.
For an evolutionary example, we turn to the situation faced by the side-
blotched lizards living along the California coast. That species supports three
types of male mating behavior, each type associated with a particular throat
color. Males with blue throats guard a small number of female mates and fend

" Weibull describes neutral stability as a weakening of the standard evolutionary stability criteria
in his Evolutionary Game Theory (p. 46),
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COLUMN

“sneaker [ gliarder.

- Yellow-
throated 0 -1 1 ~G2+ (1~ G; - g3)
sneaker.

. L BIUG'
ROW | throatéd 1 0 -1 gi-(1-g1-93)
" guarder”

Orange--
_throated: -1 1 0 -q1t+q;
aggressor

FIGURE 13.14 Payoffs in the Three-Type Evolutionary Game

off advances made by yellow-throated males who attempt to sneak in and mate
with unguarded females. The yellow-throated sneaking strategy works well
against males with orange throats, who maintain large harems and are often out
aggressively pursuing additional mates; those mates tend to belong to the blue-
throated males, which can be overpowered by the orange-throat’s aggression, '
Their interactions can be modeled by using the payoff structure of the RPS game
shown in Figure 13.14. We include a column for a g-mix to allow us to consider
the evolutionary equivalent of the game’s mixed-strategy equilibrium, a mixture
of types in the population.*

Suppose ¢, is the proportion of lizards in the population that are yel-
low throated, g, the proportion of blue throats, and the rest, (1 — ¢, — g;), the
proportion of orange throats. The right-hand column of the table shows each
Row player’s payoffs when meeting this mixture of phenotypes; that is, just
Row’s fitness. Suppose, as has been shown to be true in the side-splotched lizard
population, that the proportion of each type in the population grows when its
fitness is positive and declines when it is negative.' Then

¢ increasesifandonlyif -g+(1-q —q) >0, org, +2¢,<1.

The proportion of yellow-throated types in the population increases when
¢, the proportion of blue-throated types, is small or when (1 ~ ¢, — g,), the

BFor more information about the side-blotched lizards, see Kelly Zamudio and Barry Sinervo,
“Polygyny, Mate-Guarding, and Posthumous Fertilizations As Alternative Mating Strategies,” Pro-
ceedings of the National Academy of Sciences, vol. 97, no. 26 (December 19, 2000), pp. 14427-14432,

"One exercise in Chapter 7 considers the rational game-theoretic equilibrium of a version of the RPS
game. You should be able to verify relatively easily that the game has no equilibrium in pure strategies.

154 little more care is necessary to ensure that the three proportions sum to i, but that can be
done, and we hide the mathematics so as to convey the ideas in a simple way. In the exercises, we
develop the dynamics more rigorously for readers with sufficient mathematical training.
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172

0 1/2 1 q1

FIGURE 13.15 Population Dynamics in the Evolutionary RPS Game

proportion of orange-throated types, is large. This makes sense; yellow throats
do poorly against biue throats but well against orange throats. Similarly, we sce

that
g, increases ifandonlyif ¢ — (1~ q — @ > 0, or2q + ¢, > 1.

Blue-throated males do better when the proportion of yellow-throated competi-
tors is large or the proportion of orange-throated types is small. _ '

Figure 13.15 shows graphically the population dynamics and 1'esult1.ng equi-
libria for this game. The triangular area defined by the axes and the line ¢, +
g, = 1 contains all the possible equilibrium combinations of g, and ¢,. There
are also two straight lines within this area. The first is ¢, + 2qg, = 1 (the flatter
one), which is the balancing line for ¢,; for combinations of g, and g, belm‘m
this line, g; (the proportion of yellow-throated players) increases; for combi-
nations above this line, g, decreases. The second, steeper lineis 2g, + ¢ = L,
which is the balancing line for g,. To the right of this line (when 2q, + ¢, > 1),
¢, increases; to the left of the line (when 2gq, + ¢, < 1), ¢ d-ecreases, Ar‘rows
on the diagram show directions of motion of these population proportions;
red curves show typical dynamic paths. The general idea is the same as that of
Figure 13.13.

On each of the two gray lines, one of g; and g, neither increases nor c?e—
creases. Therefore the intersection of the two lines represents the point
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where g, ¢, and therefore also (1 — ¢, — g), are all constant; this point thus
corresponds to a polymorphic equilibrium. It is easy to check that here g, = g,
=1 — ¢ — ¢, = 1/3. These proportions are the same as the probabilities in the
rational mixed-strategy equilibrium of the RPS game.

Is this polymorphic outcome stable? In general, we cannot say. The dynam-
ics indicate paths (shown in Figure 13.15 as a single ellipse) that wind around
it. Whether these paths wind in a decreasing spiral toward the intersection (in
which case we have stability) or in an expanding spiral away from the intersec-
tion (indicating instability) depends on the precise response of the population
proportions to the fitnesses. It is even possible that the paths circle as drawn,
neither approaching nor departing from the equilibrium.

Evidence suggests that the side-splotched lizard population is cycling
around the evenly split polymorphic equilibrium peint, with one type being
slightly more common for a period of a few years but then being overtaken by
its stronger competitor. Whether the cycle is approaching the stable equilibrium
remains a topic for future study. At least one other example of an RPS-type inter-
action in an evolutionary game entails three strains of food-poisoning-related
E. coli bacteria. Each strain displaces one of the others but is displaced by the
third, as in the three-type game described earlier. Scientists studying the compe-
tition among the three strains have shown that a polymorphic equilibrium can
persist if interactions between pairs stay localized, with small clumps of each
strain shifting position continuously.'s

We now generalize the ideas illustrated in Section 6 to get a theoretical framework
and set of tools that can then be applied further. This generalization unavoid-
ably requires some slightly abstract notation and a bit of algebra. Therefore we
cover only monomorphic equilibria in a single species. Readers who are adept at
this level of mathematics can readily develop the polymorphism cases with two
species by analogy. Readers who are not prepared for this material or interested
in it can omit this section without loss of continuity.”

'*The research on E. coli is reported in Martin Nowak and Kenl Sigmund, “Biodiversity: Bacte-
rial Game Dynamics,” Nafure, vol. 418 (July 11, 2002), p. 138. If the three strains were forcibly dis-
persed on a regular basis, a single strain could take over in a matter of days; the “winning” strain
out-multiplied a second strain, which could quickly kill off the third.

"Conversely, readers who want more details can find them in Maynard Smith, Bvolution and the
Theory of Games, especially pp. 14-15, John Maynard Smith is a pioneer in the theory of evolution-
ary games,
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We consider random matchings from a single species whose ?opulation has
available strategies I, J, K. . . . Some of them may be pure strategies; some may
be mixed. Each individual member is hardwired to play just one of these sltrate—
gies. We let E(], ]} denote the payoff to an I player in a single encgun:cer w%th aj
player. The payoff of an I player meeting another of her own typ.e 1.s I.z(I, D m- the
same notation. We write W(I) for the fitness of an I player. This is just her ex-
pected payoff in encounters with randomly pickec? 0pp01.1er1ts, when th.e prob-
ability of meeting a type is just the proportion of thl.S type in the populatlon.

Suppose the population is all [ type. We conszde-r whether this can .l')e a.n
evolutionary stable configuration. To do so, we imagine that t_:he populatlor} is
invaded by a few J-type mutants; so the proportion of r_nutants in the population
Is a very small number, m. Now the fitness of an 1 type is

W) = mELD + (1 - mELD,
and the fitness of a mutant is
W) = mE(, 1) + (1 ~ m)E(], D).

Therefore the difference in fitness between the population’s main type and its
mutant type is

Wiy = W) = mlEQ, 1) — EJ, DI+ (1 - m)[EQ, D —~ E(, Di.

Because m is very small, the main type’s fitness will be higher than the mutant’s
if the second half of the preceding expression is positive; that is,

WD = wW(]) ELT > E]J, ).

Then the main type in the population cannot be invaded; it is 'ﬁtter than Fhe mu-
tant type when each is matched against a member of the main t.ypge. This forms
the primary criterion for evolutionary stability. Conversely, if W) < W],
owing to B(I,I) < E(J, I), the J-type mutants will invade successfully, and an all-I
population cannot be evolutionary stable. ' .

However, it is possible that E(I, I) = E(J, I), as indeed happens if the pc».p—
ulation initially consists of a single phenotype that pla.ys a sjrrlate_gy of .mlx—
ing between the pure strategies I and J (a2 monomorphic equilibrium with a
mixed strategy), as was the case in our final variant of the Hawk-?ove
game (Section 6.E). Then the difference between W(I) and WA(J) is governed
by how each type fares against the mutants.!® When E('I, I). = F(J, I), we get
W) = W) if E{I, I) > E(J, ). This is the secondary criterion for the evolu-

. . - ) ot
Uit the initial population is polymorphic and m is the proportion of ] types, then m lrne}y n.
be “very small” any more. The size of m is no longer crucial, howeves, because the second term in
W) — W(]) is now assumed to be zero.

...
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tionary stability of I, to be invoked o
thatis, only if E1, 1) = E(J, D).
If the secondary condition is invoke

nly if the primary one jg inconclusive—

d-—because E(I, I) = E(J, —there is the
additional possibility that it may also be inconclusive, That is, it may also be the
case that E(I, J) = E(J, I). This is the case of neutral stability intr
7. If both the primary and secondary conditions for the evoly
I'are inconclusive, then I is considered a neutral ESS.

Note that the primary criterion carries
evolutionary stable, then for all other strate

E(], D). This means that I is the best response to itself. In other words, if the mem-
bers of this population suddenly started playing as rational calculators, everyone
playing I would be a Nash equilibrium. Evolutionary stability thus implies Nash
equilibrium of the corresponding rationally played garmel

This is a remarkable result, If you were dissatisfied with the rationa] behav-
for assumption underlying the theory of Nash equilibria given in earlier chapters
and you came to the theory of evolutionary games looking for a better expla-
nation, you would find that it vields the same resuits. The very appealing bio-
logical description—fixed nonmaximizing behavior, bur selection in response
to resulting fitness-—does not yvield any new outcomes. If anything, it provides
a backdoor justification for Nash equilibrium. When a game has several Nash

equilibria, the evolutionary dynamics may even provide a good argument for
choosing among them.

oduced in Section
tionary stability of

a punch, It says that if the strategy 1 is
gies ] that a mutant might try, B0, ) =

However, your reinforced confidence in Nash equilibrium should be cay-
tious. Qur definition of evolutionary stability is static rather than dynamic.
It only checks whether the configuration of the population {(monomeorphic,
or polymorphic in just the right proportions) that we are testing for equilib-
rium cannot be successfully invaded by a small proportion of mutants. It does
not test whether, starting from an arbitrary initial population mix, all the un-
wanted types will die out and the equilibrium configuration will b
And the test is carried out for those
deemed logically possible;
correctly and some type of
that mutant might invade s
Our remark at the end of ¢
warned of this possibility,
Finally, in Section 7 we sa
atall,

e reached,
particular classes of mutants that are
if the theorist has not specified this classification
mutant that she overlooked could actually arise,
uccessfully and destroy the supposed equilibrium.
he twice-played prisoners’ dilemma in Section 2.A
and you will see in the exercises how it can arjse.
w how evolutionary dynamics can fail to converge

¥In fact, the primary criterion is slightly stricter than the standard definition of Nash equilib-
rturn, whick conforms more closely to that of neutral stability,
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PLAYINGTHEFIELD

We have thus far looked at situations where each game is played between just
two players who are randomly chosen from the population. There are other situ-
ations, however, when the whole population plays at once. In biology, a whole
flock of animals with a mixture of genetically determined behaviors may com-
pete for some resource or territory. In economics or business, many firms in an
industry, each following the strategy dictated by its corporate culture, may coil-
pete all with all. .

Such evolutionary games stand in the same relation to the rationally
played collective-action games of Chapter 12 as do the pair-by-pair played
evolutionary games of the preceding sections to the rationally played two-
person games of Chapters 4 through 8. Just as we converted the expected pay-
off graphs of those chapters into the fitness diagrams in Figures 13.4,. 13.7,
and 13.9, we can convert the graphs for collective-action games (Figures
12.6 through 12.8) into fitness graphs for evolutionary games. For example,
consider an animal species all of whose members come to a common feed-
ing ground. There are two phenotypes: one fights, for food aggressively, and
the other hangs around and sneaks what it can. If the proportion of aggres-
sive ones is small, they will do better; but, if there are too many of then, the
sneakers will do better by ignoring the ongoing fights. This will be a collective
chicken game whose fitness diagram will be exactly like Figure 12.7. Becaus‘e
no new principles or technigues are required, we leave it to you to pursue this
idea further.

Evolutionary game theory rests on two fundamental ideas: first, that ifldividual
organisms are engaged in games with others in their own species or with mem-
bers of other species and, second, that the genotypes that lead to higher-payoff
(fitter) strategies proliferate while the rest decline in their proportions o'f the
population. These ideas suggest a vicious struggle for survival like that ,cjlfzplctc‘ed
by some interpreters of Darwin who understood “survival of the fittest” in a lit-
eral sense and who conjured up images of a “nature red in tooth and claw.” In
fact, nature shows many instances of cooperation (in which individual animals
behave in a way that yields greater benefit to everyone in & group) and even al-
truism {in which individual animals incur significant costs in order to benefit
others). Beehives and ant colonies are only the most obvious examples. Can
such behavior be reconciled with the perspective of evolutionary games?

I EE———
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Biologists use a fourfold classification of the ways in which cooperation
and altruism can emerge among selfish animals (or phenotypes or genes). Lee
Dugatkin names the four categories (1) family dynamics, (2) reciprocal transac-
tions, (3) selfish teamwork, and (4) group altruism.?

The behavior of ants and bees is probably the easiest to understand as an
example of family dynamics. All the individual members of an ant colony or a
beehive are closely related and have genes in common to a substantial extent.
All worker ants in a colony are full sisters and therefore have half their genes
in common; the survival and proliferation of one ant’s genes is helped just as
much by the survival of two of its sisters as by its own survival. All worker bees
in a hive are half-sisters and therefore have a quarter of their genes in com-
mon. An individual ant or bee does not make a fine calculation of whether it
is worthwhile to risk its own life for the sake of two or four sisters, but the un-
derlying genes of those groups whose members exhibit such behavior (pheno-
type) will proliferate. The idea that evolution ultimately operates at the level
of the gene has had enormous implications for biology, although it has been
misapplied by many people, just as Darwin’s original idea of natural selec-
tion was misapplied.*" The interesting idea is that a “selfish gene” may pros-
per by behaving unselfishly in a larger organization of genes, such as a cell.
Similarly, a cell and its genes may prosper by participating cooperatively and ac-
cepting their allotted tasks in a body.

Reciprocal altruism can arise among unrelated individual members of the
same or different species. This behavior is essentially an example of the resolu-
tion of prisoners’ dilemmas through repetition in which the players use strate-
gies that are remarkably like tit-for-tat. For example, some small fish and shrimp

thrive on parasites that collect in the mouths and gills of some large fish; the
large fish let the small ones swim unharmed through their mouths for this
“cleaning service.” A more fascinating, although gruesome, example is that of
vampire bats, who share blood with those who have been unsuccessful in their
own hunting. In an experiment in which bats from different sites were brought
together and selectively starved, “only bats that were on the verge of starving
(i.e., would die within twenty-four hours without a meal) were given blood by
any other bat in the experiment. But, more to the point, individuals were given
a blood meal only from bats they already knew from their site. . . . Furthermore,
vampires were much more likely to regurgitate blood to the specific individual(s)

MSee his excellent exposition in Cheating Monkeys and Citizen Bees: The Nature of Cooperation in
Animals and Humans (Cambridge: Harvard University Press, 1999).

#'In this very brief account, we cannot begin to do justice to all the issues and the debates, An excel-
lent popular account, and the source of many examples cited in this section, is Matt Ridiey, The Origins
of Virtue (New York: Penguin, 1996). We should also point out that we do net examine the connection
between genotypes and phenotypes in any detail or the role of sex in evolution, Another book by
Ridley, The Red Queen (New York: Penguin, 1995), gives a fascinating treatment of this subject.
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from their site that had come to their aid when they needed a bit of blood.”*
Once again, it is not to be supposed that each animal consciously calculates
whether it is in its individual interest to continue the cooperation or to defect.
Instead, the behavior is instinctive.

Selfish teamwork arises when it is in the interests of each individual organ-
ism to choose cooperation when all others are doing so. In other words, this
type of cooperative behavior applies to the selection of the good outcome in as-
surance games. Dugatkin argues that populations are more likely to engage in
selfish teamnwork in harsh environments than in mild ones. When conditions are
bad, the shirking of any one animal in a group could bring disaster to the whole
group, including the shirker. Then in such conditions each animal is crucial for
survival, and none shirk so long as others are also pulling their weight. In milder
environments, each may hope to become a free rider on the others’ effort with-
out thereby threatening the survival of the whotle group, including itseif.

The next step goes beyond biology and into sociology: a body (and its cells
and ultimately its genes) may benefit by behaving cooperatively in a collection
of bodies—namely, a society. This brings us to the idea of group altruism, which
suggests that we should see some cooperation even among individual members
of a group who are not close relatives. We do indeed find instances of it. Groups
of predators such as wolves are a case in point, and g'roups of apes often behave
like extended families. Even among species of prey, cooperation arises when in-
dividual fishes in a school take turns looking out for predators. And cooperatio}l
can also extend across species.

The general idea is that a group whose members behave cooperatively
is more likely to succeed in its interactions with other groups than one whose
members seek benefit of free-riding within the group. If, in a particular context
of evolutionary dynamics, between-group selection is a stronger force than
within-group selection, then we will see group altruism.” \

An instinet is hardwired into an individual oxganism’s brain by genetics, but
reciprocity and cooperation can arise from more purposive thinking or experi-
mentation within the group and can spread by socialization—through explicit
instruction or observation of the behavior of elders—instead of genetics. The rel-
ative importance of the two channels—nature and nurture—will differ from one
species to another and from one situation to another. One would expect social-
ization to be relatively more important among humans, but there are instances of
its role among other animals, We cite a remarkable one. The expedition that Rob-
ert E. Scott led to the South Pole in 1911-1912 used teams of Siberian dogs. This
group of dogs, brought together and trained for this specific purpose, developed

2Pugatkin, Cheating Monkeys, p. 99.
#Group altruism used to be thought impossible according to the strict theory of evolution that

emphasizes selection at the leve! of the gene, but the concept Is being revived in more sophisticated
formulations. See Dugatkin, Cheating Monkeys, pp. 141-145 for a fuller discussion.
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wi.thin a few months a remarkable system of cooperation and sustained it by
usnr.lg punishment schemes. “They combined readily and with immense effect
against any companion who did not pull his weight, or against one who pulled
too much . . . their methods of punishment always being the same and ending, if
unchecked, in what they probably called justice, and we called murder.”** ’

This is an encouraging account of how cooperative behavior can be com-
patible with evolutionary game theory and one that suggests that dilemmas of
selfi‘sh actions can be overcome. Indeed, scientists investigating altruistic be-
havior have recently reported experimental support for the existence of such
altruistic punishment, or strong reciprocity (as distinguished from reciprocal
altruism), in humans. Their evidence suggests that people are willing to pun-
ish those who don't pull their own weight in a group setting, even when it is
costly to do so and when there is no expectation of future gain. This tendency
tf)warc! strong reciprocity may even help to explain the rise of human civiliza-
tion if groups with this trait were better able to survive the traumas of war and
other catastrophic events.” Despite these findings, strong reciprocity may not
be widespread in the animal world. “Compared to nepotism, which accounts
for the cooperation of ants and every creature that cares for its young, reciproc-
ity has proved to be scarce. This, presumably, is due to the fact that reciprocity
Fequires not only repetitive interactions, but also the ability to recognize other
individuals and keep score.” In other words, precisely the conditions that our
theoretical analysis in Section 2,D of Chapter 11 identified as being necessary
for a successful resolution of the repeated prisoners’ dilemma are seen to be
relevant in the context of evolutionary games.

SUMMARY

The biological theory of evolution parallels the theory of games used by social
scientists. Evolutionary games are played by behavioral phenotypes with ge-
netlically predetermined, rather than rationally chosen, strategies. In an evo-
lu.tlonary game, phenotypes with higher fitness survive repeated interactions
with others to reproduce and to increase their representation in the popula-
tion. A population containing one or more phenotypes in certain proportions is
called evolutionary stable if it cannot be invaded successtully by other, mutant
phenotypes or if it is the limiting outcome of the dynamics of proliferation of
fitter phenotypes. If one phenotype maintains its dominance in the population

24 N . "y o ;
Apsley Cherry-Garrard, The Worst Journey in the World (London: Constable, 1922; reprinted
New York: Carroll and Graf, 1989), pp. 485-486.
. For ‘the evidence on aliruistic punishment, see Ernst Fehr and Simon Gachter, "Altraistic Pun-
ishment in Humans,” Nature, vol. 415 (January 10, 2002), pp. 137-140.
®Ridley, Origins of Virtue, p. 83.
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when faced with an invading mutant type, that phenotype is said to be an evolu-
tionary stable strategy, and the population consisting of it alone is said to exhibit
monomorphism. If two or more phenotypes coexist in an evolutionary stable
population, it is said to exhibit polymorphism.

When the theory of evolutionary games is applied more generally to non-
biological games, the strategies followed by individual players are understood to
be standard operating procedures or rules of thumb, instead of being genetically
fixed, The process of reproduction stands for more general methods of transmis-
sion including socialization, education, and imitation; and mutations represent
experimentation with new strategies.

Evolutionary games may have payoft structures similar to those analyzed in
Chapters 4 and 7, including the prisoners’ dilemma and chicken. In each case,
the evolutionary stable strategy mirrors either the pure-sirategy Nash equilib-
rium of a game with the same structure played by rational players or the pro-
portions of the equilibrium mixture in such a game. In a prisoners’ dilemma,
“always defect” is evolutionary stable; in chicken, types are fitter when rare, and
so there is a polymorphic equilibrium; in the assurance game, types are less fit
when rare, and so the polymorphic configuration is unstable and the equilib-
ria are at the extremes. When play is between two different types of members of

each of two different species, a more complex but similarly structured analysis
is used to determine equilibria.

The hawk-dove game is the classic biological example. Analysis of this gaifie
parallels that of the prisoners’ dilemma and chicken versions of the evolutionary
game; evolutionary stable strategies depend on the specifics of the payoff struc-
ture. The analysis can also be performed when more than two types interact or
in very general terms. This theory shows that the requirements for evolutionary
stability yield an equilibrium strategy that is equivalent to the Nash equilibrium

obtained by rational players. s
covoeon KEYTERMS ot e
evolutionary stable (495) mutation (495)
evolutionary stable strategy neutral ESS (522)
(ESS) (498) phenotype (495)

fitness (495) playing the field (496)
genotype (495) polymorphism (498)
hawk-dove game (516) primary criterion (526)
interaction (496) secondary criterion (526}
invasion by a mutant (495) selection (495)

monomorphism (498)
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~ SOLVED EXERCISES -

S1. Two travelers buy identical handcrafted souvenirs and pack them in their
respective suitcases for their return flight. Unfortunately, the airline man-
ages to lose both suitcases. Because the airline doesn’t know the value of
the lost souvenirs, it asks each traveler to report independently a value, The
airline agrees to pay each traveler an amount equal to the minimum of the
two reports. If one report is higher than the other, the airline takes a penalty
of $20 away from the traveler with the higher repoit and gives $20 to the
traveler with the lower report. If the repotts are equal to one another, there
is no reward or penalty. Neither traveler remembers exactly how much the
souvenir cost, so that value is irrelevant; each traveler simply reports the
value that her type determines she should report.

There are two types of travelers. The High type always reports $100, and
the Low type always reports $50. Let & represent the proportion of High
types in the population.

(a) Draw the payoff table for the game played between two travelers se-
lected at random from the population.

(b) Graph the fitness of the High type, with / on the horizontal axis. On the
same figure, graph the fitness of the Low type.

(c) Describe all of the equilibria of this game. For each equilibrium, state
whether it is monomorphic or polymorphic and whether it is stable.

S2. In Section 7.A, we considered testing for ESSs (evolutionary stable strate-
gies) in the thrice-repeated restaurant-pricing prisoners’ dilemma.

{a) Explain completely (using Figure 13.13) why an all-type-A population
cannot be invaded by either N- or T-type mutants.

(b) Explain why an all-N-type population can be invaded by type A mu-
tants, and to what extent it can be invaded by type T mutants. Relate
this explanation to the concept of neutral stability in the chapter.

(c) Finally, explain why an all-T-type population cannot be invaded by type
A mutants but can be invaded by mutants that are type N.

$3. Consider a population in which there are two phenotypes: natural-born co-
operators (who donot confess under questioning) and natural-born defectors
(who confess readily). If two members of this population are drawn at ran-
dom, their payoffs in a single play are the same as those of the husband-wife
prisoners’ dilemma game of Chapter 4, reproduced below. In repeated in-
teractions there are two strategies available in the population, as there were
in the restaurant-dilemma game of Section 13.2. The two strategies are A
(always confess) and T (play tit-for-tat, starting with not confessing}.
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COLUMN

oo | o

- Confess | 10yr, 10yr | 1yr, 25yr

ROW

Not- | 25yr 1yr | 3yr3yr

(a) Suppose that a pair of players plays this dilemma twice in succession.
Draw the payoff table for the twice-repeated dilemma.

(b) Find all of the ESSs in this game.

(¢) Now add a third possible strategy, N, which never confesses. Draw the
payoff table for the twice-repeated dilemma with three possible strate-
gies and find all of the ESSs of this new version of the game.

In the assurance (meeting-place) game in this chapter, the payoffs were
meant to describe the value of something material that the players gained
in the various outcomes; they could be prizes given for a successful meet-
ing, for example. Then other individual persons in the population might ob-
serve the expected payoffs (fitness) of the two types, see which was higher,
and gradually imitate the fitter strategy. Thus the proportions of the two
types in the population would change. But we can make a more biological
interpretation. Suppose the column players are always female and the row
players always male. When two of these players meet sticcessfully, they pair
off, and their children are of the same type as the parents. Therefore the
types would proliferate or die off as a result of successful or unsuccessful
meetings. The formal mathematics of this new version of the game makes
it a “two-species game” (although the biology of it does not). Thus, the pro-
portion of S-type females in the population—call this proportion x—need
not equal the proportion of S-type males—call this proportion y.,

(a) Examine the dynamics of x and y by using methods similar to those

used in the chapter for the battle-of-the-sexes game.
(b) Find the stable outcome or outcomes of this dynamic process.

Recall from Exercise S1 the travelers reporting the value of their lost souve-

nirs. Assume that a third traveler phenotype exists in the population. The

third traveler type is a mixer; she plays a mixed strategy, sometimes repoxt-

ing a value of $100 and sometimes reporting a value of $50.

(a) Use your knowledge of mixed strategies in rationally played games to
posit a reasonable mixture for the mixer phenotype to use in this game.

{b) Draw the three-by-three payoff table for this game when the mixer type
uses the mixed strategy that you found in part (a).

(¢} Determine whether the mixer phenotype is an ESS of this game. (Hint:
Test whether a mixer population can be invaded successfully by either

the High type or the Low type.)

i
i
;
|
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S6. Consider a simplified model in which everyone gets electricity either from

§7.

solar power or from fossil fuels, which are both in relatively inelastic sup-
ply. (In the case of solar power, think of the required equipment as being
in inelastic supply.) The upfront costs of using solar energy are high, so
when the price of fossil fuels is low (that is, when few people are using fos-
sil fuels and there is a high demand for solar equipment), the cost of solar
can be prohibitive. On the other hand, when many individuals are using
fossil fuels, the demand for them (and thus the price) is high, whereas the
demand (and thus the price) for solar energy is relatively lower. Assume the
payoff table for the two types of energy consumers to be as follows:

COLUNMN
0 Solar: | Fossit fuels:
- ‘Solar 2,2 3,4
ROW :
Fossil fuels 4,3 2,2

(a} Describe all possible ESS of this game in terms of s, the proportion of
solar users, and explain why each is either stable or unstable.

(b) Suppose there are important economies of scale in producing solar
equipment, such that the cost savings increase the payoffs in the (solar,
solar) cell of the table to (3, y) where y > 2. How large would y need to
be for the polymorphic equilibrium to have s = 0.75?

There are two types of racers—tortoises and hares—who race against one an-
other in randomly drawn pairs. In this world, hares beat tortoises every time
without fail. If two hares race they tie, and they are completely exhausted by
the race. When two tortoises race they also tie, but they enjoy a pleasant con-
versation along the way. The payoff table is as follows (where ¢ > 0):

COLUMN
tortone | e
Tortoise" CC -1, 1
ROW |
o Hare: 1,-1 0,0

() Assume that the proportion of tortoises in the population, ,is 0.5, For
what values of ¢ will tortoises have greater fitness than hares?

{(b) For what values of ¢ will tortoises be fitter than hares if ¢= 0.1?

(¢) If ¢ = 1, will a single hare successfully invade a population of pure tor-
toises? Explain why or why not.

(d) In terms of f, how large must ¢ be for tortoises to have greater fitness
than hares?
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(e) In terms of ¢, what is the level of ¢ in a polymorphic equilibrium? For
what values of ¢ will such an equilibrium exist? Explain.

$8. Consider a population with two types, Xand Y, with a payoff table as follows:

59.

COLUMN

ROW
3,5 1,1

(a} Find the fitness for X as a function of x, the proportion of Xin the popu-
lation, and the fitness for Yas a function of x.
Assume that the population dynamics from generation to generation
conform to the following model:

X = X X F 1 00, X Fyp + (1 — X X By,

where x, is the proportion of Xin the population in period & x,,, is the pro-

portion of Xin the population in period £+ 1, Fy, is the fitness of Xin period

t, and Fy,is the fitness of ¥in period £.

(b) Assume that x,, the proportion of Xin the population in period 0, is 0.2.
What are Fy, and Fyy?

(¢) Find x,, using X, Fxy Fy, and the model given above.

{d) What are Fy, and F?

(e) Find x, (rounded to five decimal places).

(f) What are Fy, and Fy, (rounded to five decimal places)?

Consider an evolutionary game between green types and purple types with
a payoff table as follows:

COLUMNMN
_ _G‘re__én : e '?_IL_li‘pléﬁ.
L Gfeef{.‘:ﬁ; aa 4,3
ROW |
C Purple 3,4 2.2

Let gbe the proportion of greens in the population.
(a) In terms of g what is the fitness of the purple type?
(b) In terms of gand a, what is the fitness of the green type?
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(c) Graph the fitness of the purple types against the fraction g of green
types in the population. On the same diagram, show three lines for the
{itness of the green types when a = 2, 3, and 4. What can you conclude
from this graph about the range of values of a that guarantees a stable
polymorphic equilibrium?

(d) Assume that ais in the range found in part (c). In terms of @, what is the
proportion of greens, g, in the stable polymorphic equilibrium?

510. Prove the following statement: “If a strategy is strictly dominated in the

payoff table of a game played by rational players, then in the evolutionary
version of the same game it will die out, no matter what the initial popula-
tion mix. If a strategy is weakly dominated, it may coexist with some other
types but not in a mixture of all types.”

UNSOLVED EXERCISES

Ul. Consider a survival game in which a large population of animals meet and

either fight over or share a food source. There are two phenotypes in the
population: one always fights, and the other always shares. For the pui-
poses of this question, assume that no other mutant types can arise in the
population. Suppose that the value of the food source is 200 calories and
that caloric intake determines each player’s reproductive fitness. If two
sharing types meet one another, they each get half the food, but if a sharer
meets a fighter, the sharer concedes immediately, and the fighter gets all
the food.

(a) Suppose that the cost of a fight is 50 calories (for each fighter) and that
when two fighters meet, each is equally likely to win the fight and the
food or to lose and get no food. Draw the payoff table for the game
played between two random players from this population. Find all
of the ESSs in the population. What type of game is being played in
this case?

(b} Now suppose that the cost of a fight is 150 calories for each fighter.
Draw the new payoff table and find all of the ESSs for the population in
this case. What type of game is being played here?

(¢) Using the notation of the Hawk-Dove game of Section 13.6, indicate the
values of Vand Cin parts (a) and (b} and confirm that your answers to
those parts match the analysis presented in the chapter.

U2. Suppose that a single play of a prisoners’ dilemma has the following

payoffs:
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PLAYER 2
Cooperate | Defect
PLAYER Cooperate_ 3,3 1,4
! _ Defect. . 4,1 2,2

In a large population in which each member’s behavior is genetically
determined, each player will be either a defector {that is, always defects in
any play of a prisoners’ dilemma game) or a tit-for-tat player. (In multiple
rounds of a prisoners’ dilemma, she cooperates on the first play, and on
any subsequent play she does whatever her opponent did on the preceding
play.) Pairs of randomly chosen players from this population will play “sets”
of nsingle plays of this dilemma (where n = 2). The payoff to each player in
one whole set (of n plays) is the sum of her payoffs in the n plays.

Let the population proportion of defectors be p and the proportion of
tit-for-tat players be (I — p}. Each member of the population plays sets of
dilemmas repeatedly, matched against a new, randomly chosen opponent
for each new set. A tit-for-tat player always begins each new set by cooper-
ating on its first play. '

(a) Show in a two-by-two table the payoffs to a player of each type when,
in one set of plays, each player meets an opponent of each of the two
types.

(b) Find the fitness (average payoff in one set against a randomly chosen
opponent) for a defector.

{¢) Find the fitness for a tit-for-tat player.

{(d) Usethe answers to parts {b) and (c) to showthat, when p> (n - 2)/(n—1),
the defector type has greater fitness and that, when p < (n — 2)/(n - 1),
the tit-for-tat type has greater fitness.

(e) If evolution leads to a gradual increase in the proportion of the fitter
type in the population, what are the possible eventual equilibrium
outcomes of this process for the population described in this exercise?
(That is, what are the possible equilibria, and which are evolutionary
stable?) Use a diagram with the fitness graphs to illustrate your answer.

(f) In what sense does more repetition (larger values of ») facilitate the
evolution of cooperation?

Suppose that in the twice-repeated prisoners’ dilemma of Exercise $3,
a fourth possibie type (type S) also can exist in the population. This type
does not confess on the first play and confesses on the second play of each
episode of two successive plays against the same opponent.

U4.

Us.

+
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{a) Draw the four-by-four fitness table for the game.

{b) Can the newly conceived type S be an ESS of this game?

(c) In the three-types game of Exercise $3, A and T were both ESS, but T was
only neuirally stable because a small proportion of N mutants could
coexist. Show that in the four-types game here, T cannot be ESS.

Following the pattern of Exercise $4, analyze an evolutionary version of the
tennis point game {Figure 4.15). Regard servers and receivers as separate
species, and construct a figure like Figure 13.11. What can you say about
the ESS and its dynamics?

Recall from Exercise Ul the population of animals fighting over a food

source worth 200 calories. Assume that, as in part (b) of that exercise, the

cost of a fight is 150 calories per fighter. Assume also that a third phenotype

exists in the population. That phenotype is a mixer; it plays a mixed strat-

egy, sometimes fighting and sometimes sharing.

(a) Use your knowledge of mixed strategies in rationally played games to
posit a reasonable mixture for the mixer phenotype to use in this game.

(b) Draw the three-by-three payoff table for this game when the mixer type
uses the mixed strategy that you found in part (a).

(¢} Determine whether the mixer phenotype is an ESS of this game. (Hint:
Test whether a mixer population can be invaded successfully by either
the fighting type or the sharing type.)

Consider an evolutionary version of the game between Baker and Cutler,
from Exercise U1 of Chapter 11. This time Baker and Cutler are not two in-
dividuals but two separate species. Each time a Baker meets a Cutler, they
play the following game. The Baker chooses the total prize to be either $10
or $100. The Cutler chooses how to divide the prize chosen by the Baker:
the Cutler can choose either a 50:50 split or a 90:10 split in the Cutler’s own
favor. The Cutler moves first, and the Baker moves second.

There are two types of Cutlers in the population: type F chooses a fair
(50:50) split, whereas type G chooses a greedy (90:10) split. There are also
two types of Bakers: type S simply chooses the large prize {$100) no mat-
ter what the Cutler has done, whereas type T chooses the large prize ($100)
if the Cutler chooses a 50:50 split, but the small prize ($10) if the Cutler
chooses a 90:10 split.

Let f be the proportion of type F in the Cutler population, so that
(1 — f} represents the proportion of type G. Let s be the proportion of type $
in the Baker population, so that {1 - 5) represents the proportion of type T.
(a) Find the fitness of the Cutler types Fand Gin terms of s.

(b) Find the fitness of the Baker types Sand T'in terms of f
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(¢) For what value of sare types Fand G equally fit?

(d) For what value of fare types S and T'equally fit?

(e} Use the answers above to sketch a graph displaying the population dy-
namics. Assign fas the horizontal axis and s as the vertical axis.

(F) Describe all of the equilibria of this evolutionary game, and indicate
which ones are stable.

Recall Exercise §7. Hares, it turns out, are very impolite winners. When-
ever hares race tortoises they mercilessly mock their slow-footed (and eas-
ily defeated) rivals. The poor tortoises leave the race not only in defeat, but
with their tender feelings crushed by the oblivious hares. The payoff table is

thus:

COLUMN
To_ftd_ise_' e _Hé'_r‘é o
Tortoise ¢ C 2,1
ROW
.~ Hare. i,-2 0,0

(a) For what values of ¢ are tortoises fitter than hares if £, the proportion of
tortoises in the population, is 0.52 How does this compare with the an-
swer in Exercise S7, part (a)?

(b} For what values of ¢ are tortoises fitter than hares if # = 0.12 How does
this compare with the answer in Exercise 57, part (b)?

(©) If ¢ = 1, will a single hare successfully invade a population of pure tor-
toises? Explain why or why not.

(d) In terms of f, how large must ¢ be for tortoises to be fitter than hares?

(e) In terms of ¢, what is the level of ¢ in a polymorphic equilibrium? For
what values of ¢will such an equilibrium exist? Explain.

{f) Will the polymorphic equilibria found to exist in part (e) be stable? Why
or why not?

(Use of spreadsheet software recommended) This problem explores more
thoroughly the generation-by-generation population dynamics seen in
Exercise S8. Since the math can quickly become very complicated and te-
dious, it is much easier to do this analysis with the aid of a spreadsheet.
Again, consider a population with two types, X and ¥, with a payoff
table as follows:
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COLUMM

ROW

3,5 1,1

Recall that the population dynamics from generation to generation are
given by:

X = X X Fyg /[, X P+ (1 = x) X Fyl,

where x, is the proportion of X in the population in period 1, x,,, is the pro-

portion of X'in the population in period t+ 1, Fy, is the fitness of Xin period

t, and Fy, is the fitness of Yin period &

Use a spreadsheet to extend these calculations to many generations.
[Hint: Assign three horizontally adjacent ceils to hold the values of x, Fy,
and Iy, and have each successive row represent a different period (¢ - 0:
1,2,3,...). Use spreadsheet formulas to relate Fy, and Fy, to x,and x,,, to x,
Fy, and Fy, according to the population model given above. ] ’
(@) If there are initially equal proportions of X and Y in the population in

period 1 (that is, if x, = 0.5), what is the proportion of X in the next

generation, x,? What are Fy, and F,?

(b} Use a spreadsheet to extend these calculations to the next generation,
and the next, and so on. To four decimal places, what is the value of x,?
What are Fy,o and Fyy,?

(c} What is x* the equilibrium level of 2 How many generations does it
take for the population to be within 1% of x*?

{d) Answer the questions in part (b}, but with a starting value of x, = 0.1.

(e) Repeat part (b}, but with x, = 1.

(f) Repeat part (b), but with x, = 0.99.

(g) Are monomorphic equilibria possible in this model? If so, are they
stable? Explain.
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U9. Consider an evolutionary game between green types and purple types, with
a payoff table as follows:

COLUMN

Purple

Gréen aa b.c

ROW

< parple C b d,d

In terms of the parameters @, b, ¢, and d, find the conditions that will
guarantee a stable polymorphic equilibrium.

U10.(Optional, for mathematically trained students) In the three«fype ;:r?::é
tionary game of Section 7.B and Figure 13.14, letg, =1 qlh 32 enote
the proportion of the orange-throated aggress?r types. Then t Z Vi
of the population proportions of each type of lizard can be stated as

g, increases if and only if —¢, + g5 > 0

and

+

g, increases if and only if ¢, — 43 > 0.
We did not state this explicitly in the chapter, but a similar rule for g is
g, increases if and only if —q, + ¢, > 0.

(a) Consider the dynamics more explicitly. Let the speed of change in a
variable x in time zbe denoted by the derivative dx/dt. Then suppose

dayldt = —g, + Gs dg,/ dt = gy — gs, and dgyldi = —q1 + G2

Verify that these derjvatives conform to the preceding statements re-
i tion dynamics,
(b) giﬁgzg};ie(zggia(qz)z —?-/ (g)%. Using the chain rule of differen.tiation,
show that dX/dt = 0, that is, show that X remains constant over t1me._ 1
(c) From the definitions of the entities, we know that g, + ¢ + qst.— e.
Combining this fact with the result from part {b), show that ove'r im .
in three-dimensional space, the point (q), g2, g3) r.noves along'a. f:lrcfe:[}l
(d) What does the answer to part (c) indicate regarflmg the stabllhty?o e
evolutionary dynamics in the colored-throated lizard population?

B

Mechanism Design

AMES MIRRLEES WON THE NOBEL PRIZE in Economics in 1996 for his

pioneering work on optimal nonlinear income taxation and related policy

issues. Manynoneconomists, and some econormnists too, found his work dif-

ficult to understand, But The Economist magazine gave a brilliant charac-
terization of the broad importance and relevance of the work. It said that Mirrlees
showed us “how to deal with someone who knows more than you do.”?

We have already seen some of the ways in which such asymunetric informa-
tion affects the analysis of games, in Chapter 9. But the underlying problem for
Mirrlees differed slightly from the situations we considered earlier. In his work,
one player (the government) needed to devise a set of rules so that the other
players’ (the taxpayers’) incentives were aligned with the first player’s goals.
Models with this general framework, in which a less-informed player works to
Create motives for the more-informed player to take actions beneficial to the less
informed, now abound and are relevant to a wide range of social and economic
interactions. Generally, the less-informed player is called the principai while the
more-informed is called the agent; hence these models are termed principal-
agent models. And the process that the principal uses to devise the correct set of
incentives for the agent is known as mechanism design.

In Mirrlees’s model, the government seeks a balance between efficiency and
equity. It wants the more productive members of society to contribute effort to
increase total output; it can then redistribute the proceeds to benefit the poorer

“Economics Focus: Secrets and the Prize,” The Economist, October 12, 1996,




